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Fate of zero-temperature Ising ferromagnets
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We investigate the relaxation of homogeneous Ising ferromagnets on finite lattices with zero-temperature
spin-flip dynamics. On the square lattice, a frozen two-stripe state is apparently reached approximately 3/10 of
the time, while the ground state is reached otherwise. The asymptotic relaxation is characterized by two distinct
time scales with the longer stemming from the influence of a long-lived diagonal stripe defect. In greater than
two dimensions, the probability to reach the ground state rapidly vanishes as the size increases and the system
typically ends up wandering forever within an iso-energy set of stochastically ‘‘blinking’’ metastable states.
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What happens when an Ising ferromagnet, with spins
dowed with Glauber dynamics@1#, is suddenly cooled from a
high temperature to zero temperature (T50)? A first expec-
tation is that the system should coarsen@2# and eventually
reach the ground state. However, even the simple Ising
romagnet has a large number of metastable states with
spect to Glauber spin-flip dynamics. Therefore at zero te
perature the system could get stuck forever in one of th
states.

In this paper, we argue that the kinetics of this system
richer than either of these scenarios. While the ground s
is always reached in one dimension, there appears to
nonzero probability that the square lattice system freezes
a stripe configuration for equal initial densities of↑ and ↓
spins @3#. The relaxation is governed by two distinct tim
scales, the larger of which stems from a long-lived diago
stripe defect. On hypercubic lattices (d>3), the probability
to reach the ground state vanishes in the thermodyna
limit and the system wanders forever on an isoenergy su
of connected metastable states. Again, the relaxation se
to be characterized by at least two time scales.

It bears emphasizing that these long-time anomalies
quire that the limitT→0 is takenbeforethe thermodynamic
limit L→`. Very different behavior occurs ifL→` before
T→0 @4#; a system that enters a metastable state can es
and the true equilibrium state is eventually reached. Ho
ever, forT50, a system which enters a metastable state
be trapped forever.

We can easily appreciate the peculiarities of ze
temperature dynamics for odd-coordinated lattices such
the honeycomb lattice. Here a connected cluster in wh
each spin has at least two aligned neighbors is energetic
stable in a sea of opposite spins. Forany initial state, a suf-
ficiently large system will have many such metastable
fects and the system will necessarily freeze. The numbe
these metastable scales exponentially with the total num
of spinsN. In contrast, on even-coordinated lattices the nu
ber of metastable defects states grows as a slower, stret
exponential function ofN and they affect the asymptotic re
laxation in more subtle ways.

We study the homogeneous Ising model with Hamilton
H52J(^ i j &s is j , wheres i561 and the sum is over al
nearest-neighbor pairs of sites^ i j &. We assume initially un-
correlated spins withs j (t50)561 equiprobably, which
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evolve by zero-temperature Glauber dynamics@1#, corre-
sponding to a quench fromT5` to T50. We focus on
d-dimensional hypercubic lattices with linear sizeL and pe-
riodic boundary conditions. Most of our results continue
hold for free boundary conditions and on arbitrary eve
coordinated lattices.

Glauber dynamics at zero temperature involves pickin
spin at random and computing the energy changeDE if the
spin were flipped. ForDE,0, 50, or .0, the flip is ac-
cepted with probability 1, 1/2, or 0, respectively. After ea
event, the time is updated by 1/Ld so that each spin under
goes, on average, one update attempt in a single time un
practice, we update only flippable spins~those with DE
<0) and update time by 1/~number of flippable spins! after
each spin flip event. For each initial state, one realization
the dynamics is run until the final state. AtT50, metastable
states in this dynamics have an infinite lifetime that can p
vent the equilibrium ground state from being reached. Thi
the basic reason why dynamics atT50 is different from that
of small positive temperature.

To understand the long-time behavior in general dim
sions, it is helpful to consider initially the soluble case of o
dimension@5#. For T50 Glauber kinetics, the expectatio
value of thei th spin,si[^s i&, obeys the diffusion equation
and therefore the average magnetization^m&5(1/L)( j sj is
conserved@1#. Since there are no metastable states in o
dimension, the only possible final states are all spins up o
spins down. For initial magnetizationm(0), a final magneti-
zationm(`)5m(0) can be achieved only if a fraction12 @1
1m(0)# of all realizations of the dynamics ends with a
spins up and a fraction12 @12m(0)# with all spins down.

On the square lattice, there exist a huge number of m
stable states that consists of alternating vertical~or horizon-
tal! stripes whose widths are all>2. These arise because
zero-temperature Glauber dynamics, a straight boundary
tween up and down phases is stable; a reversal of any
along the boundary increases its length and raises the en
However, a stripe of width 1 is unstable because it can be
in two at no energy cost by flipping one of the spins in t
stripe.

The mere existence of these metastable states implies
a finite sample may not reach the ground state. However,
could expect that the probability to reach such stripe sta
approaches zero as the system size grows; lim

L→`
Pstr(L)
©2001 The American Physical Society18-1
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50. Our simulations onL3L-squares withL<512 appear
to disagree with this expectation~Fig. 1!, where extrapola-
tion of Pstr(L) as L→` suggests a nonzero value close
0.3. Numerically, we also find that states with more than t
stripes almost never appear.

When the two-stripe state is reached on the square lat
both stripes have width typically of the order ofL/2. There is
also a gradual narrowing of the continuous compon
C2d(m) of the final magnetization distribution,F2d(m)
5 1

2 (12Pstr)@d(m21)1d(m11)#1PstrC2d(m), which ap-
pears to converge to a finite-width limit asL→` @Fig. 2~a!#.
On the simple cubic lattice, there are many more metast
state topologies and also relatively more states with nar
stripes so that there is a larger probability that the final m
netization is close to61. The final magnetization distribu
tion also exhibits good data collapse even at relatively sm
system sizes. Strikingly, the final magnetization distribut
on the cubic lattice is well fit byF3d(m)5 3

4 (12m2) @Fig.
2~b!#.

Intriguing behavior is also exhibited by the survival pro
ability S(t) that the system has not yet reached its final s
by time t. On the square lattice,S(t) is controlled by two

FIG. 1. Probability that anL3L-square eventually reaches
stripe state,Pstr(L), as a function of 1/log2L for L<512. Each data
point ~with error bars! is based on 106 initial spin configurations for
L<64 and 105 configurations forL>128.

FIG. 2. Final magnetization distribution on the~a! square and
~b! cubic lattices. On the square lattice, this distribution narrows
L increases but appears to reach a nonsingular limit. On the c
lattice, data collapse occur even at small sizes. The number o
alizations is 105 for the square and>104 for the cubic lattices.
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different time scales. On a semilogarithmic plot,S(t) lies on
a straight line with a large negative slope and then cros
over to another line with smaller negative slope at long tim
~Fig. 3!. In the intermediate time regime, the energy deca
as t21/2 as expected@2#. The crossover inS(t) occurs when
domains, which grow according to the classicalt1/2 law @2#,
reach the system size leading to the crossover timetc}L2.

Quite surprisingly, the source of the long-time anomaly
S(t) arises from the approximately 4% of the configuratio
in which a diagonal stripe appears~Fig. 4!. On the torus, this
configuration consists of one stripe of↑ spins and another o
↓ spins which, by symmetry, have width of orderL/2. Each

s
ic
e-

FIG. 3. Time dependence of the survival probabilityS(t) on L
3L squares. Main graph:S(t) versust/M10 to highlight the long-
time exponential tail. HereMk[^tk&1/k is thekth reduced moment
of the time to reach the final state. Scaling sets in afterS(t) has
decayed to approximately 0.04. Inset:S(t) versust/M1/10 to high-
light the scaling and the faster exponential decay in
intermediate-time regime.

FIG. 4. Diagonal stripe configuration on the square lattice w
periodic boundaries. The lower portion shows part of one interf
rotated by 45°. Zero-temperature Glauber dynamics is equivalen
particle deposition at the bottom of a valley~light-shaded square!
corresponding to the spin-flip event↑→↓, or particle evaporation
from a peak~filled square!, corresponding to↓→↑.
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of these stripes winds once both toroidally and poloidally
the torus; they cannot evolve into straight stripes by a c
tinuous deformation of the boundaries. Consequently a d
onal stripe configuration ultimately reaches the ground st

Diagonal stripes are also extremely long lived. ForL
5200, for example, the time for such a configuration
reach the final state is two orders of magnitude larger t
the typical time which is of orderL2. To understand this long
lifetime, we view a diagonal boundary as an evolving int
face in a reference frame rotated by 45°@6#.

In this frame~Fig. 4 lower!, a spin flip is equivalent eithe
to ‘‘particle deposition’’ at the bottom of a valley (↑→↓) or
‘‘evaporation’’ from a peak (↓→↑). In a single time step
each such event occurs with probability 1/2. For an interf
with transverse dimension of orderL, let us assume that ther
are of the order ofLm such height extrema. Reference@6#
predictsm51, but we temporarily keep the value arbitra
for clarity. Accordingly, in a single time step, where all in
terface update attempts occur once on average, the inte
center-of-mass moves a distanceDy;Lm/2/L to give an in-
terface diffusivityD;(Dy)2;Lm22. We then estimate the
lifetime tdiag of a diagonal stripe as the time for the interfa
to move a distance of orderL to meet another interface. Thi
gives tdiag;L2/D;L42m. Using the results of Ref.@6#, we
expecttdiag}L3.

The survival probability reflects these two time sca
~Fig. 3! and theirL dependence is clearly visible in the r
duced momentsMk[^tk&1/k of the time until the final state is
reached. The main contribution to the moments withk,1
comes from short-lived configurations, while fork.1 the
main contribution comes from long-lived diagonal-stri
configurations. Our data forMk with k,1 scales approxi-
mately asL2, while for k.1, Mk scales roughly asL3.5,
somewhat faster growth than expected from the interf
analogy~Fig. 5!.

In greater than two dimensions, the probability to rea
the ground state rapidly vanishes as the system size
creases. For example,Pgs512Pstr'0.04 and 0.003 for cu-
bic lattices of linear dimensionL510 and 20. For larger
lattices, the ground state has not been reached in any o
simulations. One obvious reason why the system ‘‘misse

FIG. 5. Dependence ofMk[^tk&1/k on L. Shown are the case
k51 ~dashed curve!, k51/2 (h), 1/4 (n), and 1/10 (s) as well as
k52, 4, and 10~corresponding filled symbols!. The thin straight
lines have slopes 2 and 3.5.
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the ground state is the rapid increase in the number of m
stable states with spatial dimension. This proliferation
metastable states makes it more likely that a typical confi
ration will eventually reach one of these states rather than
ground state. Another striking feature is that many me
stable states in three dimensions form connected iso-en
sets, while metastable states are all isolated in two dim
sions. Thus a three-dimensional system can end up wan
ing forever on one of these connected sets.

A specific example from a simulation on a small cube
sketched in Fig. 6. By viewing the spins as cubic blocks,
cluster of aligned spins appears as a ‘‘building’’ with a tw
story section~marked 2!, an adjacent three-story sectio
~marked 3!, and a section~marked`) that wraps around the
torus in the vertical direction and rejoins the building on t
ground floor. The wiggly lines indicate that building sectio
also wrap around in thex andy directions.

The sites marked by3 are ‘‘blinkers.’’ Consider the left-
most such site of height 2. Since there are three directi
where the nearest neighbors are part of the building,
leftmost spin can flip with zero energy cost. If this occu
then its right neighbor, which was initially stable, can no
flip with no energy cost. This motion can continue up to t
right edge of thè section of the building but no further
Therefore the interface between height 2 and height 3 p
forms a random walk, constrained to move forever in t
interval marked by the3 sites. This construction arises nat
rally on even-coordinated Cayley trees and thus appear
be generic in high dimensions.

Another feature of the final state is that it almost alwa
consists of only two interpenetrating clusters that both p
colate in all three Cartesian directions. These two percola
clusters must each contain no convex corners to be stab
T50. While there are also metastable states with many c
ponents and those with components percolating in one o
two directions, such configurations are generally not reac
when the system is large enough.

The energy decay on the cubic lattice also suggests
there exist more than one relaxational time scale. Initia
the energy decreases systematically in a manner consi
with a power-law decay. At longer times, however, the e
ergy exhibits plateaux of increasing duration punctuated
small energy decreases. Ultimately the final energy
reached after which constant-energy stochastic blinking
cursad infinitum. Our data for the time until the appearan
of the first energy plateau scales roughly asL3, while the
time to reach the final energy seems to increase faster
any power ofL.

FIG. 6. A stochastic blinker on the cubic lattice. The sit
marked by the3 can ‘‘blink’’ between height 3~shaded! and 2
with a step in between.
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The phase-space structure of the metastable states ap
to be a crucial element in understanding the fate of Is
ferromagnets. The simplest aspect is to estimate the num
of metastable statesMd(N) as a function of the spatial di
mensiond and number of spinsN5Ld. In two dimensions, a
metastable state contains alternating horizontal or vert
stripes of up and down spins with each stripe of width>2.
This is identical to the number of ground states of a perio
Ising chain with nearest-neighbor ferromagnetic interact
J1 and second-neighbor antiferromagnetic interactionJ2
@axial next-nearest neighbor Ising~ANNNI ! model#, when
J252J1/2. For the chain with open boundaries, the num
of metastable state was previously found in terms of the
bonacci numbers@7#. For the periodic system the number
metastable states is

M25
gL212~2g!2L11

A5
2

2

A3
sin

p

3
~L21!12, ~1!

whereg5 1
2 (11A5) is the golden ratio and the first term

just the ANNNI model degeneracy. Equation~1! therefore
givesM2(V);eA2AN with A25 ln g.

For d53, we may give a lower bound for the number
metastable states by generalizing the stripe states of
square lattice. Consider states that consist of an arra
straight filaments such that each filament cross-sectio
rectangular and the ‘‘Manhattan’’ distance between any t
rectangles is>2. The number of packings of such filamen
is of the order of exp(cL2), wherec is a constant. This gives
the lower bound for the number of metastable sta
.
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M3(N).exp(cN2/3). This same construction ind dimensions
givesMd(N).exp(cN(d21)/d). While we have not succeede
in constructing an upper bound, it seems plausible that
bound has the same form as the lower bound and he
Md(N);exp(AdN

(d21)/d). In addition, we have verified tha
the number of metastable states on the Cayley tree gr
exponentially with the number of spins@8#. Thus metastable
states become relatively more numerous as the dimen
increases and their influence on long-time kinetics sho
correspondingly increase.

In summary, the homogeneous Ising ferromagnet exhi
surprisingly rich behavior following a quench from infinit
to zero temperature. On the square lattice, there appears
a nonzero probability of reaching a static two-stripe sta
Evolution via a diagonal stripe configuration is responsi
for a two-time-scale relaxation kinetics. On the cubic lattic
the probability of reaching both the ground state or a froz
metastable state vanishes rapidly as the system size
creases. The system instead reaches a finite iso-energy a
tor of metastable states upon which it wanders stochastic
forever.

Note added. After this paper was completed, we learn
of related work on anomalies in the kinetics of theT50
Ising-Glauber system@9#. We thank A. Lipowski for inform-
ing us of this work.
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