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Abstract
As a strategy to complete games quickly, we investigate one-dimensional
random walks where the step length increases deterministically upon each
return to the origin. When the step length after the kth return equals k,
the displacement of the walk x grows linearly in time. Asymptotically, the
probability distribution of displacements is a purely exponentially decaying
function of |x|/t . The probability E(t, L) for the walk to escape a bounded
domain of size L at time t decays algebraically in the long-time limit,
E(t, L) ∼ L/t2. Consequently, the mean escape time 〈t〉 ∼ L ln L, while
〈tn〉 ∼ L2n−1 for n > 1. Corresponding results are derived when the step
length after the kth return scales as kα for α > 0.

PACS numbers: 02.50.−r, 05.40.−a

1. Introduction

A popular card game for young children is ‘war’. The rules of this game are extremely simple:
with two players, start by dividing the cards evenly between the players. At each play, the
players expose the top card in their piles. The person with the higher card collects the two
exposed cards and incorporates them into his or her pile. When there is a tie, a ‘war’ ensues.
Each player contributes three additional cards from his or her pile to the pot and then the fourth
card is exposed. The winner takes the pot. In case of another tie, the war is repeated until
there is a winner. The game ends when one player no longer has any cards.

Similar to many other games including for example, coin toss, roulette and dreidel, the
game of war resembles a random walk [1–3], as the number of cards possessed by each player
changes by ±1 (or by ±5,±9, etc, when occasional wars occur) after each play. Since there are
N = 52 cards in a deck, a natural anticipation is that the length of the game scales as N2 [4, 5].
Based on soporific experiences in playing war with our children, it is desirable to modify the
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rules so that the game ends more quickly. We have found that the following modification—
which we term ‘superwar’—works quite well: in each war, increase the number of cards that
a player contributes to the pot by one compared to the previous war. This modification of war
ends much more quickly than the original game and is also more exciting for young children.

The game of superwar inspires the present work in which we investigate the properties of
a one-dimensional random walk in which the step length increases in a deterministic manner
each time the walk returns to the origin. We term this process the greedy random walk.
More generally, we consider the situation where the step length �k after the kth return to the
order is, for k > 0,

�k = kα, (1)

with positive α; the initial step length equals 1. The increasing step length corresponds to
increasing the payoff when the cumulative score of a game is tied. This mechanism provides
a strategy to complete games quickly, although it differs from superwar where the payoff is
raised when there is a tie in a single play.

In the following section, we give heuristic arguments for the typical displacement and for
extremal properties of the probability distribution. Then we study the probability distribution
of the greedy walk in an infinite system. We present simulation results as well as an asymptotic
solution for this distribution. Our solution relies heavily on classic first-passage properties
of random walks [6–9]. The probability distribution of the greedy random walk has several
intriguing non-scaling features, including sharp valleys at the prime numbers and an anomalous
contribution due to walks that never return to the origin.

In section 3, we determine how long it takes for a greedy walk to escape the finite interval
[−L,L]. Generically, the escape time grows more slowly than the diffusive time scale L2/D.
As a consequence, the game ends much more quickly. However, the escape probability has a
power-law tail so that the higher moments are controlled by the diffusive time scale. Thus the
escape time of the greedy walk is characterized by large fluctuations.

2. Displacement statistics

2.1. Typical and extremal displacements

We first determine the typical displacement of the greedy random walk. A crucial fact is that
the statistics of returns to the origin are not affected by the growth of the step length. Thus,
a typical walk of t steps will visit the origin of the order of k ∼ t1/2 times [6–9]. Thus, the
step length � = kα grows as tα/2. For an ordinary random walk with step length �, the typical
displacement is x ∼ t1/2�. Combining these two scaling laws, the typical displacement of the
greedy walk grows with time as

x ∼ tν, (2)

with ν = (1 + α)/2. Thus the greedy walk is more extended than a conventional random walk.
We expect that this typical displacement characterizes the probability distribution that the

greedy walk is at position x at time t, G(x, t). In the long time limit, this distribution should
thus conform to the conventional scaling form

G(x, t) � t−ν�(xt−ν), (3)

where �(z) is the scaling function.
We can determine the asymptotic decay of �(z) by using a Lifshitz tail argument [10, 11].

As a preliminary, we need to identify the walks with the maximal possible displacement. For
conventional random walks, the extremal walk is ballistic—stepping in one direction only. For
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Figure 1. Extremal greedy walk of 16 steps when the step length grows linearly at each return to
the origin. There are four immediate reversals in the first eight steps and then the remaining steps
are all in one direction.

the greedy random walk, in contrast, extremal walks involve a compromise between returning
to the origin often, so as to acquire a large single-step length, and moving in one direction, so
as to be as far from the origin as possible. We are thus led to consider a hybrid zig-zag/ballistic
walk that makes immediate reversals for the first τ steps and then moves in one direction for
the remaining t − τ steps.

When only immediate reversals in direction occur, the step length after τ steps (τ/2
returns) is �τ/2 = (τ/2)α . Then if the remaining steps are all in one direction, the displacement
of the walk at time t is

x = (t − τ)
(τ

2

)α

. (4)

Maximizing this expression with respect to τ , the optimum value of τ is τ = α
1+α

t and the
maximal displacement is

xmax ∝ t1+α. (5)

Note that the exponent characterizing the maximal displacement is twice that of the typical
displacement, xmax ∼ t2ν .

We now exploit the result for xmax to estimate the tail of the probability distribution. We
first make the standard assumption that the tail of the probability distribution decays as a
stretched exponential, �(z) ∼ exp(−|z|δ), for z � 1 [10], where all factors of order 1 have
been ignored. With this ansatz, the probability for the maximal-displacement greedy walk
asymptotically scales as

G(x = t2ν, t) ∼ exp(−tνδ). (6)

On the other hand, the probability for this maximal-displacement walk decays exponentially
with time, since a finite fraction of the steps in the walk must be uniquely specified. Equating
this exponential decay to the form given in equation (6), we immediately conclude that
δ = 1/ν. As a result, we deduce that the scaling function in G(x, t) decays according to

�(z) ∼ exp(−|z|2/(1+α)), (7)

for z � 1. Note that the conventional Fisher scaling relation δ = (1 − ν)−1 is violated for
greedy walks [10].

2.2. The probability distribution

We can obtain the full probability distribution of greedy walks by utilizing basic first-passage
properties of ordinary random walks. These first-passage techniques provide an insightful and
pleasant way to understand greedy walks. There are two generic ways that the greedy walk
can be at position x at time t when starting at the origin at t = 0. The first is to reach x without
ever returning to the origin. The second possibility, as depicted in figure 2, is that the walk
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Figure 2. Spacetime trajectory of an example greedy random walk, with four returns to the origin
after τ steps. Upon each return, the step length increases, as indicated schematically. After the
last return, the final position is reached in the remaining t − τ steps.

returns to the origin k times, with the kth return occurring at time τ , and then the walk reaches
x in the remaining t − τ steps without touching the origin again. The number of returns to the
origin is variable, but the maximum number cannot exceed t/2.

According to this decomposition of a greedy walk into a segment that consists of k returns
to the origin and a non-return segment, we can write the probability distribution of greedy
walks in the following form:

G(x, t) = Q(x, t) +
kmax∑
k=1

∫ t

0
F (k)(0, τ )

1

kα
Q

( x

kα
, t−τ

)
dτ. (8)

Here kmax is the maximum possible number of returns to the origin in time t when the final
displacement is x. The first term on the right-hand side is the probability that a walk, which
never returns to the origin, is at x at time t. In the second term, F (k)(0, τ ) is the kth-passage
probability to the origin, namely, the probability that the walk returns to the origin k times, with
the kth return occurring at time τ . The term 1

kα Q
(

x
kα , t − τ

)
then accounts for the probability

for the walk to reach x in the remaining t − τ steps without touching the origin again. Because
the step length is kα in this last leg of the walk, x/kα steps are required to reach x. We also
need to include the prefactor 1/kα to ensure proper normalization.

Since equation (8) is in the form of a convolution, it is much more convenient to work
with Laplace transforms. Then the basic equation for the probability distribution simplifies to

G(x, s) = Q(x, s) +
kmax∑
k=1

F (k)(0, s)
1

kα
Q

( x

kα
, s

)
, (9)

where the argument s is generally used to signify Laplace transformed quantities. Each of the
terms on the right-hand side of this equation are well-known first-passage properties [6–9],
from which we can then obtain the probability distribution of greedy walks.

We now determine the individual terms that appear in equation (9). The non-return
probability Q(x, t) is the probability that a random walk, that starts at x0 = 1, is at position x
at time t and that the origin is never visited2. In the t → ∞ limit, this quantity satisfies the
diffusion equation Qt = DQxx subject to the absorbing boundary condition Q(x = 0, t) = 0.
This boundary condition ensures that only walks that do not hit the origin are counted. It is
simple to construct Q(x, t) by the image method. We merely place a random walk of opposite
‘charge’ at −x0; this construction ensures that the boundary condition at x = 0 is automatically

2 In the continuum limit, we need to place the walk at x0 = 1 to implement the absorbing boundary condition at
x = 0. This initial condition leads to the same long-time results as a discrete random walk that starts at the origin.
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satisfied. In the continuum limit, we have

Q(x, t) = 1√
4πDt

[
e−(x−x0)

2/4Dt − e−(x+x0)
2/4Dt

]

→ x√
4πD3t3

e−x2/4Dt , (10)

with x0 = 1. The Laplace transform of this distribution is Q(x, s) = D−1 e−|x|√s/D [12].
In a similar vein, the kth-passage probability to the origin at time t is the convolution

of a product of k first-passage probabilities at times t1 < t2 < · · · < tk . Correspondingly,
the Laplace transform for this kth-passage probability is then the product of k first-passage
probabilities. In turn, the first-passage probability to the origin is simply F(0, s) =
1 − [P(0, s)]−1, where P(0, s) = 1/

√
4sD is the Laplace transform of the occupation

probability at the origin [7, 8]. This connection between the first-passage and occupation
probabilities is perhaps the most fundamental result in first-passage statistics. Thus the
Laplace transform of the kth-passage probability to the origin has the compact form [7, 8, 13]:

F (k)(x = 0, s) → e−k
√

4Ds. (11)

Substituting these results in equation (9), the Laplace transform for the probability
distribution of the greedy random walk is

G(x, s) ∼
∑

k

e−k
√

s 1

kα
e−|x|√s/kα

. (12)

Here we drop the first term Q(x, s) in equation (9) because it gives a subdominant contribution
to G(x, s). To simplify the derivations that follow, the diffusion coefficient is set equal to 1
and all numerical prefactors of order 1 are ignored. We perform the sum over k by first taking
the continuum limit and then using the Laplace method. The integrand has a maximum at
k∗ ∝ |x|1/(1+α). We then expand the exponent function f (k) = −√

s(k + |x|/kα) to second
order about this maximum and perform the resulting Gaussian integral. This gives

G(x, s) ∝ s−1/4|x|(1−2α)/2(α+1) exp(−s1/2|x|1/(1+α)).

Finally, we invert the Laplace transform by the Laplace method to obtain, after
straightforward steps, the probability distribution as a function of time

G(x, t) ∼ |x| 1−α
1+α

t
exp(−|x|2/(1+α)t−1). (13)

Using definition (3), the scaling function underlying the probability distribution function
G(x, t) is

�(z) ∼ |z| 1−α
1+α exp(−|z|2/(1+α)). (14)

Note that for the particular case of α = 1, the probability distribution is a pure exponential
decay in z.

There are several features of this probability distribution worth emphasizing. First, it is
straightforward to compute moments of the displacement from (12). Thus, for example, we
have (with the diffusion coefficient restored)

〈x2(t)〉 = 1

2

�(1 + 2α)

�(2 + α)
(4D)1−αt1+α. (15)

Note that in the case of α = 1, the displacement of the greedy walk is independent of the
diffusion coefficient. Second, for any non-zero value of α < 1, no matter how small, greedy
walks are eventually repelled from the origin. Third, the limit α → 0 is singular. This is
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Figure 3. Probability distribution of the greedy random walk after t = 102 steps. Shown are results
for integer-valued step lengths (light solid line) and continuum step lengths (dashed line). The
latter distribution was scaled up by a factor 2. The inset shows detail of the prime-number-based
fluctuations.

reflected in the limiting behaviour of equation (14), �(z) ∼ |z|, when z → 0. In contrast, the
probability distribution of an ordinary random walk is finite at the origin. Finally, note that the
cumulative distribution C(x, t) = ∑

x ′>x G(x ′, t) has the scaling form C(x, t) → �C(xt−ν),
with the simpler scaling function

�C(z) ∼ exp(−|z|2/(1+α)). (16)

There is no algebraic prefactor in the cumulative distribution and the scaling function is finite
at the origin, as it must.

2.3. Simulations

To test our predictions for the typical displacement and the probability distribution, we turn
to simulations. For concreteness we examined only the case of α = 1, where the step length
increases linearly in the number of returns to the origin (see equation (1)). Our data are all
based on averaging over 108 walks. As a preliminary, we verified that the root mean square
(rms) displacement xrms grows linearly with time in accordance with equation (15).

The probability distribution itself exhibits several intriguing features that lie outside of a
scaling description (figure 3). First, there are huge fluctuations in the distribution. These arise
because displacement values that are prime or have relatively few prime factors are hard to
reach by a greedy random walk. While this variability in the distribution is striking, it does
not play a role in the asymptotic scaling form of the distribution.

There is also a singularity at x = 0 and secondary peaks at a distance t1/2 from the origin.
The singularity arises because the probability of being exactly at the origin is not affected by
the enhancement mechanism of greedy walks. All that is required is an equal number of steps
to the left and right, independent of when these steps occur. Thus the amplitude of this peak
decays as t−1/2, as in a pure random walk. In contrast, as follows from (13), the amplitude of
the scaling part of the distribution scales as t−1.
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Figure 4. The scaling function of equation (3) for walks with 103 and 104 steps on a semi-
logarithmic scale. Also shown as a reference is an exponential distribution. The distributions are
normalized to have a unit rms displacement, 〈z2〉 = 1.

To visualize the envelope of the distribution and the anomalous behaviour near the origin
more clearly, we introduce a smoothed version of the greedy random walk in which the step
length grows by an increment that is uniformly distributed between 0 and 2 upon each return
to the origin. Such a construction still has a step length that equals, on average, the number of
returns to the origin, but there are no longer any discreteness effects (figure 3). The resulting
probability distribution clearly reveals secondary peaks close to the origin. These are due to
walks that never return to the origin. For this class of walks, the contribution to the probability
distribution in the continuum limit was given by equation (10). Since the characteristic length
scale of this contribution is proportional to t1/2, the secondary peaks get squeezed toward the
origin when the distribution is plotted against the properly scaled coordinate x/t .

More importantly, the continuum probability distribution of the greedy walk obeys scaling,
with the scaling function decaying purely exponentially with the normalized displacement
z = x/xrms (figure 4), in agreement with our analytic prediction given in equation (14).

3. Duration statistics

We now turn to the question that motivated this work, namely, how long does a game that
is based on a greedy random walk last? More abstractly, how long does it take for a greedy
random walk to escape the interval [−L,L]? Our basic result is that the typical escape time
is relatively short, but higher moments still involve the diffusive time scale L2.

The displacement scaling law (2) suggests that the typical escape time scales as

t ∼ Lµ (17)

with µ = 1/ν = 2/(α + 1). The exit-time distribution, E(t, L), namely, the probability that
the walk exits a system of size L at time t, should then follow scaling in the large-L limit
(figure 5)

E(t, L) ∼ L−µ	(tL−µ). (18)

Since µ < 2, the typical lifetime of a walk is shortened by the greedy walk mechanism.
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Figure 5. The scaling function of the exit-time distribution (equation (18)) from simulations with
system size L = 102 (solid line), L = 103 (dashed line), and L = 104 (dotted line).

The minimal escape time is realized by hybrid zig-zag/ballistic walks that have the
maximal displacement. Similar to the considerations leading to equation (4), the escape time
for such extremal walks is t = τ + L(τ/2)−α , with τ the duration of the zig-zag phase. The
escape time is minimized when τ ∼ L1/2ν ∼ Lµ/2 and the minimal escape time also scales
as Lµ/2. Since the probability for such walks decays exponentially with the escape time, we
then infer from equation (18) the asymptotic behaviour

	(y) ∼ exp(−1/y), (19)

for y � 1. This scaling is independent of α and thus, is identical to that of an ordinary random
walk. We conclude that short-lived games are relatively rare.

Long-lived walks are more interesting. To determine the likelihood of such walks, we
need to understand greedy random walk trajectories (figure 2) in finer detail. First consider
the return segments of the greedy walk. Upon the j th return and after the next step, the walk is
at ±jα . Then from classic first-passage properties [6, 8], the probability of returning again to
the origin without escaping is (1 − jα/L), while the probability of escaping without another
return is jα/L. Note that the increase of the single-step length effectively reduces the system
size by the step length. Using these results, the probability of returning to the origin at least k
times is

Rk =
(

1 − 1

L

) (
1 − 2α

L

)
· · ·

(
1 − kα

L

)
∼ exp(−k1+α/L). (20)

The typical number of returns to the origin before escape occurs is found from the criterion
Rk ≈ 1/2; this gives

k ∼ L1/(1+α).

This statement tells us the magnitude of the typical payoff in a greedy random walk-based
game.
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Figure 6. The scaling function of the exit-time distribution on a double logarithmic scale.

(This figure is in colour only in the electronic version)

For a greedy walk to escape the system at time t, there may be k � 0 returns to the
origin, followed by a non-return segment. From equation (20), the probability for the former
event is exp(−k1+α/L). In the long-time limit, the probability for the non-return segment
scales as

(
kα

L

)3
exp(−tk2α/L2), where, as usual, we have ignored all factors of order 1 in the

exponential. The exponential term is just the controlling factor for the escape probability of a
random walk in an interval of length L/kα [8]. The prefactor (kα/L)3 ensures that the integral
of this factor over all time gives the correct ultimate escape probability of kα/L. Putting these
elements together, the probability E(t, L) for a greedy walk to escape the interval [−L,L] at
time t is

E(t, L) ∼
∑
k=1

(
kα

L

)3

e−tk2α/L2
e−k1+α/L. (21)

By converting the sum to an integral, and noting that in the long-time limit, the last term
is negligible, we obtain

E(t, L) ∼ L1/α

t3/2+1/2α
, (22)

over the intermediate time range Lµ � t � L2. Escape times larger that L2 are realized
by walks that never return to the origin. However, such walks are exponentially unlikely,
exp(−t/L2), so that their contribution is irrelevant in the scaling limit. In the limit α → ∞,
walks may return to the origin at most once, and the behaviour E(t, L) ∼ t−3/2 follows from
equation (10). Finally, the power-law form of E(t, L) implies that the scaling function has the
power-law decay for y � 1 (figure 6)

	(y) ∼ y−3/2−1/2α. (23)
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The existence of this power-law tail suggests that higher-order moments of the distribution
are not characterized by the typical behaviour (17). By integrating equation (22) up to the
time scale L2, we find three regimes

〈tn〉 ∼



Lµn n < nc;
L ln L n = nc;
L2n−1 n > nc.

(24)

Low-order moments are characterized by the typical escape time, while high-order moments
are described by pure diffusion. At the boundary nc = (α + 1)/2α, there is a logarithmic
correction. Thus while the greedy walk mechanism significantly reduces the typical duration
of the game, there are substantial fluctuations in this duration. In the worst case, the duration
would be proportional to L2, as in the ordinary random walk.

When the step length grows linearly with the number of returns to the origin, equation (22)
shows that the exit time distribution has the asymptotic behaviour L/t2. Thus the average
lifetime of a greedy walk includes the logarithmic correction

〈t〉 ∝ L ln L. (25)

This behaviour can be obtained directly by noting that (i) there are of the order k ∼ L1/2

returns, (ii) the average kth return time is 〈tk〉 ∝ L + L/2 + · · · + L/k ∝ L ln k.
For completeness, we mention that the full survival probability can be computed via the

Laplace transform. For an ordinary random walk starting at x = 1 in a domain of length L
with absorbing boundary conditions, the Laplace transform of the first-passage probabilities
at x = 0 and x = L are, respectively [8],

j−(s) = sinh[
√

s/D(L − 1)]/sinh[
√

s/DL]

j+(s) = sinh[
√

s/D]/sinh[
√

s/DL].

The first-passage probability at x = L for the greedy random walk is obtained by summing
over the possible number of returns and scaling down the domain size by the step length lk at
each return. This gives

E(s, L) =
∞∑

k=0

sinh
√

s

sinh
[√

s L
�k

]
k∏

j=1

sinh
[√

s
(

L
�j

− l
)]

sinh
[√

s L
�j

] . (26)

The small-time and large-time behaviours given above follow from the large-s and small-s
behaviours of this expression, respectively. Additionally, the kth return probability given in
equation (20) equals the s → 0 limit of the product in equation (26).

4. Summary

The greedy random walk, in which the step length increases algebraically with the number of
returns to the origin, exhibits a variety of unusual features. The distribution of displacements
is non-Gaussian, despite the fact that each epoch is characterized by a Gaussian distribution.
Similarly, the distribution of escape times decays as a power-law tail even though each segment
has an ordinary exponential decay.

The most extended walks follow a two-stage process of immediate reversals followed by
a ballistic trajectory. There are also several features of the probability distribution that are
outside of scaling, including the contributions of walks that never return to the origin, walks
that are exactly at the origin and large prime number-induced fluctuations.

The time for a greedy random walk to escape a finite interval is much smaller than that
of ordinary random walks. However, because the distribution of escape times decays as a
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power law in the long time limit, there are large fluctuations in the escape time and the longest
possible games have a similar length to those based on ordinary random walks.

We conclude that the greedy random walk provides a strategy for completing zero-sum
games quickly. Increasing the stakes when the game is tied accelerates the path to richness or
to ruin.
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