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Dynamics of an unbounded interface between ordered phases
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We investigate the evolution of a single unbounded interface between ordered phases in two-dimensional
Ising ferromagnets that are endowed with single-spin-flip zero-temperature Glauber dynamics. We examine
specifically the cases where the interface initially has either one or two corners. In both examples, the interface
evolves to a limiting self-similar form. We apply the continuum time-dependent Ginzburg-Landau equation and
a microscopic approach to calculate the interface shape. For the single corner system, we also discuss a
correspondence between the interface and the Young diagram that represents the partition of the integers.
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I. INTRODUCTION

At low temperatures, interfaces between two broke
symmetry ordered phases typically shrink and eventually
appear@1#. The dynamics is usually driven by forces th
reduce the interface and leads to surprisingly complica
coarsening processes—even the evolution of an isol
simply-connected domain of minority phase in a sea of
majority phase is in general insoluble. However, every fin
domain of linear sizeR disappears in a finite time that scal
asR2 @2# for dynamics that does not conserve the order
rameter@3#. In this sense, we understand the shrinking o
single domain, or equivalently, the evolution of a sing
bounded interface@4#.

The goal of this work is to understand the evolution o
single unboundedtwo-dimensional interface in simple geo
metric configurations. The most elementary such exampl
an infinite straight interface. For this geometry, any spin-
event increases the length of the interface and raises the
ergy. Thus a straight interface does not evolve—to have
evolution at zero temperature, the interface must have cu
ture. The simplest realization of a curvature in a lattice s
tem is an infinite interface with a single corner~Fig. 1!.
While not a direct analog of the theoretical models we c
sider in this paper, a physical realization of such a geom
is the spreading of a fluid in a V-shaped groove@5#.

According to zero-temperature single-spin-flip Glaub
dynamics@3#, the corner spins0,0 can flip. After it flips, the
neighborss0,1 and s1,0 can flip, or s0,0 can flip back, etc.
The interface thus evolves stochastically and can, in p
ciple, return to its original configuration as time increas
@6#. This is, however, exceedingly improbable and gene
cally the interface recedes diffusively~since the dynamics
does not conserve the order parameter!, i.e., x}At and
y}At. Furthermore, although the interface at a fixed tim
fluctuates from realization to realization, it becomes progr
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sively less random as time increases. More precisely, a
the contraction (x,y)→(x/At,y/At) the interface approache
a deterministic limiting shape. In the following two section
we will study the time evolution of the interface and dete
mine its shape within a continuum~Sec. II! and a micro-
scopic approach~Sec. III!. In addition to the wedge geom
etry, we will study, in Sec. IV, interface evolution in system
that initially contain two corners—the macroscopic step a
the semi-infinite finger geometries. Finally, in Sec. V, w
study the time dependence of fluctuations in the interf
shape.

II. COARSE-GRAINED DESCRIPTION

A natural way to study interface evolution is through t
time-dependent Ginzburg-Landau~TDGL! equation@1#. It is
generally believed that the long-time behavior predicted
the continuum TDGL equation should be the same as tha
the microscopic Ising-Glauber model. In the case of
single interface, we find, surprisingly, that the predictions
the TDGL description qualitatively disagree with simulatio
of the Ising interface that evolves by zero-temperat
Glauber kinetics.

Since we are primarily interested in interfacial behavi
we will not write the TDGL equation but instead will merel
utilize a reduction directly to the interface dynamics. A
found by Allen and Cahn@7#, the normal velocity of the

FIG. 1. A single corner interface~left! in the initial state and
some time later~right!. Gray denotes spin down~extending tò in
the 1x and1y directions!, and white denotes spin up. The evol
ing interface encloses an areaSt at time t.
©2004 The American Physical Society25-1
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interface is proportional to the local curvature, that is,

vn52D“•n, ~1!

whereD is the diffusion constant andn is the local normal to
the interface@8#. This interface dynamics in the TDGL equa
tion is a specific example of curvature-driven flow@9–13#,
where one is concerned with the evolution of general sha
in arbitrary dimension due to a local velocity that is propo
tional to the local curvature.

For the case of interest to us, namely, a one-dimensio
interface whose locus isy(x,t), the curvature is

“•n52
yxx

@11yx
2#3/2

, ~2!

where the subscripts denote partial differentiation. Using
kinematic conditionvnA11yx

25yt we find that the interface
y(x,t) obeys the diffusionlike equation

yt5D
yxx

11yx
2

. ~3!

Because of the absence of any constant with dimensio
length in this equation, the corresponding solution admits
self-similar form

y~x,t !5ADtY~X!, X5x/ADt. ~4!

Note that the increase of the magnetization is equal to tw
the area under the curvey(x,t). From ansatz Eq.~4!, the
growth of the area is proportional tot, so that the magneti
zation also grows linearly with time.

To solve the equation of motion~3!, we substitute into this
equation the ansatz of Eq.~4! and find that the scaling func
tion Y(X) obeys

Y2XY8

2
5

Y9

11~Y8!2
, ~5!

where prime indicates differentiation with respect toX.
Equation~5! should be solved subject to the constraints

lim
X→`

Y~X!50, lim
X→10

Y~X!5`. ~6!

Thus we recast the original problem in Eq.~3! into an ordi-
nary differential equation subject to the above boundary c
ditions. Within the TDGL equation framework we note th
one can also study the evolution of a wedge with an arbitr
opening angle. For example, if the wedge initially occup
the regiony.uxutanu we should solve Eq.~5! subject to the
boundary conditionY→6Xtanu asX→6`.

To solve Eq.~5!, we first introduce the polar coordinate
(X,Y)5(r cosu, r sinu) and after straightforward variabl
transformations we recast Eq.~5! into the following equation
for r 5r (u):
02612
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du2
2~41r 2!S dr

du D 2

5r 2~21r 2!. ~7!

Writing dr/du5R(r ), further reduces Eq.~7! to the first-
order equation

S r
d

dr
2r 224DR25r 2~21r 2!, ~8!

whose solution is

R25r 4er 2/2F~r ,r * !, ~9!

with

F~r ,r * !5E
r
*

r

drS 2

r3
1

1

r D e2r2/2. ~10!

The interface is now determined from

dr

du
52r 2 er 2/4AF~r ,r * ! ~11!

for u<p/4. For u>p/4, there should be a plus sign on th
right-hand side. Integrating Eq.~11! we arrive at the explicit
equation foru5u(r ),

u5E
r

`

drr22e2r2/4@F~r,r * !#21/2 ~12!

for u<p/4. For p/4,u,p/2, the interface is symmetric
with respect to the diagonal, that is,r (u)5r (p/22u). The
solution in Eq.~12! contains the unknownr * , which is the
scaled distance from the origin to the closest point on
interface. Its value is obtained by ensuring thatu5p/4 when
r 5r * . This gives the criterion

E
r
*

`

dr r 22e2r 2/4@F~r ,r * !#21/25
p

4
, ~13!

whose numerical solution isr * '1.0445. Equation~12!, with
F given by Eq.~10!, provides an explicit representation o
u(r ) on the interface in terms of the~scaled! distance
r P@r * ,`) from the origin.

In the asymptotic regimer→`, the form of the interface
becomes much simpler. From Eqs.~10! and ~12! we find

u→Ar23e2r 2/4 ~14!

with A52 @F(`,r * )#21/2'2.74404.Equivalently,

Y→A X22expF2
X2

4 G . ~15!

Apart from the numerical factorA, this behavior can be es
tablished directly from Eq.~5! after dropping the subdomi
nant terms in the asymptotic limit.
5-2
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While the spatial extent of the continuum interface, d
fined as the region with nonzero curvature, is strictly infini
the presence of a lattice cutoff implies that the interface w
have a finite extent. The finiteness of the interface may
quantified by the distance of its leading edge,xmax ~or ymax),
from the origin~see Fig. 1!. We may estimate this distance a
the value ofx for which the TDGL description first gives
y(x),a, wherea is the lattice spacing. Substituting the cr
terion y5a into Eq. ~15! we thereby obtain

a

ADt
5

ADt

xmax
2

e2xmax
2 /4Dt,

which leads to the asymptotic behavior

xmax'A2Dt ln~Dt/a2!. ~16!

Note that the value of the lattice spacing is immaterial for
asymptotic behavior and we therefore seta51 henceforth.

III. MICROSCOPIC DESCRIPTION

A. Basic characteristics and generalizations

At the microscopic level, the interface has a stairca
shape~Fig. 1!. Zero-temperature Glauber spin-flip dynami
@3# forbids energy raising flips, so that only spins in t
corners on the interface can evolve. While both energy
creasing and energy conserving flips are generically allow
only energy conserving spin flips can occur in the wed
geometry. We define the rate for these events to be one w
out loss of generality. The construction of the system ensu
that the total number of possible flips of minority spins
ways exceeds the total number of possible flips of majo
spins by one~see Fig. 2!. Hence the total numberSt of spins
in the first quadrant that join the majority phase is a rand
variable that undergoes a random walk on the half-lat
StPZ1 , with a constant positive bias that equals one. Th
the expected number of spins that have flipped at timet is
^St&5t.

Algorithmically, Glauber kinetics involves randoml
picking a spin on the corners of the staircase and allow
this spin to flip freely. Equivalently, we can view the sta
case evolution as a deposition/evaporation process in w
deposition can occur at sitesx wherey(x),y(x21) @with

FIG. 2. The elementary steps of deposition and evaporation
drive the evolution of a staircase. In this example, deposit
~equivalent to the spin-flip event2→1) can occur at four sites
while evaporation can occur at three sites.
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y(21) defined to be infinite#, while evaporation can occur a
sites wherey(x).y(x11) ~Fig. 2!. Here deposition is
equivalent to the spin-flip process2→1 andvice versafor
evaporation.

According to zero-temperature Glauber kinetics, depo
tion and evaporation events must occur at the same rate
all eligible sites. Owing to the above-mentioned fact th
there is always exactly one more site available for deposi
than for evaporation, this ‘‘unbiased’’ evolution rule leads
a steadily growing interface in which the average number
particles in the deposit grows ast. This particulate descrip-
tion for the interface naturally suggests the generalization
different deposition and evaporation rates. For reasons
will soon become evident, we consider the following thr
rules.

~i! Equal deposition and evaporation rates. This is j
evolution of the interface by Glauber kinetics at zero te
perature and zero magnetic field.

~ii ! Evaporation rate greater than deposition rate. W
this rate bias, the interface reaches an equilibrium state.

~iii ! Irreversible deposition with no evaporation events
Physically, rule~iii ! is equivalent to interface evolution b

zero-temperature Glauber kinetics in the presence of a m
netic field that favors the majority spin; the magnitude of t
field is irrelevant~at zero temperature! as long as it is smaller
than a threshold value to ensure the stability of flat int
faces.

B. Relation to partitions

The staircase can also be viewed as a geometric repre
tation of the partition of the integer numberSt . This partition
is simply the set ofSt boxes in the first quadrant that ar
arranged in nonincreasing order. Such an object is also ca
a Young diagram@14#. For example, the interface of Fig.
corresponds to the partitioning of the integer 22 into the
$7,6,4,2,1,1,1%.

Much is known about partitions@15#, for example, the
number of partitions p(N) of the integer N has the
asymptotic behavior p(N);N21 exp(2pAN/6). The
asymptotic behavior of Young diagrams is also qualitativ
simple: After a suitable rescaling, a typical Young diagra
converges to alimiting shape~see Ref.@16# for precise state-

at
n

FIG. 3. The Young diagram that is based on the interface pro
of Fig. 1. This diagram corresponds to a partition of the integer
into the set$7,6,4,2,1,1,1%.
5-3
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ments and earlier references!. To compute this shape on
must know the weights of all possible partitions. For the c
where each partition occurs with equal weight 1/p(N) ~the
uniform measure!, the corresponding limiting shape
known @16#, and will be quoted in the following section.

For the Ising interface@rule ~i! in the above list#, we do
not know the weights of each interface configuration@17#.
We will see that the shape of the Ising interface is sligh
different from that of Young diagrams, implying that th
weights are not uniform. On the other hand, if the spin-fl
event 1→2 is favored over2→1 @rule ~ii !#, then the
interface approaches an equilibrium state. Because the
space is sampled more extensively in the equilibrium syst
this suggests that the weights for each interface configura
should be more uniform than in the case of rule~i!, as borne
out in our simulation results below.

C. Limiting shape

We now present a heuristic derivation for the limitin
shape that corresponds to the uniform measure. We follow
argument by Shlosman@18#; see also Ref.@19# for a similar
approach. The assumption that the measure is uniform
plies that we can disregard the underlying dynamics and s
ply count the number of possible staircases.~A similar cal-
culation for the triangular lattice is presented in t
Appendix.!

On the square lattice, the interface is a staircase inZ2 with
each step going either to the right or downward~Fig. 1!. Let
15(x1 ,y1) and25(x2 ,y2) be two points inZ2 that can be
connected by a staircase, that is, 0<x1<x2 and
y1>y2>0. The number of staircases from1 to 2 is

N~1,2!5S x22x11y12y2

x22x1
D . ~17!

For compactness, we seta5x22x1 and b5y12y2. If the
points1 and2 are distant, i.e.,a@1 andb@1, the Stirling
formula gives

lnS a1b

a D→2a ln
a

a1b
2b ln

b

a1b
.

Therefore

ln N~1,2!5 lnS a1b

a D→Aa21b2F~n!, ~18!

where n5(n1 ,n2)5(b,a)/Aa21b2 is the unit vector or-
thogonal to122 and

F~n!52n1 ln
n1

n11n2
2n2 ln

n2

n11n2
. ~19!

Suppose now that points1 and2 are far enough apart to
ensure the applicability of Eq.~18! yet close enough to guar
antee that the interface is locally almost flat. Under th
conditions, we have
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A11yx
2D . ~20!

Generally, consider an interface that goes through
points 1, . . . ,k, with adjacent points satisfying the abov
requirements. The total number of these staircases is then
product of the factorsN( j ,j11). The logarithm of the num-
ber of staircases is therefore the sum of these factors~asymp-
totically an integral!. Using Eqs.~18! and ~20! we thereby
find that the logarithm of the total number of staircases
proaches to

G@y#5E
0

`

dxA11yx
2FS 2

yx

A11yx
2

,
1

A11yx
2D

5E
0

`

dxFyxln
2yx

12yx
2 ln

1

12yx
G . ~21!

Sincex,y}At on the interface, the number of staircases n
the typical interface scales aseAt G[Y] . BecauseG@Y# is of
the order of 1, the number of staircases rapidly grows wit
and the dominant contribution arises from the stairca
close to the curvey5y(x,t) that maximizes the functional o
Eq. ~21!. Thus we need to determine only the optimal cur
to find the asymptotic interface shape.

In maximizing Eq. ~21! we must only use curves tha
bound an area equal tot, i.e., *0

`dx y(x,t)5t. With this iso-
perimetric constraint, the proper functional to maximize
Gl@y#[G@y#2l*0

`dx y, wherel is a Lagrange multiplier.
Rewriting Gl@y#5*0

`dx L(y,yx), with the Lagrangian

L~y,yx!5yx ln
2yx

12yx
2 ln

1

12yx
2ly, ~22!

and applying the Euler-Lagrange formalism, gives the ex
mum condition

d

dx
ln

2yx

12yx
52l.

Integrating this equation subject toyx(0)52` yields

2yx

12yx
5e2lx. ~23!

Integrating Eq.~23! subject toy(`)50 gives the remarkably
simple form @18# for the shape of the optimal staircas
~Fig. 4!

e2lx1e2ly51, with l5
p

A6t
, ~24!

wherel is determined from the area constraint.
This limiting shape is quantitatively close to that obtain

from the coarse-grained TDGL approach, except near the
region, where the TDGL equation predicts a Gaussian
~15!, while Eq. ~24! gives an exponential tail
5-4
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Y→
A6

p
expF2

p

A6
XG , ~25!

asX→`, whereX5x/At andY5y/At are the scaled coor
dinates. Correspondingly, the location of the leading edg

xmax→CAt ln t ~26!

with C5A6/2p50.3898 . . . . Note that the leading edg
moves slightly faster than theAt ln t law predicted by the
TDGL approach.

D. Simulation results

We simulated Ising interfaces that are grown by the th
different rules defined in Sec. III A. By rescaling each
these interfaces to have unit area, our numerical results
hibit data collapse after a short-time transient, with each r
giving a slightly different, although quantitatively simila

FIG. 4. Comparison of the interfaces from the TDGL equat
@Eq. ~12!# ~dashed! and that from Eq.~24! ~solid!. Both curves are
normalized to unit enclosed area.
02612
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universal curve. Interestingly, only in the evaporatio
dominated case@rule ~ii !#, does the interface shape coincid
with Eq. ~24!.

It is also worth noting the following subtlety in our mea
surements of interfaces. In each realization, we record
height y(x) at each value ofx, and then we average ove
many realizations to obtain the average interface$^y(x)&%.
This procedure is manifestly not symmetrical about the 4
diagonal. For example, in our definition of the average p
file there is necessarily a nonzero contribution atxmax, so
that the average profile in thex direction extends toxmax. On
the other hand, the average profile in they direction extends
only to the smaller valuêy(x51)&. The asymmetry cause
by this averaging is small, except near the extremes of
interface~if one looks closely at Fig. 5!.

IV. RELATED GEOMETRIES

The next level of complexity is to consider an initial in
terface with two corners. We specifically study two cases:~a!
a single large step that smooths out to an error function p
file, and~b! a semi-infinite rectangular ‘‘finger’’ that evolve
to a constantly receding steady shape.

A. Single step

We form a single-step interface by two horizontal ha
lines,x<0, y52h andx>0, y50, and the vertical interva
x50, 0<y<2h ~Fig. 6!. If the height 2h of the step is small,
the problem is best analyzed by random walk techniques.
example, when 2h52, the kink in the interface is equivalen
to a single particle that undergoes a discrete one-dimensi
random walk. Similarly when 2h54 the system consists o
two random walks, located say atxL andxR , but subject to
the constraint that the two particles cannot interchange t
positions.

More interesting behaviors occur forh@1, where three
regimes arise. When 1!t!h2, the two corners do not ‘‘feel’’
rface
d

FIG. 5. The interface in the wedge geometry for:~i! equal deposition and evaporation rates—equivalently, the Ising-Glauber inte
~based on 100 realizations of 4 340 331'1.532 particles!, ~ii ! evaporation rate exceeding the deposition rate~based on 500 realizations an
the ratio of evaporation to deposition rate equal to 0.51/0.49'1.041, corresponding to an average deposit of 1012 particles!, and ~iii !
irreversible deposition~based on 104 realizations of 287 62751.531 particles!. The two plots show the interface on a linear~left! and an
exponential scale~right!. The straight line behavior in the latter corresponds to Eq.~24!.
5-5
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each other and the problem reduces to that of two nonin
acting quadrants. We may obtain a better upper bound
this noninteracting regime by using the growth law for t
position of the leading edge@Eq. ~16!#. Since the unperturbed
initial vertical interval starts aty'CAt ln t and ends aty
'2h2CAt ln t, the two corners remain independent as lo
asAt ln t!h, or t!h2/ln h.

Whenh;At, the corners interact. In this second regim
we can still determine the interface shape by employ
the maximization procedure of Sec. III. To findy5y(x,t)
for x.0, we should maximize the functiona
Gl@y#5*0

`dx L(y,yx), with the Lagrangian given by Eq
~22!, but now with the boundary conditionsy(0)5h ~by
symmetry! andy(`)50. We find

~12e2lh!e2lx1e2ly51. ~27!

The area bounded by this curve is

E
0

`

dx y5l22Li 2~12e2lh!, ~28!

where Li2(z)5(n>1zn/n2 is the dilogarithm function.
Equating the area tot we obtain

L22 Li 2~12e2LH!51, ~29!

wherel5L/At andH5h/At. In the limit H→`, we must
recover the noninteracting regime; indeed, the limiting sh
Eq. ~27! reduces to Eq.~24!.

In the third regimeh!At, the most appropriate descrip
tion of the interface is in terms of 2h random walkers. Ad-
jacent walkers are separated by a large distance of the o
of At/h and therefore are effectively noninteracting. We m
compute the density of random walkers by solving the dif
sion equation and the resulting limiting shape is given by
error function. This same prediction follows from the TDG
approach, as the factoryx

2 can be neglected in the long-tim
limit @see Eq.~3!#. Note, however, that it is not possible t
recover this limiting shape by taking theH→0 limit in Eq.
~27!. The reason for this nonanalyticity is the large discre
ancy between the horizontal and vertical scales w
At@h.

B. Rectangular finger

For the finger geometry, the minority phase initially occ
pies the semi-infinite regiony.0 anduxu,L. The interest-
ing regime is againt@L2, where the two corners of th
initial finger interact and the finger relaxes to a limitin

FIG. 6. Schematic evolution of a single step according to Isi
Glauber dynamics.
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shape that eventually recedes at constant velocity. In a re
ence frame moving with the finger, the interfacey(x) is thus
stationary.

A new feature of the semi-infinite finger compared to t
wedge geometry is the possibility for energy-lowering sp
flip events to occur. For example, if the tip of the fing
contains a single spin, then when this spin flips, the finge
irreversibly advances by one unit. Another new feature
that the finger can shed disconnected pieces whenever th
of the finger has a width equal to one and length greater t
two. Finally, the possibility of energy-lowering moves als
means that the evolution of a finger is irreversible; there is
possibility of the system returning to its initial state once
energy-lowering move has occurred~Fig. 7!.

Within the TDGL approach,y(x) now satisfies the equa
tion Dyxx5v(11yx

2) @9,20#. Integrating, and imposing the
boundary conditiony→` when uxu→L, we obtain, for the
finger shape~Fig. 8!

y52
2L

p
lnFcosS px

2L D G , ~30!

a result that was first apparently obtained by Mullins@9#. In
this steady state, the finger recedes at a constant velocity
is given byv5Dy9(0)5pD/2L.

-
FIG. 7. Schematic evolution of a rectangular finger according

Ising-Glauber dynamics. On the right-hand side, the flip of the lo
est minority spin is an irreversible process that causes the minim
height of the finger to advance by one.

FIG. 8. Comparison of the finger shape predicted by the TD
approach given in Eq.~30! ~dashed line! with simulation results for
100 realizations of width 2L5400 at timest523105, 63105, and
106 steps~solid lines!. The data for these three times essentia
coincide.
5-6
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Again, we test the applicability of the TDGL approach b
comparing with numerical simulations. In our simulations
the finger, both energy conserving and energy lower
moves can occur, with rates 1 and 2, respectively. The ra
which the finger recedes is controlled by the fact that ther
almost always an excess of two sites where the spin
event 2→1 can occur ~recession step! compared to
1→2. The only exception is the case where the finger
width equals one; here the excess of potential recession s
over advancement steps also equals one. As a result of
nearly constant bias, the finger recedes at a constant rate
steady-state velocity equal to 1/L, up to exponentially smal
corrections.

While the shape of the finger is quantitatively close to
TDGL prediction, the discrepancy between the continu
theory and the simulations persists even asL→`. This di-
chotomy is parallel to that observed in the wedge geome

We have not investigated the evolution of the interfa
subject to rules~ii ! and ~iii ! in detail, so we just mention
qualitative results. In both cases, the finger recedes at a
stant velocity. For the system in a magnetic field@rule ~iii !#,
v(L) is a decreasing function ofL that saturates to a nonzer
limit v`5 lim

L→`
v(L).0, in contrast to the case finge

evolution in zero magnetic field. In the evaporatio
dominated case, we estimate the velocity as the probab
for the finger to reach the state where the fingertip ha
width equal to one. In this case, an irreversible ener
lowering move can occur, so that the finger recedes by
step. If 11e is the ratio of the evaporation to deposition ra
thenv(L);e2eL.

V. FLUCTUATIONS

In addition to the mean interface shape, we also st
fluctuations of the interface. Perhaps the simplest such q
tity is the fluctuation in the areaSt bounded by the interface
at timet. We estimate the probability distribution of the ar
by the following simple argument. In the long-time limi
there areN1;t1/2 spins along the interface that can flip an
join the majority phase andN25N121 interface spins tha
can flip and join the minority. Thus the evolution ofSt is
driven by a deterministic contribution of rate one and a r
dom contribution whose rate is of the order oft1/4. This
suggests that the evolution ofSt is governed by the Langevin
equation

dSt

dt
511t1/4j~ t !, ~31!

with j(t) a random noise term that satisfies^j(t)&50 and
^j(t)j(t8)&5d(t2t8). From this equation we immediatel
find that ^St&5t, while the fluctuation inSt is given by

^~St2t !2&5E
0

t

dt1E
0

t

dt2~ t1t2!1/4^j~ t1!j~ t2!&

5E
0

t

dt1t1
1/2}t3/2.
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ThusSt2t is a Gaussian random variable, and the proba
ity distribution of the areaPn(t)[Prob@St5n# is

Pn~ t !}expF2
~n2t !2

t3/2 G . ~32!

The variance is proportional tot3/4, in excellent agreemen
with our simulation results~Fig. 9!. As a corollary to this
latter result, the probabilityP0(t) for the interface to return
to its original state decays asP0(t)}e2At. Because
*P0(t8)dt8 is finite, this means that the probability for th
interface to eventually return to its original state is less th
one @21#.

We next consider fluctuations in the position of the inte
face by studying the location of the intersection of the int
face with the diagonalx5y. The intersection between th
diagonal and the~deterministic! limiting shape is x5y
5C1At with C15(A6 ln 2)/p. In each realization, however
x is a random variable. Following the same argument as
applied for the total interface area, we anticipate that
variance in the position of the intersection point exhib
Gaussian fluctuations. This gives

ux2C1Atu}t1/4, ~33!

again in excellent agreement with simulations~Fig. 9!.

VI. DISCUSSION

The dynamics of a single unbounded interface betw
ordered phases in the two-dimensional zero-tempera
Ising-Glauber model has surprisingly rich properties and
citing connections with diverse topics in mathematics a
physics. We discussed the correspondence to the limi
shapes of partitions@16,22#; two other connections are t
exclusion processes@23#, and potentially to random matrice
@24#. In particular, we presented evidence that in the c
where the interface achieves an equilibrium state, the res

FIG. 9. Time-dependent properties of the Ising interface w
Glauber kinetics for the wedge initial condition based on 100 re
izations. The average interface area (s), the variance in this area
(h), the mean value of the closest distance from the origin to
interface (D), and the variance in this distance (¹) are shown. The
thin solid lines are the best fits to the data at long time and h
respective slopes 0.997, 0.737, 0.490, and 0.248.
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ing interface coincides with the limiting shape in the par
tioning problem.

The connection between the interface in the wedge ge
etry and exclusion processes arises from a simple cons
tion in which one associates a particle with each verti
portion of the interface and a hole with each horizontal p
tion ~Fig. 10!. Thus the wedge geometry corresponds to
initial state in the particle system that consists of a se
infinite line of particles in the region (2`,0) and empty
space for (0,̀ ). Basic features of the interface shape c
therefore be translated to corresponding properties of the
ticle density profile.

A possible connection to random matrices is best app
ciated for the situation where the Ising interface grows ir
versibly @our rule ~i!#. In this case, the weight of any inte
face configuration is the number of ways to grow the fin
state from the empty diagramB by adding squares one at
time, such that a partition is maintained at each step.
each partitionp5(y0>y1>•••>0) of size upu5(yj5N,
the number of distinct growth histories is usually deno
dimp @25# and irreversible interface growth corresponds
finding the limiting shape with the probability measure

Prob~p!5
dimp

ZN
, ~34!

where ZN5( umu5N dimm @26#. For the closely related
Plancherel measure, Prob(p)}(dimp)2, the limiting shape
is also known@27,28#. As explained in Ref.@22#, the simplic-
ity of the Plancherel measure stems from a hidden conn
tion to unitary Gaussian random matrices; similarly, the m
sure Eq.~34! appears to be related to orthogonal Gauss
random matrices.

Another open question is the limiting shape of an initia
large rectangle of down spins in an infinite sea of up sp
As mentioned in the introduction, although the time scale
this object to disappear is known@2#, theshapeof this object
is not. One might expect that an initial square would evo
to a circular shape. It has indeed been proved that
curvature-driven growth every smooth closed curve in
plane asymptotically approaches a~shrinking! circular shape
@11,12#. The situation in three dimensions is much rich
because a surface with both concave and convex portions
undergo fission by curvature-driven growth. The analog
result to Grayson’s theorem is that any convex domain w
ultimately approach a shrinking sphere@10#. On the other

FIG. 10. The interface configuration of Fig. 3 rotated by 45° a
the corresponding particle configuration.
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hand, for the Ising-Glauber model, nothing has been es
lished rigorously. Our analytic and numerical results show
that lattice anisotropy effects persist in the interface dyna
ics. Thus we expect that a shrinking cluster in the long-ti
limit will not be isotropic.

Moving to three dimensions, it should be worthwhile
investigate the shape of the zero-temperature Ising-Glau
interface on the cubic lattice when the spins in the posit
octantx>0, y>0, z>0 have a different sign than all othe
spins. We anticipate that the results will be similar to t
limiting shape of the so-called plane partitions. In this lat
problem, analytical results recently obtained in Refs.@29,30#
correspond to the case of the uniform measure. It would
interesting to study the possible correspondence betw
these plane partitions and the Ising interface.

Finally, we cannot resist mentioning that the finger sha
Eq. ~30! is mathematically identical to the Saffman-Tayl
finger in the Hele-Shaw cell@31#.
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APPENDIX: TRIANGULAR LATTICE

We study the triangular lattice@32# because, in contrast to
the square lattice, it is macroscopically isotropic, and he
one might anticipate that interface dynamics should be
scribed by the intrinsically isotropic TDGL equation. We w
see, however, that this isnot the case.

There are two natural possibilities for a wedge geome
on the triangular lattice: opening angle~a! p/3 and~b! 2p/3.
The latter case is more amenable to analysis, since en
decreasing spin flips can never occur and the system ha
same reversibility as thep/2 wedge on the square lattice.

Our derivation of the interface shape follows the ste

FIG. 11. The interface for the triangular lattice predicted by E
~A2! for the 2p/3 wedge~dashed line!.
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given for the p/2 wedge on the square lattice. The on
new feature is that a5(x22x1)2(y12y2)/A3 and
b52(y12y2)/A3 should be employed in Eq.~18!. The
variational problem on the triangular lattice involves ma
mizing the functionalGl@y#5*0

`dx L(y,yx) with the asso-
ciated Lagrangian

L~y,yx!5
2

A3
yx ln

22yx

A32yx

2S 11
1

A3
yxD ln

A31yx

A32yx

2ly.

The Euler-Lagrange equation reduces to

d

dxF ln
yx

2

32yx
2G52A3l. ~A1!
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02612
Integrating twice~subject to the boundary conditionsy→0
for x→` andy→2A3x for x→2`) yields

x52
y

A3
2

2

A3l
ln@12e2ly#, l5

p

33/4At
, ~A2!

wherel is again determined from the constraint that the a
between the limiting shape and the initial wedge equalst. To
simplify this computation, it is useful to write the area in th
form *0

`dy(x1321/2y)5t.
The limiting shape of the interface is shown in Fig. 1

The asymptotic tails of the interface are again exponenti
small. This agrees with simulations and contradicts to
Gaussian tails predicted by the TDGL approach.
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