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Dynamics of an unbounded interface between ordered phases
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We investigate the evolution of a single unbounded interface between ordered phases in two-dimensional
Ising ferromagnets that are endowed with single-spin-flip zero-temperature Glauber dynamics. We examine
specifically the cases where the interface initially has either one or two corners. In both examples, the interface
evolves to a limiting self-similar form. We apply the continuum time-dependent Ginzburg-Landau equation and
a microscopic approach to calculate the interface shape. For the single corner system, we also discuss a
correspondence between the interface and the Young diagram that represents the partition of the integers.
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[. INTRODUCTION sively less random as time increases. More precisely, after
the contractionX,y) — (x/\t,y/\/t) the interface approaches

At low temperatures, interfaces between two broken-a deterministic limiting shape. In the following two sections,
symmetry ordered phases typically shrink and eventually diswe will study the time evolution of the interface and deter-
appear[1]. The dynamics is usually driven by forces that mine its shape within a continuurf8ec. 1) and a micro-
reduce the interface and leads to surprisingly complicatedcopic approactiSec. Il)). In addition to the wedge geom-
coarsening processes—even the evolution of an isolateeltry, we will study, in Sec. IV, interface evolution in systems
simply-connected domain of minority phase in a sea of thehat initially contain two corners—the macroscopic step and
majority phase is in general insoluble. However, every finitethe semi-infinite finger geometries. Finally, in Sec. V, we
domain of linear siz& disappears in a finite time that scales study the time dependence of fluctuations in the interface
asR? [2] for dynamics that does not conserve the order pashape.
rameter[3]. In this sense, we understand the shrinking of a
single domain, or equivalently, the evolution of a single Il. COARSE-GRAINED DESCRIPTION
bounded interfacg4].

The goal of this work is to understand the evolution of a A natural way to study interface evolution is through the
single unboundedwo-dimensional interface in simple geo- time-dependent Ginzburg-LandédDGL) equation[1]. It is
metric configurations. The most elementary such example igenerally believed that the long-time behavior predicted by
an infinite straight interface. For this geometry, any spin-flipthe continuum TDGL equation should be the same as that for
event increases the length of the interface and raises the etite microscopic Ising-Glauber model. In the case of the
ergy. Thus a straight interface does not evolve—to have angingle interface, we find, surprisingly, that the predictions of
evolution at zero temperature, the interface must have curvdhe TDGL description qualitatively disagree with simulations
ture. The simplest realization of a curvature in a lattice sysof the Ising interface that evolves by zero-temperature
tem is an infinite interface with a single cornéfig. 1).  Glauber kinetics.

While not a direct analog of the theoretical models we con- Since we are primarily interested in interfacial behavior,
sider in this paper, a physical realization of such a geometrye will not write the TDGL equation but instead will merely
is the spreading of a fluid in a V-shaped gro¢&é utilize a reduction directly to the interface dynamics. As

According to zero-temperature single-spin-flip Glauberfound by Allen and Cahri7], the normal velocity of the
dynamics[ 3], the corner spirrg o can flip. After it flips, the
neighborsog ; and o, g can flip, orogq can flip back, etc. /f
The interface thus evolves stochastically and can, in prin-
ciple, return to its original configuration as time increases
[6]. This is, however, exceedingly improbable and generi-

cally the interface recedes diffusivelgince the dynamics + - —=

does not conserve the order paramgtér., x«t and y

yoc\t. Furthermore, although the interface at a fixed time

fluctuates from realization to realization, it becomes progres- +

FIG. 1. A single corner interfacdeft) in the initial state and

*Electronic address: paulk@bu.edu some time latefright). Gray denotes spin dow@xtending tox in
TElectronic address: redner@bu.edu the +x and +y directions, and white denotes spin up. The evolv-
*Electronic address: Julien.Tailleur@crans.org ing interface encloses an ar8aat timet.
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interface is proportional to the local curvature, that is, d2
—r2 2
=ro(2+r°). (7)

2 ' 4472 dr
rd92( r)dB

v,=—DV:-n, (1)

whereD is the diffusion constant amlis the local normalto  Writing dr/d6=R(r), further reduces Eq(7) to the first-

the interfacd8]. This interface dynamics in the TDGL equa- Order equation

tion is a specific example of curvature-driven fl¢@~13,

where one is concerned with the evolution of general shapes (ri _ r2—4) R2=r2(2+r2) @®)

in arbitrary dimension due to a local velocity that is propor- dr ’

tional to the local curvature. o
For the case of interest to us, namely, a one-dimension&vhose solution is

interface whose locus ig(x,t), the curvature is

R2=r%e""2F(r 1), 9
yXX .
n=———+-_ 2 with
[1+y31%° @
. . . . . r 2 1) _ 2
where the subscripts denote partial differentiation. Using the F(r,r*):f dp —*t—|e pie, (10
kinematic conditiorv,\/1+y2=y, we find that the interface o \pt P

y(x.t) obeys the diffusionlike equation The interface is now determined from

o 3 ar_
1+yx de

y:=D

—rzerz/“\/F(r,r*) (12)

Because of the absence of any constant with dimension dbr #<m/4. For 6= /4, there should be a plus sign on the
length in this equation, the corresponding solution admits theight-hand side. Integrating E¢L1) we arrive at the explicit
self-similar form equation for@=6(r),

y(X,t)I\/D_tY(X), X:X/\/D_t. (4) o= focdpp_ze_pzﬂl[[:(p,r*)]_1/2 (12

Note that the increase of the magnetization is equal to twice
the area under the curwg(x,t). From ansatz Eq(4), the for d<w/4. For w/4<@<w/2, the interface is symmetric
growth of the area is proportional to so that the magneti- with respect to the diagonal, that is(#) =r(7/2— ). The
zation also grows linearly with time. solution in Eq.(12) contains the unknown, , which is the

To solve the equation of motidi3), we substitute into this  scaled distance from the origin to the closest point on the
equation the ansatz of E(}) and find that the scaling func- interface. Its value is obtained by ensuring that /4 when
tion Y(X) obeys r=r, . This gives the criterion

Y—-XY _ Y ’ (5) J' drrfzefrz"‘[F(r,r*)]*l/Z:%, (13)
2 1+(Y")2 .

whose numerical solution is, =~1.0445. Equatio12), with

F given by Eq.(10), provides an explicit representation of
0(r) on the interface in terms of th¢scaled distance
limY(X)=0, lim Y(X)=x. (6) refry,») from th(_a origi_n. _

e X 40 In the asymptotic regime—, the form of the interface
becomes much simpler. From Eq&0) and (12) we find

where prime indicates differentiation with respect Xo
Equation(5) should be solved subject to the constraints

Thus we recast the original problem in Eg) into an ordi- )

nary differential equation subject to the above boundary con- 6—ArSe (14
ditions. Within the TDGL equation framework we note that

one can also study the evolution of a wedge with an arbitraryvith A=2[F(e,r, )] Y2~2.74404.Equivalently,
opening angle. For example, if the wedge initially occupies
the regiony>|x|tan® we should solve Eq5) subject to the
boundary conditiorY — = Xtan6 as X — * w,

To solve Eq.(5), we first introduce the polar coordinates
(X,Y)=(r cosé, r sinf) and after straightforward variable Apart from the numerical factod, this behavior can be es-
transformations we recast E@) into the following equation tablished directly from Eq(5) after dropping the subdomi-
for r=r(6): nant terms in the asymptotic limit.

2

X
YA x2exp[ - —.

2 (15
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FIG. 2. The elementary steps of deposition and evaporation that . \‘ - J - |_
drive the evolution of a staircase. In this example, deposition Yo Y1 Yoo
(equivalent to the spin-flip event —+) can occur at four sites,

while evaporation can occur at three sites. FIG. 3. The Young diagram that is based on the interface profile

of Fig. 1. This diagram corresponds to a partition of the integer 22

While the spatial extent of the continuum interface, de-NtO the sef7,6,4,2.1,1.}

fined as the region with nonzero curvature, is strictly infinite, . . . .
the presence of a lattice cutoff implies that the interface Wi||y.(_ 1) defined to be infinitk Wh”e evaporation can oceur at
have a finite extent. The finiteness of the interface may bé'tes wherey(x)>y_(x+_1) (Fig. 2. Here (_jeposmon IS
quantified by the distance of its leading edgg,, (Of Yy, equivalent to the spin-flip process— + andvice versafor

. ! ) A evaporation.
from the origin(see Fig. 1 We may estimate this distance as : N .
the value ofx for which the TDGL description first gives . /\ccording to zero-temperature Glauber kinetics, deposi-

y(x)<a, wherea is the lattice spacing. Substituting the cri- tion and evaporation events must occur at the same rate for
teriony—a into Eq. (15) we thereby obtain all eligible sites. Owing to the above-mentioned fact that

there is always exactly one more site available for deposition
than for evaporation, this “unbiased” evolution rule leads to

e Eefxﬁlaﬂm, a steadily growing interface in which the average number of
VDt X2, particles in the deposit grows &sThis particulate descrip-
. . ) tion for the interface naturally suggests the generalization to
which leads to the asymptotic behavior different deposition and evaporation rates. For reasons that
> will soon become evident, we consider the following three
Xmax= V2Dt In(Dt/a%). (16 rules.

Note that the value of the lattice spacing is immaterial for the (i) Equal deposition and evaporation rates. This is just

asymptotic behavior and we therefore aet1 henceforth. evolution of the interface _by _Glauber kinetics at zero tem-
perature and zero magnetic field.

(i) Evaporation rate greater than deposition rate. With
lll. MICROSCOPIC DESCRIPTION this rate bias, the interface reaches an equilibrium state.
A. Basic characteristics and genera”zations (|||) |rl’eveI’SIb|e depOSItlon W|th no eVaporat'On eventS
Physically, rule(iii ) is equivalent to interface evolution by
ero-temperature Glauber kinetics in the presence of a mag-
netic field that favors the majority spin; the magnitude of the
field is irrelevant(at zero temperatuy@s long as it is smaller
fhan a threshold value to ensure the stability of flat inter-
aces.

At the microscopic level, the interface has a staircas
shape(Fig. 1). Zero-temperature Glauber spin-flip dynamics
[3] forbids energy raising flips, so that only spins in the
corners on the interface can evolve. While both energy d
creasing and energy conserving flips are generically allowe
only energy conserving spin flips can occur in the wedge
geometry. We define the rate for these events to be one with-
out loss of generality. The construction of the system ensures
that the total number of possible flips of minority spins al- The staircase can also be viewed as a geometric represen-
ways exceeds the total number of possible flips of majoritytation of the partition of the integer numb8y. This partition
spins by ondsee Fig. 2 Hence the total numbes; of spins  is simply the set ofS; boxes in the first quadrant that are
in the first quadrant that join the majority phase is a randonarranged in nonincreasing order. Such an object is also called
variable that undergoes a random walk on the half-latticea Young diagrani14]. For example, the interface of Fig. 3
S e Z, , with a constant positive bias that equals one. Thusorresponds to the partitioning of the integer 22 into the set
the expected number of spins that have flipped at tiree {7,6,4,2,1,1,}.

(S)=t. Much is known about partition§l5]|, for example, the

Algorithmically, Glauber kinetics involves randomly number of partitionsp(N) of the integer N has the
picking a spin on the corners of the staircase and allowingsymptotic  behavior p(N)~N~!exp(2r/N/6). The
this spin to flip freely. Equivalently, we can view the stair- asymptotic behavior of Young diagrams is also qualitatively
case evolution as a deposition/evaporation process in whicksimple: After a suitable rescaling, a typical Young diagram
deposition can occur at siteswherey(x)<y(x—1) [with converges to éimiting shape(see Ref[16] for precise state-

B. Relation to partitions
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ments and earlier referengedo compute this shape one

must know the weights of all possible partitions. For the case . (20

where each partition occurs with equal weighp(M) (the

uniform measurg the corresponding limiting shape is

known[16], and will be quoted in the following section.
For the Ising interfacgrule (i) in the above lisk, we do
not know the weights of each interface configuratjda].

Yx 1
NN =| — —,——
(M) ( V1+ys V1+y;

Generally, consider an interface that goes through the
points 1, ... k, with adjacent points satisfying the above
requirements. The total number of these staircases is then the

We will see that the shape of the Ising interface is slightlyProduct of the factori(j,j+1). The logarithm of the num-
different from that of Young diagrams, implying that the ber of staircases is therefore the sum of these facessmp-
weights are not uniform. On the other hand, if the spin-fliptotically an integral. Using Eqs.(18) and (20) we thereby

event + — — is favored over——+ [rule (ii)], then the

find that the logarithm of the total number of staircases ap-

interface approaches an equilibrium state. Because the stad@goaches to

space is sampled more extensively in the equilibrium system,
this suggests that the weights for each interface configuration

should be more uniform than in the case of r(ile as borne
out in our simulation results below.

C. Limiting shape

We now present a heuristic derivation for the limiting

- ye 1
G :f dx\1+yd| — ——
R R e
* —Yx 1
=] dxyn ————In . 21
jo yX 1_yX 1_yx ( )

shape that corresponds to the uniform measure. We follow afincex,y= \t on the interface, the number of staircases near

argument by Shlosmdri8]; see also Ref.19] for a similar

the typical interface scales as'C®l"]. BecauseG[Y] is of

approach. The assumption that the measure is uniform inthe order of 1, the number of staircases rapidly grows with
plies that we can disregard the underlying dynamics and simand the dominant contribution arises from the staircases

ply count the number of possible staircas@s.similar cal-

close to the curvg =y(x,t) that maximizes the functional of

culation for the triangular lattice is presented in theEQ.(21). Thus we need to determine only the optimal curve

Appendix)

On the square lattice, the interface is a staircast? iwith
each step going either to the right or downwékiy. 1). Let
1=(x;,y;) and2=(x,,y,) be two points inZ? that can be

connected by a staircase, that is,<®©,<x, and
y1=Y,=0. The number of staircases frofrto 2 is
Xp—=X1tY1—Y2
N(1,2)=( e ) 17)
X2—Xq

For compactness, we sat=x,—X; andb=y;—vy,. If the
points1 and 2 are distant, i.e.a>1 andb>1, the Stirling
formula gives

a+b a b
In —>—a|nm—b|nm.
Therefore
a+b
INN(1,2)=1In . >—>\/a2+b2<b(n), (18

where n=(n;,n,)=(b,a)//a?+b? is the unit vector or-
thogonal tol—2 and

ng
®(n)=—-nyIn ————n,In

n;+n, (19

ny+ny’

to find the asymptotic interface shape.

In maximizing Eq.(21) we must only use curves that
bound an area equal toi.e., [dx y(x,t) =t. With this iso-
perimetric constraint, the proper functional to maximize is
G\lY]=G[y]—\[gdxy, where\ is a Lagrange multiplier.
Rewriting G,\[y]= [odx L(y,yy), with the Lagrangian

Yx

1_yx

L(y,yx) =YxIn —In =\, (22)

1_Y><

and applying the Euler-Lagrange formalism, gives the extre-
mum condition

d —Yx
d_X In 1_yx——)\.

Integrating this equation subject yg(0)= —« yields

—\X

Y e (23)

1_yx

Integrating Eq(23) subject toy(«) =0 gives the remarkably
simple form [18] for the shape of the optimal staircase

(Fig. 4
ar
with N\=—

N

where\ is determined from the area constraint.

e Mye V=1, (24)

Suppose now that pointsand 2 are far enough apart to This limiting shape is quantitatively close to that obtained
ensure the applicability of E¢18) yet close enough to guar- from the coarse-grained TDGL approach, except near the tail
antee that the interface is locally almost flat. Under theseegion, where the TDGL equation predicts a Gaussian tail
conditions, we have (15), while Eq.(24) gives an exponential tall
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3 ‘ ‘ universal curve. Interestingly, only in the evaporation-
dominated casfrule (ii)], does the interface shape coincide
with Eq. (24).

It is also worth noting the following subtlety in our mea-
surements of interfaces. In each realization, we record the
height y(x) at each value ok, and then we average over
many realizations to obtain the average interfécg(x))}.

This procedure is manifestly not symmetrical about the 45°
diagonal. For example, in our definition of the average pro-
file there is necessarily a nonzero contributionxgt,, SO
that the average profile in thedirection extends t@ . On

the other hand, the average profile in thdirection extends
only to the smaller valuéy(x=1)). The asymmetry caused
FIG. 4. Comparison of the interfaces from the TDGL equationby this averaging is small, except near the extremes of the

[Eq. (12)] (dasheg and that from Eq(24) (solid). Both curves are interface(if one looks closely at Fig.)5
normalized to unit enclosed area.

IV. RELATED GEOMETRIES

V6 p[ 7 o : o
Yo —exgd — —X The next level of complexity is to consider an initial in-
T V6 terface with two corners. We specifically study two cagas:
a single large step that smooths out to an error function pro-
asX—», whereX=x/\t andy:y/\/f are the scaled coor- file, and(b) a semi-infinite rectangular “finger” that evolves
dinates. Correspondingly, the location of the leading edge i @ constantly receding steady shape.

: (29

Xmax— C \/f Int (26) A. Single step

We form a single-step interface by two horizontal half
with C=6/27=0.388. ... Note that the leading edge lines,x<0,y=2h andx=0, y=0, and the vertical interval

moves slightly faster than th¢tint law predicted by the X=0,0<y=2h (Fig. 6). If the height 2 of the step is small,
TDGL approach. the problem is best analyzed by random walk techniques. For

example, when B= 2, the kink in the interface is equivalent

to a single particle that undergoes a discrete one-dimensional

random walk. Similarly when =4 the system consists of
We simulated Ising interfaces that are grown by the threewo random walks, located say &t andxg, but subject to

different rules defined in Sec. IllA. By rescaling each of the constraint that the two particles cannot interchange their

these interfaces to have unit area, our numerical results exositions.

hibit data collapse after a short-time transient, with each rule More interesting behaviors occur fte>1, where three

giving a slightly different, although quantitatively similar, regimes arise. When<t<h?, the two corners do not “feel”

D. Simulation results

4 : : ‘ IS . : :
| P Ising (reversible) N T Ising (reversible)
\ evaporation dominated evaporation dominated
\ ——— irreversible 0.8 | N ——— irreversible
B N
{ \\\\\
SOy
L DR
. 0.6 D
) SN
() N
AR
04 NN 1
N
O
~N
~N
~N
\\
0.2 r N 1
\\\\\
NS
N
4 0 0 0‘2 0I4 0‘6 0‘8 1
. . e_h X X

FIG. 5. The interface in the wedge geometry f6j:equal deposition and evaporation rates—equivalently, the Ising-Glauber interface
(based on 100 realizations of 4 340 331.5%? particles, (ii) evaporation rate exceeding the deposition thesed on 500 realizations and
the ratio of evaporation to deposition rate equal to 0.5188841, corresponding to an average deposit of 1012 paitickesl (jii )
irreversible depositiortbased on 1brealizations of 287 627 1.5°! particles. The two plots show the interface on a lingéft) and an
exponential scaléright). The straight line behavior in the latter corresponds to (24).
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FIG. 6. Schematic evolution of a single step according to Ising-

Glauber dynamics. FIG. 7. Schematic evolution of a rectangular finger according to
~ Ising-Glauber dynamics. On the right-hand side, the flip of the low-
each other and the problem reduces to that of two nonintefest minority spin is an irreversible process that causes the minimum

acting quadrants. We may obtain a better upper bound fatieight of the finger to advance by one.

this noninteracting regime by using the growth law for the

position of the leading edd&qg. (16)]. Since the unperturbed shane that eventually recedes at constant velocity. In a refer-

initial vertical interval starts ay~Cy/tint and ends ay  ence frame moving with the finger, the interfade) is thus

~2h—C\ltInt, the two corners remain independent as longstationary.

astInt<h, ort<h?Inh. A new feature of the semi-infinite finger compared to the
Whenh~ \t, the corners interact. In this second regime,wedge geometry is the possibility for energy-lowering spin-

we can still determine the interface shape by employindlip events to occur. For example, if the tip of the finger

the maximization procedure of Sec. Ill. To find=y(x,t) contains a single spin, then when this spin flips, the fingertip

for x>0, we should maximize the functional irreversibly advances by one unit. Another new feature is

G)lyl=/Spdx L(y,y,), with the Lagrangian given by Eq. that the finger can shed disconnected pieces whenever the tip

(22), but now with the boundary conditiong(0)=h (by  of the finger has a width equal to one and length greater than

symmetry andy(=)=0. We find two. Finally, the possibility of energy-lowering moves also
NN N means that the evolution of a finger is irreversible; there is no
(1-e*Me P+e V=1 (27)  possibility of the system returning to its initial state once an

energy-lowering move has occurréig. 7).
Within the TDGL approachy(x) now satisfies the equa-
" tion Dy, =v(1+y2) [9,20. Integrating, and imposing the
f dx y=\"2Liy,(1—e "), (28)  boundary conditiory—o when|x|—L, we obtain, for the
0 finger shapdFig. 8

The area bounded by this curve is

where Lib(z)==,-,2"n? is the dilogarithm function. 2L X
Equating the area tbwe obtain y=-— In| co ek (30
A ?Liy(1—e My=1, (29

a result that was first apparently obtained by Mulljgs In

whereX=A/\t andH=h/\/t. In the limit H—oc, we must  thjs steady state, the finger recedes at a constant velocity that
recover the noninteracting regime; indeed, the limiting shapgs given byv =Dy”(0)=#D/2L.

Eq. (27) reduces to Eq(24).

In the third regimeh< \/t, the most appropriate descrip-
tion of the interface is in terms offRrandom walkers. Ad-
jacent walkers are separated by a large distance of the order
of \/t/h and therefore are effectively noninteracting. We may
compute the density of random walkers by solving the diffu-
sion equation and the resulting limiting shape is given by the
error function. This same prediction follows from the TDGL
approach, as the factgﬁ can be neglected in the long-time
limit [see Eq.(3)]. Note, however, that it is not possible to
recover this limiting shape by taking thé—0 limit in Eq.
(27). The reason for this nonanalyticity is the large discrep-
ancy between the horizontal and vertical scales when

0 ) :
Jt>h. ~1.6 -0.8 0.0 0.8 1.6
tx/2L

Ty(x)/2L

B. Rectangular finger . : .
FIG. 8. Comparison of the finger shape predicted by the TDGL

For the finger geometry, the minority phase initially occu- approach given in Eq30) (dashed lingwith simulation results for
pies the semi-infinite regiog>0 and|x|<L. The interest- 100 realizations of width 2=400 at timeg =2x 10°, 6x 10°, and
ing regime is agairt>L?, where the two corners of the 10° steps(solid lineg. The data for these three times essentially
initial finger interact and the finger relaxes to a limiting coincide.
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Again, we test the applicability of the TDGL approach by 10°
comparing with numerical simulations. In our simulations of
the finger, both energy conserving and energy lowering
moves can occur, with rates 1 and 2, respectively. The rate at 10*
which the finger recedes is controlled by the fact that there is
almost always an excess of two sites where the spin flip

event ——+ can occur (recession step compared to 10° .

+——. The only exception is the case where the fingertip Lo00m

width equals one; here the excess of potential recession steps oozgziAA M
over advancement steps also equals one. As a result of this 10° Oﬁém o5 < p

nearly constant bias, the finger recedes at a constant rate with

steady-state velocity equal toL1/up to exponentially small

corrections. FIG. 9. Time-dependent properties of the Ising interface with
While the shape of the finger is quantitatively close to theglauber kinetics for the wedge initial condition based on 100 real-

TDGL prediction, the discrepancy between the continuumizations. The average interface aréd)( the variance in this area

theory and the simulations persists evenLas. This di-  (0), the mean value of the closest distance from the origin to the

chotomy is parallel to that observed in the wedge geometryinterface ), and the variance in this distanc@) are shown. The
We have not investigated the evolution of the interfacethin solid lines are the best fits to the data at long time and have

subject to rulegii) and (i) in detail, so we just mention respective slopes 0.997, 0.737, 0.490, and 0.248.

qualitative results. In both cases, the finger recedes at a con-

stant velocity. For the system in a magnetic fifddle (ii)], = ThusS,—t is a Gaussian random variable, and the probabil-

v(L) is a decreasing function &fthat saturates to a nonzero ity distribution of the are@®,,(t)=Prod S;=n] is

limit vw:IimLku(L)>0, in contrast to the case finger

evolution in zero magnetic field. In the evaporation- P (1) _ (n—t)?
dominated case, we estimate the velocity as the probability n(t)cex £3/2
for the finger to reach the state where the fingertip has a

width_equal fo one. In this case, an_irreversible €N€T9Yrhe variance is proportional 64, in excellent agreement
lowering move can occur, so that the finger recedes by ONGith our simulation resultgFig. 9). As a corollary to this

step. If 1+ € is the ratio of the evaporation to deposition rate, uer result, the probabilitP,(t) for the interface to return

—el
thenv(L)~e . to its original state decays a®,(t)xe ‘f. Because
JPo(t")dt" is finite, this means that the probability for the

V. FLUCTUATIONS interface to eventually return to its original state is less than
e[21].
We next consider fluctuations in the position of the inter-
ce by studying the location of the intersection of the inter-
face with the diagonak=y. The intersection between the
diagonal and the(deterministi¢ limiting shape isx=y
=Cy\t with C;= (/6 In 2)/7r. In each realization, however,
X is a random variable. Following the same argument as that
applied for the total interface area, we anticipate that the
variance in the position of the intersection point exhibits
Gaussian fluctuations. This gives

(32

In addition to the mean interface shape, we also stud)?n
fluctuations of the interface. Perhaps the simplest such qua?e—1
tity is the fluctuation in the are§, bounded by the interface
at timet. We estimate the probability distribution of the area
by the following simple argument. In the long-time limit,
there areN, ~t'2 spins along the interface that can flip and
join the majority phase and_ =N, —1 interface spins that
can flip and join the minority. Thus the evolution 8f is
driven by a deterministic contribution of rate one and a ran
dom contribution whose rate is of the order Bf*. This

suggests that the evolution 8f is governed by the Langevin
equation |x—Cyvt]octt, (33

S again in excellent agreement with simulatidifsg. 9).

c:j—t=1+t1’4§(t), (31)

VI. DISCUSSION
with &(t) a random noise term that satisfiegqt))=0 and
(E()&(t"))=68(t—t"). From this equation we immediately
find that(S;)=t, while the fluctuation irS, is given by

The dynamics of a single unbounded interface between
ordered phases in the two-dimensional zero-temperature
Ising-Glauber model has surprisingly rich properties and ex-
. . ciﬁing connectc;ons witr& d;]verse topics (;n mathemr?ticls and

12y — 1/4 physics. We discussed the correspondence to the limiting
(517 fodtlfodtZ(tltZ) ((t)e(t2)) shapes of partition$16,22; two other connections are to
. exclusion processd&3], and potentially to random matrices

_ f dtyti2ect32 [24]. In particular, we presented evidence that in the case

0 where the interface achieves an equilibrium state, the result-
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FIG. 10. The interface configuration of Fig. 3 rotated by 45° and
the corresponding particle configuration.

ing interface coincides with the limiting shape in the parti-
tioning problem.

The connection between the interface in the wedge geom-
etry and exclusion processes arises from a simple construc- FIG. 11. The interface for the t_riangular lattice predicted by Eq.
tion in which one associates a particle with each verticalA2) for the 2m/3 wedge(dashed ling

portion of the interface and a hole with each horizontal por- . )
tion (Fig. 10. Thus the wedge geometry corresponds to arand, for the Ising-Glauber model, nothing has been estab-

initial state in the particle system that consists of a semiliShed rigorously. Our analytic and numerical results showed
infinite line of particles in the region<,0) and empty that lattice anisotropy effects persist in the interface dynam-
space for (G¢). Basic features of the interface shape can!CS: Thus we expect that a shrinking cluster in the long-time

therefore be translated to corresponding properties of the patMit will not be isotropic. _ _
ticle density profile. _ Moymg to three dimensions, it should be Wort.hwhlle to
A possible connection to random matrices is best appre|_nve$t|gate the shape of the zero-temperature Ising-Glauber

ciated for the situation where the Ising interface grows irreNterface on the cubic lattice when the spins in the positive

versibly [our rule (i)]. In this case, the weight of any inter- 0¢tantx=0, y=0,z=0 have a different sign than all other
face configuration is the number of ways to grow the finalSPINS: We anticipate that the results will be similar to the
state from the empty diagrafi by adding squares one at a limiting shape of the so-called plane patrtitions. In this latter
time, such that a partition is maintained at each step. FoproPlem, analytical results recently obtained in Rg29,30
each partitionm=(yo=y,>- - - =0) of size|n|=3y;=N _corresppnd to the case of the _unlform measure. It would be
the number of distinct growth histories is usuallyJ denotedNteresting to study the possible correspondence between

dims [25] and irreversible interface growth corresponds tothes.e plane partitions an.d the Is!ng.interface. )
finding the limiting shape with the probability measure Finally, we cannot resist mentioning that the finger shape
Eg. (30) is mathematically identical to the Saffman-Taylor

finger in the Hele-Shaw celB1].

dim#
Prol =)= —~ (34
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Another open question is the limiting shape of an initially APPENDIX: TRIANGULAR LATTICE

large rectangle of down spins in an infinite sea of up spins.
As mentioned in the introduction, although the time scale for We study the triangular lattidg2] because, in contrast to
this object to disappear is knowa], the shapeof this object  the square lattice, it is macroscopically isotropic, and hence
is not. One might expect that an initial square would evolveone might anticipate that interface dynamics should be de-
to a circular shape. It has indeed been proved that foscribed by the intrinsically isotropic TDGL equation. We will
curvature-driven growth every smooth closed curve in thesee, however, that this it the case.
plane asymptotically approachegshrinking circular shape There are two natural possibilities for a wedge geometry
[11,12. The situation in three dimensions is much richeron the triangular lattice: opening angl =/3 and(b) 27/3.
because a surface with both concave and convex portions cdine latter case is more amenable to analysis, since energy
undergo fission by curvature-driven growth. The analogouslecreasing spin flips can never occur and the system has the
result to Grayson’s theorem is that any convex domain willsame reversibility as the/2 wedge on the square lattice.
ultimately approach a shrinking sphelrg0]. On the other Our derivation of the interface shape follows the steps
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given for the w/2 wedge on the square lattice. The only Integrating twice(subject to the boundary conditiolys—0
new feature is thata=(x,—X;)—(y1—VY,)/y3 and for x—o andy— —/3x for x— —) yields
b=2(y;—V,)/\3 should be employed in Eq18). The

variational problem on the triangular lattice involves maxi- y 2 R .

mizing the functionalG,[y]=f5dx L(y,y,) with the asso- X=——=——7=-In[1-e"V], \=—"—=, (A2
ciated Lagrangian V33 3

2 — 2y, ( 1 ) 34y, where\ is again determined from the constraint that the area
L(y,Yy) = —=YyIn ———| 1+ —=y, | In————\Yy. between the limiting shape and the initial wedge equal®
3 \/§_yx V3 @_yx simplify this computation, it is useful to write the area in the

The Euler-Lagrange equation reduces to form [ody(x+3 *¥)=t. _ o

The limiting shape of the interface is shown in Fig. 11.
The asymptotic tails of the interface are again exponentially
=—3\. (A1) small. This agrees with simulations and contradicts to the

Gaussian tails predicted by the TDGL approach.

d 2
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