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Abstract – We study the probability that a partially melted heteropolymer at the melting
temperature will either melt completely or return to a helix state. This system is equivalent to the
splitting probability for a diffusing particle on a finite interval that moves according to the Sinai
model. When the initial fraction of melted polymer is g, the melting probability fluctuates between
different realizations of monomer arrangements on the chain. For a fixed value of g, the melting
probability distribution changes from unimodal to a bimodal as the strength of the disorder is
increased.
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Thermally-induced helix-coil transitions in heteropoly-
mers exhibit intriguing thermodynamic and kinetic
features [1–8] that stem from, among other mechanisms,
different intrinsic melting temperatures of the monomeric
constituents, say, A and B, and quenched random
distributions of monomers along the chain. Due to this
randomness, an arbitrarily long A-rich helix region with
a high local melting temperature can act as a barrier to
hinder the melting of the entire chain into a random coil.
As the temperature is raised, the nucleation of multiple
coils may occur at distinct points along the condensed
helical chain. Nevertheless, as considered in ref. [3], the
simplified situation in which there is a single coil portion
starting at a free end of the chain (fig. 1) highlights the
essential physical role of randomness on melting kinetics.
In this letter, we focus on the case of a single coil

and study the probability that a partially melted
heteropolymer returns to its native helical state (and the
complementary probability that the chain denatures).
Our analysis is based on making an analogy, established
in ref. [3], between the motion of the boundary point in
a partially melted heteropolymer and a particle diffusing
in a random potential —the Sinai model [9].
Let E+(Y ) be the probability for a heteropolymer

of (contour) length L that contains a partially melted
segment of length Y to ultimately melt completely,
while E−(Y ) = 1−E+(Y ) is the probability that this
(a)E-mail: oshanin@lptmc.jussieu.fr

Fig. 1: Illustration of a partially melted heteropolymer with
the interface between the melt (left) and helix (right) at Y.

heteropolymer condenses into a helix. This melting prob-
ability is equivalent to the splitting probability E+(Y )
that the boundary point (fig. 1) starts at Y and reaches L
without ever reaching 0 (and correspondingly for E−(Y )).
For a random potential that corresponds to a

heteropolymer, these splitting probabilities are different
for each arrangement of monomers in the heteropolymer.
One of our primary results is that these probabilities
exhibit huge sample-specific fluctuations. Consequently,
the average and the typical behaviors are completely
different and neither is representative of the behavior of
a single chain. Moreover, we show that the distribution
of the splitting probabilities changes from a single peak
centered around its most probable value for weak disorder,
to double peaked, with most probable values close to
0 and 1 for sufficiently strong randomness. Thus much
care is needed in the interpretation of experimental data
of heteropolymer melting kinetics.
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Although the arrangement of monomers in a heteropoly-
mer is typically correlated over a finite range, we make the
simplifying assumption that such correlations are absent.
The location of the equivalent boundary point between
the coil and helix portions of the chain then diffuses in
the interval [0, L] in presence of a quenched and random
position-dependent force F (x), with

〈F (x)〉= f0,
〈F (x)F (x′)〉− f20 = σ2F δ(x−x′).

(1)

The interpretation of f0 and σF through the microscopic
parameters has been presented in ref. [3]. Not going into
details, which can be found in the original work [3], we
just note that the mean force f0 > 0 when the temper-
ature T exceeds the melting heteropolymer temperature
Tm (and f0 < 0 for T < Tm), while σF is proportional to
the difference in the melting temperatures for A and B
homopolymers. We focus here on the case when temper-
ature T is exactly equal to Tm, such that f0 = 0 but σF
remains finite.
Following the analogy with splitting probabilities, the

probability that a homopolymer (no random potential)
ultimately melts when a length Y is initially in a random
coil state is [10]

E+(Y ) =
1− e−vY/D
1− e−vL/D =

1− z
1− zL/Y , (2)

where, for later convenience, we define z ≡ e−vY/D. Here
D is the diffusion coefficient and the velocity v > 0 for
T > Tm and v < 0 for T < Tm. For T = Tm, corresponding
to v= 0, these splitting probabilities simplify to E+(Y ) =
1−E−(Y ) = g= YL , the classical result for unbiased diffu-
sion [10]. We now focus on the corresponding behavior
for a heteropolymer at the melting temperature where the
boundary point moves in the random potential defined by
eq. (1).
We first present an effective-medium approximation for
P(E+(Y )), akin to the optimal fluctuation method of
Lifshitz [11], to describe the statistical features of the ulti-
mate fate of a single chain. The basis of this approxima-
tion is to replace each realization of the Sinai model by
an effective environment whose mean bias matches that
of the Sinai model (fig. 2). In the effective medium, the
distribution of bias velocities in the continuum limit is

P (v) =
1√
2πσ2v

exp

(
− v

2

2σ2v

)
. (3)

Since there is a one-to-one connection between the bias in
the effective model and the splitting probability E+(Y ),
we may now convert the distribution of bias velocities to
the distribution of splitting probabilities by

P(E+) = P (v) dv
dE+

. (4)

U

0 L

eff

Fig. 2: (Color online) A typical realization of the potential in
the continuum limit of the Sinai model (smooth curve) and the
potential in the corresponding effective medium (thick dashed
line).

To perform this transformation, we use eq. (2) to solve
for v as a function of E+ for fixed Y. This inversion
is feasible only for g= Y

L
= 12 ,

1
3 ,
1
4 ,
1
5 , because solving

a polynomial up to quartic order is involved. For the
simplest case of a particle starting at the midpoint, Y

L
= 12 ,

then eq. (2) becomes E+ = 1/(1+ z). Inverting gives

v(E+) =
2D

L
ln

(
E+

1−E+

)
,

dv

dE+
=

2D

LE+(1−E+) .
(5)

Substituting these results into eq. (3) and using eq. (4)
gives,

P(E+) = 1√
2πσ2v

2D

LE+(1−E+)

× exp
(
− 2D

2

σ2vL
2
ln2
(
E+

1−E+

))
. (6)

We now relate the velocity variance σ2v to the disorder
in the Sinai model. For Sinai disorder, the mean-square
potential difference between two points separated by a
distance L is (fig. 2)

U2eff ≡
∫ L
0

∫ L
0

〈F (x′)F (x′′) 〉dx′dx′′ = σ2F L. (7)

Thus there is a net force Feff ∼Ueff/L∼ σF /
√
L, from

which we infer the velocity scale σv ∼ σF /(γ
√
L), where

γ is the viscosity coefficient. We then use the fluctuation-
dissipation relation D= kT/γ [12] to rewrite eq. (6) as

P(E+) = 1√
πα

1

E+(1−E+) exp
(
− 1
α
ln2
(
E+

1−E+

))
,

(8)
with

α= σ2F L/[2(kT )
2] (9)

a dimensionless measure of the strength of the Sinai
potential relative to thermal fluctuations. The important
feature of the splitting probability distribution in eq. (8)
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Fig. 3: (Color online) Effective-medium prediction for the
splitting probability distribution for the Sinai chain when
the particle starts at Y =L/2 (top) and Y =L/3 (bottom,
logarithmic scale).

is its change from unimodal to bimodal as the disorder
parameter α increases past αc = 4 (fig. 3).
In the critical case α= αc the maximum at E+ = 1/2

is quartic and the distribution is close to uniform for
0.2<E+ < 0.8. Thus any value of E+ in this range is
nearly equally probable. For α exceeding αc, two maxima
emerge continuously at E+ =

1
2 (1±

√
3(α−αc)/3). Curi-

ously, although the disorder-average value 〈E+〉= 1/2 for
α>αc, the probability distribution has a minimum at
E+ = 1/2. In this strong disorder limit, the underlying
mechanism for the bimodality of the distribution is that a
typical realization of the environment has a net bias (see
fig. 2) so that the splitting probability is either close to
zero or to one.
For Y = L3 , a similar calculation gives the splitting

probability distribution shown in fig. 3. For weak disorder,
the splitting probability is peaked at a point close to the
value 13 that arises in the case of no disorder. When α is
sufficiently large, the splitting probability has peaks near
0 and 1, corresponding to strong disorder where a typical

configuration has an overall net bias. The intermediate
regime of α gives the strange situation in which there is a
peak at one extremum but not the other.
For a general starting point, the inversion v= v(E+) and

thus the form of P(E+) can be determined asymptotically
in the limits |vL/D| →∞. For vL/D→−∞, z→+∞,
and eq. (2) becomes E+ ∼ z−(L−Y )/Y . Solving for v(E+)
and dv

dE+
and using these results in eq. (4), the splitting

probability distribution starting from Y ≡ gL is

P(E+) = 1√
4πα

1

(1− g)E+ exp
(
− ln2E+
4α(1− g)2

)
. (10)

As α is varied, this distribution changes from having a
peak at the most probable value of E+ to a peak at E+ = 0.
In the complementary limit vL/D→+∞, corresponding
to z→ 0 and E+→ 1, the distribution is again eq. (10),
but with g→ 1− g and E+→ 1−E+.
We now give an exact solution for the splitting probabil-

ities that qualitatively substantiates the heuristic results
given above. Consider the Fokker-Planck for the proba-
bility distribution for a particle that moves in the Sinai
potential,

∂

∂t
P =D

[
∂2

∂x2
P −β ∂

∂x
(F (x)P )

]
, (11)

where β = 1/kT and P (x, t) dx is the probability that the
particle is in the range [x, x+dx] at time t and F (x) is
the force at x.
Suppose that particles are injected at a constant rate

at Y to maintain a fixed concentration P (Y ) = 1 when
absorbing boundary conditions at x= 0 and x=L are
imposed. Then the stationary solution to the Fokker-
Planck equation is

P (x) = eβFY (x)


1−

∫ x
Y

exp[−βFY (x)] dx∫ L
Y

exp[−βFY (x)] dx


 , (12)

for x� Y , while for x� Y one has

P (x) = eβFY (x)


1−

∫ x
Y

exp[−βFY (x)]dx∫ 0
Y

exp[−βFY (x)] dx


 , (13)

where FY (x)≡
∫ x
Y
dx′F (x′).

From the steady current

J =−D
[
∂

∂x
P −β(F (x)P )

]
, (14)

the splitting probabilities E±(Y ) are simply

E−(Y ) =
τ+

τ−+ τ+
,

E+(Y ) =
τ−

τ−+ τ+
,

(15)
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where τ± = 1/J±, with J± being the flux to the boundaries
at 0 and L, respectively. Thus τ± define the “resistance”
of a finite interval with respect to passage across the two
boundaries and are given explicitly by

τ− =
∫ Y
0

e−βF0(x) dx,

τ+ =

∫ L
Y

e−βFY (x) dx.

(16)

We emphasize that the force integrals F are independent
variables in each integrand so that τ− and τ+ are also
independent random variables.
The quantities defined in eq. (16) are the continuous-

space counterparts of Kesten variables [13] that play an
important role in many stochastic processes. For example,
negative moments of τ describe the positive moments of a
steady diffusive current in a finite Sinai chain [14–18]. A
surprising feature is that the disorder-average currents J±
scale with system length L as L−1/2 and are much larger
than Fickian which scale as L−1 in homogeneous envi-
ronments. Thus Sinai chains have an anomalously high
conductance, despite the fact that diffusion is logarith-
mically confined [9], and positive moments of τ grow as

e
√
L [14–18].
Let Ψ−(τ−) and Ψ+(τ+) denote the distribution func-

tions of the random variables τ− and τ+, respectively.
Then the moment generating function of the splitting
probability E+(Y ) can be written as

〈e−λE+〉=
∫ ∞
0

∫ ∞
0

Ψ−(τ−)Ψ+(τ+) e−λτ−/(τ−+τ+) dτ−dτ+.

(17)
Integrating over dτ+, we formally change the integration
variable from τ+ to E+ to give

〈e−λE+〉=
∫ 1
0

dE+
E2+
e−λE+

∫ ∞
0

τ dτ Ψ−(τ)Ψ+(rτ), (18)

where r=E−/E+. From this expression we may read off
the following form for the probability density P(E+) of
the splitting probability E+(Y ):

P(E+) = 1

E2+

∫ ∞
0

τ dτ Ψ−(τ)Ψ+(rτ). (19)

For a random potential without a net bias, f0 = 0, the
distribution Ψ−(τ) is given by (see, e.g., ref. [18]):

Ψ−(τ) =
√
2

πβσF

1

α
1/2
− τ3/2

∫ ∞
−∞
du chu cos

(
πu

α−

)

× exp
(
π2

4α−
− u

2

α−
− 2ch

2u

β2σ2F τ

)
, (20)

where α− = β2σ2FY/2 and chu denotes the hyperbolic
cosine. Then Ψ+(τ) is obtained from eq. (20) by replacing
α−→ α+ = β2σ2F (L−Y )/2.

Substituting Ψ−(τ) and Ψ+(τ) into eq. (19) and inte-
grating over dτ , we find

P(E+) = 1

π2
√
α−α+E+E−

∫ ∞
−∞

∫ ∞
−∞
du1 du2

× chu1 chu2

E−ch2u1+E+ch2u2
cos

(
πu1

α−

)
cos

(
πu2

α+

)

× exp
(
π2

4α−
+
π2

4α+
− u

2
1

α−
− u

2
2

α+

)
. (21)

After cumbersome but straightforward manipulations, one
of the integrals can be performed to recast the splitting
probability distribution as

P(E+) = 1

π
√
α−α+E+E−

1

E−

∫ ∞
−∞
du
chu

ch η

× cos
(
πu

α+

)
exp

(
π2

4α+
− u

2

α+
− η

2

α−

)
, (22)

where

η= sh−1
(
chu√
r

)
. (23)

To extract the asymptotic behavior of P(E+) in the
limits E+→ 1 and E+→ 0 note that because the integrand
in eq. (22) contains an oscillating cosine term, only the
behavior near u= 0 should matter. Thus assuming chu≈ 1
and expanding η2 in a Taylor series in u up to second
order,

η2 = ln2 z++
√
E+ ln z+ u

2+O
(
u3
)
, (24)

we find the following asymptotic representation for
E+→ 1:

P(E+)∼
(
α−+α+

√
E+ ln z+

)−1/2√
πE+ E−

× exp
(
− ln

2 z+

α−
+

π2
√
E+ ln z+

4
(
α−+α+

√
E+ ln z+

)
)
, (25)

where z+ = (1+
√
E+)/

√
E−. This asymptotic form

agrees quite well with the exact result in eq. (22), not
only when E+→ 1, but also for moderate values of E+
(fig. 4). Similarly, we obtain the asymptotics of P(E+)
for E+→ 0 merely by interchanging all subscripts ± to ∓
in eq. (25), and z− is obtained from z+ by interchanging
the subscripts ± to ∓ in the latter.
When E+
 1 or 1−E+
 1, respectively, eq. (25)

reduces to

P(E+)∼
√

2

πα± ln (4/E∓)
1

E∓
exp

(
− ln

2 (4/E∓)
4α∓

)
.

(26)
Our effective-medium result in eq. (8) resembles the
above exact asymptotic form apart from logarithmic and
numerical factors.
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Fig. 4: (Color online) Exact distribution P(E+), eq. (22), for
α− = α+ = 0.5 (solid curve), α± = 1.63 (dashed curve), and
α± = 2.4 (dash-dotted curve). Thin lines are the corresponding
asymptotic results of eq. (25).

In summary, by making an analogy to first passage on
a Sinai chain, we find that the evolution of a partially
melted random heteropolymer at the melting temperature
is controlled by the arrangement of monomers along
the chain. Each heteropolymer realization has a unique
kinetics and unique final fate that is not representative of
the average behavior of an ensemble of such polymers.
A related lack of self-averaging was recently found in
anomalous diffusion [19,20].
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