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Finding scientific gems with Google’s PageRank algorithm
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Abstract

We apply the Google PageRank algorithm to assess the relative importance of all publications in the Physical Review family of
journals from 1893 to 2003. While the Google number and the number of citations for each publication are positively correlated,
outliers from this linear relation identify some exceptional papers or “gems” that are universally familiar to physicists.
© 2006 Published by Elsevier Ltd.
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1. Introduction

With the availability of electronically available citation data, it is now possible to undertake comprehensive studies
of citations that were unimaginable just a few years ago. In most previous studies of citation statistics, the metric used
to quantify the importance of a paper is its number of citations. In terms of the underlying citation network, in which
nodes represent publications and directed links represent a citation from a citing article to a cited article, the number
of citations to an article translates to the in-degree of the corresponding node. The distribution of in-degree for various
citation data sets has a broad tail (Price, 1965, 1976) that is reasonably approximated by a power law (Laherrère &
Sornette, 1998; Redner, 1998, 2005).

While the number of citations is a natural measure of the impact of a publication, we probably all have encountered
examples where citations do not seem to provide a full picture of the influence of a publication. We are thus motivated
to study alternative metrics that might yield a truer measure of importance than citations alone. Such a metric already
exists and is provided by the Google PageRank (Brin & Page, 1998) or similar algorithms proposed for the analysis of
social (Bonacich, 1972, 1987) and information (Kleinberg, 1999) networks. By simulating random traffic on a network
these algorithms calculate the importance of papers in a self-consistent fashion. They naturally take into account the
following two factors: (1) the effect of receiving a citation from a more important paper should be greater that that
coming from a less popular one; (2) citation links coming from a paper with a long reference list should count less than
those coming from one with a short list. In other words, the importance of a paper should be divided over a number of
references that inspired this line of research.
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A variant of the PageRank algorithm was recently applied to better calibrate the impact factor of scientific journals
(Bollen, Rodriguez, & Van de Sompel, 2006). In this work, we apply Google PageRank to the Physical Review citation
network with the goal of measuring the importance of individual scientific publications published in the APS journals.
This network consists of 353,268 nodes that represent all articles published in the Physical Review family of journals
from the start of publication in 1893 until June 2003, and 3,110,839 links that represent all citations to Physical Review
articles from other Physical Review articles. As found previously (Redner, 2005), these internal citations represent 1/5
to 1/3 of all citations for highly-cited papers. This range provides a sense of the degree of completeness of the Physical
Review citation network.

With the Google PageRank approach, we find a number of papers with a modest number of citations that stand out
as exceptional according to the Google PageRank analysis. These exceptional publications, or gems, are familiar to
almost all physicists because of the very influential contents of these articles. Thus, the Google PageRank algorithm
seems to provide a new and useful measure of scientific quality.

2. The Google PageRank algorithm

To set the stage for our use of Google PageRank to find scientific gems, let us review the elements of the PageRank
algorithm. Given a network of N nodes i = 1, 2, . . . , N, with directed links that represent references from an initial
(citing) node to a target (cited) node, the Google number Gi for the ith node is defined by the recursion formula (Brin
& Page, 1998):

Gi = (1 − d)
∑
j nn i

Gj

kj

+ d

N
. (1)

Here the sum is over the neighboring nodes j in which a link points to node i. The first term describes propagation of
the probability distribution of a random walk in which a walk at node j propagates to node i with probability 1/kj ,
where kj is the out-degree of node j. The second term describes the uniform injection of probability into the network
in which each node receives a contribution d/N at each step.

Here d is a free parameter that controls the performance of the Google PageRank algorithm. The prefactor (1 − d)
in the first term gives the fraction of random walks that continue to propagate along the links; a complementary fraction
d is uniformly re-injected into the network, as embodied by the second term.

We suggest that the Google number Gi of paper i, defined by Eq. (1), is a better measure of importance than
the number of citations alone in two aspects: (i) being cited by influential papers contributes more to the Google
number than being cited by unimportant papers; (ii) being cited by a paper that itself has few references gives a larger
contribution to the Google number than being cited by a paper with hundreds of references. The Google number of a
paper can be viewed as a measure of its influence that is then equally exported to all of its references. The parameter
d > 0 prevents all of the influence from concentrating on the oldest papers.

In the original Google PageRank algorithm of Brin and Page (1988), the parameter d was chosen to be 0.15. This
value was prompted by the anecdotal observation that an individual surfing the web will typically follow of the order of
6 hyperlinks, corresponding to a leakage probability d = 1/6 � 0.15, before becoming either bored or frustrated with
this line of search and beginning a new search. In the context of citations, we conjecture that entries in the reference list
of a typical paper are collected following somewhat shorter paths of average length 2, making the choice d = 0.5 more
appropriate for a similar algorithm applied to the citation network. The empirical observation justifying this choice is
that approximately 50% of the articles1 in the reference list of a given paper A have at least one citation B → C to another
article C that is also in the reference list of A. Assuming that such “feed-forward” loops result from authors of paper A
following references of paper B, we estimate the probability 1 − d to follow this indirect citation path to be close to 0.5.

To implement the Google PageRank algorithm for the citation network, we start with a uniform probability density
equal to 1/N at each node of the network and then iterate Eq. (1). Eventually a steady state set of Google numbers for
each node of the network is reached. These represent the occupation probabilities at each node for the random-walk-like
process defined by Eq. (1). Finally, we sort the nodal Google numbers to determine the Google rank of each node. It

1 The actual fraction of “followed citations” (such as B in an A → B, A → C, and B → C loop) is 42% for the entire dataset and 51% for papers
published during the last 4 years.
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Fig. 1. Average Google number 〈G(k)〉 vs. number of citations k. The dashed line of slope 1 is a guide for the eye.

is both informative and entertaining to compare the Google rank with the citation (in-degree) rank of typical and the
most important publications in Physical Review.

3. Google’s PageRank for Physical Review

Fig. 1 shows the average Google number 〈G(k)〉 for publications with k citations as a function of k. For small k, there
are many publications with the same number of citations and the dispersion in G(k) is small. Correspondingly, the plot
of 〈G(k)〉 versus k is smooth and increases linearly with k for k � 50. Thus, the average Google number and the number
of citations represent similar measures of popularity, a result that has been observed previously (Fortunato, Boguna,
Flammini, & Menczer; Fortunato, Flammini, & Menczer). In fact, the citation and Google number distributions are

Fig. 2. Individual outlier publications. The scatter plot of the Google number vs. the number of citations. The top-10 Google-ranked papers are
identified by author(s) initials (see Table 1). As a guide to the eye, the solid curve is logarithmically binned average of the data of 〈G(k)〉 vs. k in
Fig. 1.
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Table 1
The top-10 Google-ranked publications when d = 0.5

Google
rank

Google #
(×10−4)

Cite rank # cites Publication Title Author(s)

1 4.65 54 574 PRL 10 531 1963 Unitary symmetry and leptonic. . . N. Cabibbo
2 4.29 5 1364 PR 108 1175 1957 Theory of superconductivity J. Bardeen, L. Cooper,

and J. Schrieffer
3 3.81 1 3227 PR 140 A1133 1965 Self-consistent equations. . . W. Kohn and L.J.

Sham
4 3.17 2 2460 PR 136 B864 1964 Inhomogeneous electron gas P. Hohenberg and W.

Kohn
5 2.65 6 1306 PRL 19 1264 1967 A model of leptons S. Weinberg
6 2.48 55 568 PR 65 117 1944 Crystal statistics I L. Onsager
7 2.43 56 568 RMP 15 1 1943 Stochastic problems in. . . S. Chandrasekhar
8 2.23 95 462 PR 109 193 1958 Theory of the Fermi interaction R.P. Feynman and M.

Gell-Mann
9 2.15 17 871 PR 109 1492 1958 Absence of diffusion in. . . P.W. Anderson

10 2.13 1853 114 PR 34 1293 1929 The theory of complex spectra J.C. Slater

qualitatively similar, further indicating that citations and Google numbers are, on the average, similar measures of
importance.

However, for large k, much more interesting behavior occurs. When k is sufficiently large, there is typically only
one publication with k citations. Of particular interest are the extreme outliers with respect to the linear behavior of
Fig. 1. The 10 articles with the highest Google numbers are marked with large circles in Fig. 2 on the background of
Google number versus the number of citations for all publications (dots). The top-10 papers are identified by author
initials (see Table 1). Table 1 also lists the number of citations and the citation rank of these publications. While several
of the highest-cited Physical Review papers appear on this list, there are also several more modestly-cited papers that
are highly ranked according to the Google algorithm.

The disparity between the Google rank and citation rank arises because, as mentioned in the previous section, the
former involves both the in-degree as well as the Google PageRank of the neighboring nodes. According to the Google
algorithm of Eq. (1), a citing publication (“child”) j contributes a factor 〈Gj/kj〉 to the Google number of its parent
paper i. Thus, for a paper to have a large Google number, its children should be important (large Gj), and also each
child should have a small number of parents (small out-degree kj). The latter ensures that the Google contribution of
a child is not strongly diluted.

With this perspective, let us compare the statistical measures of the two articles “Unitary Symmetry and Leptonic
Decays”, Phys. Rev. Lett. 10, 531 (1963) by N. Cabibbo (C) and “Self-Consistent Equations Including Exchange
and Correlation Effects”, Phys. Rev. 140, A1133 (1965) by W. Kohn & L. J. Sham (KS). The former has the highest
Google number of all Physical Review publications, while the latter is the most cited. The high Google rank of C stems
from the fact that that value of 〈Gj/kj〉 = 1.52 × 10−6 for the children of C is an order of magnitude larger than the
corresponding value 〈Gj/kj〉 = 2.31 × 10−7 for the children of KS. This difference more than compensates for the
factor 5.6 difference in the number of citations to these two articles (3227 for KS and 574 for C as of June 2003).
Looking a little deeper, the difference in 〈Gj/kj〉 for C and KS stems from the denominator; the children of C have
15.6 citations an average, while the children of KS are slightly “better” and have 18.4 citations on average. However,
the typical child of C has fewer references than a child of KS and a correspondingly larger contribution to the Google
number of C.

The remaining research articles on the top-10 Google-rank list but outside the top-10 citation list are easily recog-
nizable as seminal publications. For example, Onsager’s 1944 paper presents the exact solution of the two-dimensional
Ising model; both a calculational tour de force, as well as a central development in the theory of critical phenom-
ena. The paper by Feynman and Gell-Mann introduced the V-A theory of weak interactions that incorporated parity
non-conservation and became the “standard model” of weak interactions. Anderson’s paper, “Absence of Diffusion in
Certain Random Lattices” gave birth to the field of localization and is cited by the Nobel prize committee for the 1977
Nobel prize in physics.

The last entry in the top-10 Google-rank list, “The Theory of Complex Spectra”, by J. C. Slater (S) is particularly
striking. This article has relatively few citations (114 as of June 2003) and a relatively low citation rank (1853th),
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Table 2
The remaining top-100 Google-ranked papers when d = 0.5 in which the ratio of Google rank to citation rank is greater than 10

Google
rank

Google #
(×10−4)

Cite rank # cites Publication Title Author(s)

1 4.65 54 574 PRL 10 531 1963 Unitary symmetry and leptonic. . . N. Cabibbo
8 2.23 95 462 PR 109 193 1958 Theory of the fermi interaction R.P. Feynman and M.

Gell-Mann
10 2.13 1853 114 PR 34 1293 1929 The theory of complex spectra J.C. Slater
12 2.11 712 186 PR0 43 804 1933 On the constitution of. . . E. Wigner and F. Seitz
20 1.80 228 308 PR0 106 364 1957 Correlation energy of an . . . M. Gell-Mann and K.

Brueckner
21 1.69 616 198 PRL 58 408 1987 Bulk superconductivity at . . . R.J. Cava, et al.
25 1.58 311 271 PRL 58 405 1987 Evidence for superconductivity . . . C.W. Chu, et al.
30 1.51 1193 144 PRL 10 84 1963 Photon correlations R.J. Glauber
35 1.42 12897 39 PR0 35 509 1930 Cohesion in monovalent metals J.C. Slater
49 1.21 1342 136 PR0 60 252 1941 Statistics of the two- . . . H.A. Kramers and

G.H. Wannier
58 1.17 1433 135 PR0 81 440 1951 Interaction between the . . . C. Zener
59 1.17 5196 66 PR0 45 794 1934 Electronic energy bands in . . . J.C. Slater
60 1.16 2927 108 PRB 28 4227 1983 Electronic structure of . . . L.F. Mattheiss & D.

R. Hamann
64 1.12 642 199 PR0 52 191 1937 The structure of electronic . . . G.H. Wannier
70 1.08 1653 130 PRL 10 518 1963 Classification of two-electron . . . J. Cooper, U. Fano,

and F. Prats
72 1.06 1901 118 PR0 46 509 1934 On the constitution of . . . E. Wigner and F. Seitz
73 1.05 876 180 PR0 75 486 1949 The radiation theories of . . . F.J. Dyson
78 1.03 1995 119 PR0 109 1860 1958 Chirality invariance and . . . E. Sudarshan and R.

Marshak
85 1.00 201853 3 PRB 22 5797 1980 Cluster formation in . . . H. Rosenstock and C.

Marquardt
87 0.99 10168 48 PRL 6 106 1961 Population inversion and . . . A. Javan, W. Bennett,

and D. Herriott
90 0.98 3231 86 PR0 79 350 1950 Antiferromagnetism . . . P.W. Anderson
92 0.97 1199 149 PR0 76 749 1949 The theory of positrons R.P. Feynman

but its Google number 2.13 × 10−4 is only a factor 2.2 smaller than that of Cabibbo’s paper! What accounts for this
high Google rank? From the scientific standpoint, Slater’s paper introduced the determinant form for the many-body
wavefunction. This form is so ubiquitous in current literature that very few articles actually cite the original work
when the Slater determinant is used. The Google PageRank algorithm identifies this hidden gem primarily because
the average Google contribution of the children of S is 〈Gj/kj〉 = 3.51 × 10−6, which is a factor 2.3 larger than the
contribution of the children of C. That is, the children of Slater’s paper were both influential and Slater loomed as a
very important father figure to his children.

The striking ability of the Google PageRank algorithm to identify influential papers can be seen when we consider
the top-100 Google-ranked papers. Table 2 shows the subset of publications on the top-100 Google rank in which
the ratio of Google rank to citation rank is greater than 10; that is, publications with anomalously high Google rank
compared to their citation rank. This list contains many easily-recognizable papers for the average physicist. For
example, the publication by Wigner and Seitz, “On the Constitution of Metallic Sodium” introduced Wigner-Seitz
cells, a construction that appears in any solid-state physics text. The paper by Gell-Mann and Brueckner, “Correlation
Energy of an Electron Gas at High Density” is a seminal publication in many-body theory. The publication by Glauber,
“Photon Correlations”, was recognized for the 2005 Nobel prize in physics. The Kramers-Wannier article, “Statistics of
the Two-Dimensional Ferromagnet. Part I”, showed that a phase transition occurs in two dimensions, contradicting the
common belief at the time. The article by Dyson, “The Radiation Theories of Tomonaga, Schwinger, and Feynman”,
unified the leading formalisms for quantum electrodynamics and it is plausible that this publication would have earned
Dyson the Nobel prize if it could have been shared among four individuals. One can offer similar rationalizations for
the remaining articles in this table.
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Fig. 3. The in-degree distribution (citations to) and out-degree distribution (the length of the reference list) for all Physical Review publications.
The out-degree distribution is shown with and without the contribution of Reviews of Modern Physics. Eleven papers with more than 1000 citations
are beyond the upper limit of the x-axis.

On the other hand, an apparent mistake is the paper by Rosenstock and Marquardt, “Cluster formation in two-
dimensional random walks: Application to photolysis of silver halides” (RM). Notice that this article has only three
citations! Why does RM appear among the top-100 Google-ranked publications? In RM, a model that is essentially
diffusion-limited aggregation is introduced. Although these authors had stumbled upon a now-famous model, they
focused on the kinetics of the system and apparently did not appreciate its wonderful geometrical features. This
discovery was left to one of the children of RM—the famous paper by T. Witten and L. Sander, “Diffusion-Limited
Aggregation, a Kinetic Critical Phenomenon” Phys. Rev. Lett. 47, 1400 (1981), with 680 citations as of June 2003.
Furthermore, the Witten and Sander article has only 10 references; thus a substantial fraction of its fame is exported to
RM by the Google PageRank algorithm. The appearance of RM on the list of top-100 Google-ranked papers occurs
precisely because of the mechanics of the Google PageRank algorithm in which being one of the few references of a
famous paper makes a huge contribution to the Google number.

A natural question to ask is whether the Google rankings are robust with respect to the value of the free parameter
d in the Google algorithm. As mentioned above, we believe that our ad hoc choice of d = 0.5 accounts in a reasonable
way for the manner in which citations are actually made. For d = 0.15, as in the original Google algorithm, the Google
rankings of highly-cited papers locally reorder to a considerable extent compared to the rankings for the case d = 0.5,
but there is little global reordering. For example, all of the top-10 Google-ranked papers calculated with d = 0.5
remained among the top-50 Google-ranked papers for d = 0.15. Thus, up to this degree of variation, Google rankings
are a robust measure. To further quantify it we measured the Spearman rank correlation of PageRank(d) with our
choice of PageRank(0.5). Overall the correlation is very high. It varies between 0.98 and 1 for 0.1 < d < 0.9. The rank
correlation 0.91 with the number of citations is also quite high.

One can show that for d → 1 Google rank almost exactly reduces to the citation rank. Indeed, in the extreme
case of d = 1, the Google number of each node equals 1/N. For d → 1, we therefore write d = 1 − ε, with ε � 1,
and also assume that there is a correspondingly small deviation of the Google numbers from 1/N. Thus we write
Gi = 1

N
+ O(ε). Substituting these into Eq. (1), we obtain

Gi = ε
∑

j

Gj

kj

+ 1 − ε

N
≈ 1

N

⎡
⎣1 + ε

⎛
⎝∑

j

1

kj

− 1

⎞
⎠

⎤
⎦ (2)

To estimate the sum in Eq. (2), we use the fact that the out-degree distribution is relatively narrow (Fig. 3), especially
if we exclude the broad tail that is caused by the contributions of review articles that appear in the Reviews of Modern
Physics. While the mean in-degree and out-degrees are both close to 9 (and should be exactly equal for the complete
citation network), the dispersion for the in degree is 23.15, while the dispersion for the out degree (excluding Reviews
of Modern Physics) is 8.64.
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Fig. 4. Average value of PageRank vs. year of publication. Different symbols correspond to different values of d: 0.05—green stars, 0.15—black
open squares, 0.5—red filled circles, 0.9—purple x’s. Open blue triangles show the number citations ci which, for proper comparison with the
PageRank, is normalized by its average value (〈c〉 = 8.08). Dashed line at 1 gives the global average value of PageRank.

As a result of the sharpness of the out-degree distribution, the sum
∑

j nn i
1
kj

for nodes with high in-degree is

approximately equal to the in-degree ci of node i times 〈 1
k
〉. With this assumption, Eq. (2) becomes

Gi = 1

N

[
1 + ε

(
ci

〈
1

k

〉
− 1

)]
. (3)

That is, the leading correction to the limiting d = 1 result that Gi = 1
N

is proportional to the in-degree (the number of
received citations) ci of each node. Thus, as d → 1, the Google rank of each node is identical to its citation rank under
the approximation that we neglect the effect of the dispersion of the out-degree in the citation network.

One final aspect to consider is whether PageRank gives an “unfair” advantage to older papers. Indeed long random
walks on time-directed networks inevitably drift towards older papers (Xie et al., in preparation). Since the average
length of the walk in the PageRank algorithm is given by 1/d, this effect is especially pronounced for small values of
d. To investigate this question, we plot in Fig. 4 the average value of normalized PageRank as a function of the year
of publication for different values of d. For comparison we also include the same plot for the normalized number of
citations. As one can see from this figure, for d = 0.5 the age variation is not great and is comparable to that in the
number of citations. However, in agreement with our qualitative understanding, the relative weight assigned to older
papers (those published in 1920–1960) increases for smaller values of d. Interestingly, the oldest papers in our dataset
(those published before ∼1920 overall have below average PageRank as well as the number of citations.

4. Conclusions

We believe that protocols based on the Google PageRank algorithm hold a great promise for quantifying the impact
of scientific publications. They provide a meaningful extension to traditionally-used importance measures, such as
the number of citation of individual articles and the impact factor for journals as a whole. The PageRank algorithm
implements, in an extremely simple way, the reasonable notion that citations from more important publications should
contribute more to the rank of the cited paper than those from less important ones. Other ways of attributing a quality
for a citation would require much more detailed contextual information about the citation itself.

The situation in citation networks is not that dissimilar from that in the World Wide Web, where hyperlinks contained
in popular websites and pointing to your webpage would bring more Internet traffic to you and thus would contribute
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substantially to the popularity of your own webpage. Scientists commonly discover relevant publications by simply
following chains of citation links from other papers. Thus, it is reasonable to assume that the popularity or “citability” of
papers may be well approximated by the random surfer model that underlies the PageRank algorithm. One meaningful
difference between the WWW and citation networks is that citation links cannot be updated after publication, while
WWW hyperlinks keep evolving together with the webpage containing them. Thus, scientific papers and their citations
tend to age much more rapidly than active webpages. These differences could be taking into account by explicitly
incorporating the effects of aging into the Page Rank algorithm (Xie et al., in preparation).
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