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Abstract. We obtain an exact solution for the one-dimensional site percolation model with 
bonds connecting the Lth nearest neighbours. The critical exponents are found to depend 
on L: 2 - a p  = L, yp = L, vP = L, qp = 1, pp = 0 and 6, = 00. By mapping the percolation 
problem onto an king-like model with multi-spin interactions, we argue that the depen- 
dence of the percolation exponents on L can be understood from consideration of king 
model universality classes. 

The percolation problem (Shante and Kirkpatrick 197 1) has attracted considerable 
interest in recent years. The concepts of scaling and universality, which are so useful in 
understanding the behaviour at the critical point, have also proved to be important in 
the investigation of the percolation transition. In this Letter we solve a one-dimen- 
sional (d = 1) site percolation problem with the addition of further neighbour bonds. 

The generating function (Fisher and Essam 1961) which is the mean number of 
clusters per site, is 

where (n,) is the average number of s-site clusters per lattice site, and p is the 
probability that a site is occupied. The prime on the sum indicates that the infinite 
cluster is omitted. First we introduce a variable that plays a role analogous to the 
magnetic field in the thermal problem (Kasteleyn and Fortuin 1969). To each site in 
the lattice we associate a ‘ghost site’][ which is occupied with probability h (cf figure 1). 
All the ghost sites are connected to one another, so that if a site on the lattice is 
occupied, it is part of the infinite cluster if its corresponding ghost site is occupied 
(Reynolds et a1 1977). Hence, 

(n,) = PS(4)(1 - hY1pS, (2) 
where D,(q) is the perimeter polynomial for h = 0, and q = 1 - p .  The factor (1 - h)” 
in the generalised (h  ZO) perimeter polynomial ensures that the s-site cluster is 
isolated. 

t Work supported by AFOSR and NSF. 
$ Present address: Physics Department, University of Toronto. 
8 Predoctoral Fellow, Massachusetts Institute of Technology. 
11 We could also define a single ghost spin connected by ghost bonds to each site and obtain 
an identical formalism. See also Reynolds et al (1977). 
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Figure 1. A segment of the d = 1, L = 1 lattice with the corresponding ghost lattice. Note 
that site 2 is a one-site cluster if h = 0, but may belong to the infinite cluster if h # 0. 

We now calculate &(p,  h )  for a linear chain with bonds connecting up to the Lth 
nearest neighbours. First we treat the L = 2 case in detail, and then we indicate how 
the argument is generalised to arbitrary L. (For the case L = 1, see Reynolds et a1 
(1977) and references therein.) The average number of one-site clusters is ( n l ) =  
[q4(1 - h ) ] p ,  since four lattice sites and one ghost site must be empty in order to isolate 
a single occupied site (cf figure 2(a)). There are two distinct two-site clusters, as in 
figures 2(b)  and 2(c ) ,  and hence (n2)  = [q4(1 - h ) * ] p 2 +  [q5(l - h)’ ]p2 .  For general s, 
there are s - 1 possible places between pairs of occupied sites where a site can be 
empty without destroying the cluster connectivity. We call such a configuration (an 
empty site flanked by two occupied ones) a one-site gap. If an s-site cluster has k 
gaps, there are (si1) possible configurations. Hence, 

where the factor q4 arises from the exterior perimeter of the cluster, and q k  comes 
from the interior gaps. Substituting (3) into (l), we obtain for L = 2 

To extend this argument to the general-L case, we note that now gaps of up to 
L - 1 sites can occur without destroying the cluster connectivity (see figure 2(d)). To 

0 0 0 0 0 0 0 0 0 o l d )  

Figure 2. (a) A one-site cluster on the d = 1, L = 2 lattice with four lattice perimeter sites 
and one ghost perimeter site. ( b )  and ( c )  two possible two-site clusters that may occur for 
L = 2, each containing four exterior perimeter sites and two ghost perimeter sites; in (c) 
there is an additional interior perimeter site. ( d )  Gaps of up to L - 1 sites can occur 
without destroying the cluster connectivity; the two occupied sites form a two-site cluster 
for L > 2, and two one-site clusters for L S  2. 
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calculate (n,) we must sum over all possible ways of distributing the various size gaps 
among the s - 1  possible places between the s occupied sites. The combinatorial 
factors that occur are the coefficients in a multinomial expansion of order (s - 1). 
Therefore, in general 

From equation (5) it follows that, for all L, the percolation threshold is at (q = 0, 
h = 0). To obtain the critical exponents we note that &(p,  h )  is a generalised 
homogeneous function (GHF) of the scaling fields 4 and h in the neighbourhood of 
q = h = O ,  

The scaling powers of G L ( p ,  h )  are thereforel 
, 

leading (Hankey and Stanley 1972) to the exponents 

pp=o, 8p=co, y p = L ,  2 - a p = L ,  u p = L ,  q p = l ,  (8) 
where the last two equalities follow from the fact that the fractal dimensionality 
(Stanley et a1 1976) dr = y p / u p  = 1, and from the weak scaling relation yp/vp = 2 - qp. 
The GHF characteristic of equation (6) also allows us to derive several scaling laws (e.g. 
ap + 2pp + yp = 2) analogous to those in thermal critical phenomena. 

We have also computed the percolation probability and the mean size directly. 
From equation (9, we obtain by differentiation with respect to h (Reynolds et a1 
1977), 

q2L(1 - h )  
[ 1 - (1 - 9 L)(  1 - h )I2 P ( p ) =  1 -  

and 

(9) 

leading again to the exponents of equation (8). 
Having exponents which depend on the ‘bond range’f is at variance with what we 

have come to expect from critical points. In order to gain some understanding of this 
result we present a different way of looking at percolation. As we will see, in this 
picture the percolation generating function is a thermodynamic derivative of a thermal 
free energy for an Ising-like model. In order to describe this picture of percolation we 
must first obtain an expression for the total number of clusters. 

t Of course, in equations (7) and (8) we choose the scaling fields to be q and h for all L. 
$ Equation (5) is also a GHF in terms of q L  and h. With this choice of variables we obtain the exponents 
y P P  = U =2-a,= 1, p,=O, Sp=oo, vp= 1 .  From equation (5) there is no reason to choose one set of 
variables over the other. One can appeal to the renormalisation group (RG) and express exponents only in 
terms of RG scaling fields. This however does not resolve the problem as the RG does not distinguish 
between q and qL as scaling fields. If we choose our scaling fields as q and h for all L, we have a breakdown 
of universality. 
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We stress the distinction between NL the number of clusters, which is a micro- 
scopic quantity, and @=), the average number of clusters. Furthermore, we must 
distinguish between C’? = limN+Oo excluding the zero-site clusters, and G =- 
limN,m N-’(NL) including the zero-site cluster contributiont . This latter quantity is 
required in order to map the site percolation problem onto an Ising model, and is just 
the analogue of the free energy introduced by Kasteleyn and Fortuin (1969) for the 
bond percolation problem. The zero-site cluster contribution is understood by 
considering the L = 1 bond problem, for which the free energy is obtained by counting 
the number of clusters of a given site size. In this counting procedure, isolated 
single-site clusters arise from a pair of adjacent empty bonds (cf figure 3). Under the 
covering transformation-which takes the bond problem to a site problem on a 
covering lattice-the one-site cluster in the bond problem maps into a bond, isolated 
by two adjacent empty sites, in the site problem. Thus, if we wish to obtain the free 
energy for site percolation, we must count the contribution of two empty adjacent 
sites, and we call these the ‘zero-site’ clusters$. 

Zero- bond, 
/one-site cluster 

*..U] [L] [-*e. Bond percolation on the original 
lattice 4 

... - Site percolation on the covering 
lattice 

Zero-site, 
one-bond cluster 

Figure 3. Two empty adjacent bonds on the original lattice map into an isolated bond on 
the covering lattice. This isolated bond contributes to the Kasteleyn-Fortuin free energy, 
and hence, for the site percolation problem two empty adjacent sites must be counted as a 
cluster. We call such clusters zero-site clusters. 

We now introduce a spin language for the percolation problem (Kasteleyn and 
Fortuin 1969). Associate with each site of our lattice an Ising spin: an occupied site 
corresponds to an up-spin, and an empty site corresponds to a down-spin. These spins 
do not interact with each other, but do respond to an applied external magnetic field 
kBTH. We can introduce projection operators (Coniglio 1976) for the two spin states 
at each site 

and also define averages of products of projection operators; for example 

We next obtain an expression for the number of clusters NL in terms of the rf. For 
L = 1, an occupied site at position j on the lattice is isolated from all sites to its right if 
there exists an empty site at j + 1. If we imagine walking along the lattice from left to 

t Here, and in what follows, we exclude the infinite cluster. 
$ The number of zero-site clusters is q2 even for h # 0, since an empty site cannot be connected to a ghost 
site. 
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right, we must increase the cluster number by one each time we encounter an occupied 
site followed by an empty one. This method, however, does not count ‘zero-site’ 
clusters, and hence 

(13) + -  
f i 1  =C rj ~ j + l .  

i 

In order to calculate N1,  the total number of clusters (including those of zero site 
size), we walk along the lattice as before; however, we now increase the cluster count 
every time we encounter an empty site, and thereby count each configuration of two 
adjacent empty sites as a cluster. Therefore 

and hence the contribution of the zero-site clusters is 

(15) 
- -  

N1-$i=C rj ~ j + l .  
i 

where we have used the identity 1 - r f  = r;. 
To generalise (15) to arbitrary L, we prove by induction the identity 

(16) 
- -  

NL = C rj r j + l  +*L, 
i 

where f i L = X j  .rr:.zrr+l . . . r;+=. Equation (15) is the case L = 1. Now assume (16) is 
true for L = 1. To obtain (16) for L = 1 + 1 we note that equals NI minus the 
number of k i t e  gaps, B j  . z r f ~ i + ~  . . . ~ i + ~ r f + ~ + ~ ,  since such a gap separates clusters for 
L = 1 but not for L = 1 + 1 (cf figure 2(d)):  

Including the zero-site cluster contribution, we can now write the ‘free energy’ for 
the percolation problem at h = 0, 

(NL) = 
- -  

(18) 
&“fig (zj Tj  Tj+l +zj rfri+l e . . ‘TTT+L) exp(H Zk sk) 

Econfig exp(H Zk sk) 
Using equation (12), (18) reduces to 

GL( p ,  h = 0) = q + pq = q 2  + &( p ,  h = 0), 

GL(P, h ) = q 2 + & ( p ,  h ) .  (19b) 

(19a) 

where e L ( p ,  h = 0) can be obtained from equation (5). In general, 

Equation (18) can be rewritten as 

where the argument of the logarithm plays the role of a ‘partition function’, and the 
argument of the exponential the role of a ‘Hamiltonian’. That is, the percolation free 
energy is obtained from the free energy of a system of Ising spins via a thermodynamic 
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derivative. This implies that the partition function in (20) is singular? at a ‘thermal’ 
critical point (H = H,, a = 0), and that we can understand the singularities of the 
percolation transition by studying this ‘thermal’ point. 

By examining the interactions contained in the ‘Hamiltonian’ of (20), the break- 
down of universality can be understood. For L = 1, the Hamiltonian contains only 
single-spin interactions. For L = 2, expansion of the products of the T’ results in a 
three-spin interaction, as well as nearest- and next-nearest-neighbour interactions. In 
general, for L = I ,  an expansion of the projection operators results in the addition of a 
new (1  + 1)-spin interaction. 

Although the complete relation between symmetry properties of Ising-like 
Hamiltonians and universality classes is not understood, there are results which 
indicate that the addition of multi-spin interactions to king Hamiltonians does change 
the universality class. In particular, the triangular lattice with three-spin interactions 
solved by Baxter and Wu (1973) has different exponents than the Ising model with 
two-spin interactions. The eight-vertex model solved by Baxter (1972), which can be 
mapped into an Ising system with four-spin interactions, is in still another universality 
class. Even though universality breaks down there is a weaker sense in which it still 
holds (Suzuki 1974): the renormalised exponents 

+ = y / v ,  P^=p/v ,  +j=., &a, $=(2--cU)/v  (21) 
are universal. Similarly, we find that the renormalised percolation exponents, defined 
in analogy with (21), are L-independent. 

In summary, we have solved the site percolation problem on a one-dimensional 
lattice with bonds connecting Lth nearest neighbours, and noted that the critical 
exponents are not L-independent. This behaviour can be illuminated by relating the 
percolation problem to a corresponding ‘thermal’ problem with multi-spin inter- 
actions. 
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t Strictly speaking the partition function (20) is not a singular function of p .  However, the point H = Hc, 
a = 0, is associated with an infinite length which determines the physics at p = p c .  The partition function in 
(20), generalised to h # 0 (unpublished) is singular in the limit h + 0. 


