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Freezing in Ising ferromagnets

V. Spirin, P. L. Krapivsky, and S. Redner
Center for BioDynamics, Center for Polymer Studies, and Department of Physics, Boston University, Boston, Massachusetts 02215
(Received 3 May 2001; revised manuscript received 6 September 2001; published 18 Decemper 2001

We investigate the final state of zero-temperature Ising ferromagnets that are endowed with single-spin-flip
Glauber dynamics. Surprisingly, the ground state is genenallyeached for zero initial magnetization. In two
dimensions, the system reaches either a frozen stripe state with probablli8/ or the ground state with
probability ~2/3. In greater than two dimensions, the probability of reaching the ground state or a frozen state
rapidly vanishes as the system size increases; instead the system wanders forever in an isoenergy set of
metastable states. An external magnetic field changes the situation drastically—in two dimensions the favor-
able ground state is always reached, while in three dimensions the field must exceed a threshold value to reach
the ground state. For small but nonzero temperature, relaxation to the final state proceeds first by formation of
very long-lived metastable states, as in the zero-temperature case, before equilibrium is reached.
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[. INTRODUCTION increasing system siZ&]. The final state is also not static,
but consists of stochastic “blinkers.” These are localized
spins that can flip without any energy cost. The system wan-
Despite extensive studyl,2], basic questions about the dersad infinitumon a connected set of equal-energy states
kinetic Ising model with Glauber dynamics remain unan-defined by these blinkers. In the categorization proposed by
swered 3]. In this paper, we investigate the following: What Newman and Steif3], whend=3 the Ising system is of the
is the final state of a finite Ising-Glauber spin system when itmixed” type, because a fraction of the spins flips a finite
is quenched from infinite temperature to zero temperatur@umber of times, while the complementary fraction flips in-
[4]? An infinite system organizes into a coarsening domairfinitely often.
mosaic of up and down spins, with the characteristic length Imposition of an external magnetic field gives rise to
scale growing as*?[2]. For a finite system, this coarsening bootstrap percolation phenomena for the evolution of the
stops when the typical domain size reaches the systenk.size spins[6,7]. On the square lattice, an infinitesimal field is
Intriguingly, such a system typically gets stuck in an infi- sufficient to drive the system to the energetically favorable
nitely long-lived metastable state. In two dimensions, thisground state. This correspondsrte: 3 bootstrap percolation
probability of getting stuck is approximately 1/3 hs— o, on this lattice[6,7]. On the cubic lattice, the energetically
while for d=3 the ground state is essentially never reachedfavorable ground state is reached only if the field exceeds a
To provide context about the ultimate fate of the Ising-threshold value. For weaker fields, a transition between
Glauber system, consider the limiting casesdefl and phase coexistence and field alignment occurs as a function of
d=<. For a linear chain of length with pL up spins and the initial concentration of field-aligned spins. This transition
(1-p)L down spins, the final state of the system followsagain can be described in termsrof4 bootstrap percola-
from two simple facts. First, the average magnetization idion on the cubic lattice.
conserved under Glauber dynamics5] and, second, the At low positive temperatures the aforementioned meta-
only possible final states are all spins up or all spins downstable states continue to play a significant role in the relax-
there are no metastable states in one dimension. For the fination toward equilibrium. For example, dh=2 and for tem-
magnetization to equal the initial magnetization, a fraction peratures up to approximately 02 there is a large time
of all realizations must therefore end with all spins(@md range for which the relaxation is close to that of the zero-
fraction 1—p must end with all spins downThus the prob- temperature system. If a metastable stripe configuration hap-
ability P(p) to ultimately have all spins up is simply pens to form, a time of the order af*e™'T must elapse,
P(p)=p. A very different result holds in the mean-field whereJ is the interaction strength between spins, before the
limit. For this limit, consider the complete graph, in which system can escape this metastable state and reach equilib-
each spin interacts equally with every other spin. For anyium. Similarly, metastable states will influence the long-
nonzero magnetization, it is energetically favorable for anytime relaxation even more strongly in higher dimensions.
minority spin to flip so that the majority phase quickly fills
the system forp+# 1/2. ThereforeP(p) is simply the step
function P(p) = 6(p—1/2). We study the homogeneous ferromagnetic Ising model
In two and higher dimensions, the probability that onewith Hamiltonian= —JZ j;y0i0;, wheres;=*1, and the
phase eventually “wins” also converges to a step function insum is over all nearest-neighbor pairs of sitg9. Spins are
p—1/2, but with strange anomalies whgr=1/2. A two- initially uncorrelated, corresponding to initial temperature
dimensional system has a nonzero probability of gettingli=2. This limit implies that the fractions of up and down
stuck in a metastable state that consists of two or morspins are equal. Because we are interested in fluctuation ef-
straight stripes. In greater than two dimensions, the probabilfects associated with zero initial magnetizatiog, we pre-
ity that the ground state is reached vanishes quickly wittpare our systems with fixed magnetization rather than fixed

A. Background

B. The model
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probability for each spin orientation. Thus every initial con- 0.5
figuration hasLY2 up spins and_9/2 down spins form,
=0, andpL? up spins and (% p)LY down spins form, 0.4
=2p—1+0.

The spins evolve by zero-temperature Glauber dynamics :0'3 I
[1], i.e., the system is quenched from an initial temperature ol
T;== to T=0. For each initial configuration, one realization 02+ ) N
of the dynamics was performed until the final state was o1 | a—= square lattice |
reached. We considerdimensional hypercubic lattices with ) &—= triangular lattice ¥
linear sizel. and periodic boundary conditions. Most of our

0

results continue to hold for free boundary conditions and on 0 0.25 05

other even-coordinated latticg©n odd-coordinated lattices 1/log,L

stable convex islands of minority spins readily form and the

system always freezes into a disordered staj4].) FIG. 1. Probability that a. XL system {J square latticeA

Glauber dynamics at zero temperature is implemented bytiangular lattice eventually reaches a stripe staRy(L), as a
picking flippable spins at random and computing the energyunction of 1/logL for L up to 512. Each data point, with error bars
changeAE if this spin were to flip. Flippable spins are those smaller than the size of the symbol, is based=oh0® initial spin
with AE<0. For AE<O0 or AE=0, respectively, the spin configurations.
flip is accepted with probability 1 or 1/2. After each such
event, the time is incremented by(émber of flippable s that there are numerous metastable statedfot and no
sping. Thus in one time unit each spin attempts one flip onsych states fod= 1. Metastable states are easily visualized
average. in two dimensions, where any straight stripe of wid#2

The rest of this paper is organized as follows. In Sec. llthat traverses the entire system is stable at zero temperature

we discuss various geometric properties of the final state |[I4,8] Metastable states are geometrica”y more Comp]ex in
two and three dimensions, including the influence of an exthree and higher dimensions, as will be discussed in

ternal magnetic field on the final state, as well as the distrigec. || B.

butions of final state magnetization and energy. The number

of metastable states as a function of the spatial dimension is

estimated in Sec. Il to illustrate the increasing influence of A. Two dimensions
metastable states as the dimension increases. In Sec. IV, we
discuss the finite-temperature evolution in two dimensions ] ] o ] o
and argue that the zero-temperature metastable states con-Our simulations indicate that a system with zero initial
tinue to play a significant role even when the system ignagnetization reaches a stripe state with nonzero probability
quenched to a temperatuFe=0.2T,. . Section V gives a sum- asL— (Fig. 1). Linear extrapolation of the last four data

1. Stripe state in zero magnetic field

mary and discusses some open questions. points for the probability of reaching the stripe std®g,(L),
versusL gives Py («)~0.315 and 0.344 on the square and
Il. EINAL STATE GEOMETRY triangular lattices, respectively. While an arbitrary even num-

ber of stripes is possible, we typically obtain two stripes of

We first studyP(p), the probability that an Ising system similar widths for a square system. Metastable states with
with pLY up spins initially, which is quenched =0, ul-  more than two stripes rarely appear. For example, the prob-
timately has all spins up. One could imagine three possiblability of reaching the four-stripe state grows slowly with
outcomes(1)P(p) is a monotonically increasing function of but is less than 0.07% fdr=200.
p. (2) P(p)=0 for O<p=<p,;P(p) increases monotonically We can understand qualitatively the dependence of the
for pc<p<l-p;P(p)=1 for p.<p=<1. (3) P(p) is the probability of obtainingk vertical stripes in the final state,
step functionP(p) = 6(p—1/2). P,(k,A), by analyzing anALXL rectangular system and

In one dimension the first case applies. We argue that ithen taking theL—co limit. For example, for aspect ratio
higher dimensions the third case is realized. If so, then addiA=9 andL =32, the final probabilitie®, (k,A) in 10* real-
tional considerations are needed to deternft{d/2). The izations are 0.0028, 0.101, 0.351, 0.359, and 0.152, for
behavior atp=1/2 is particularly interesting because the k=0, 2, 4, 6, and 8. There is also a probability 0.034 for a
concentrations of up and down spins are equal for any initiahorizontal stripe. In general, the probabilify,(k,A) is
temperature that exceeds the critical temperaturepeaked around,,,c<A. Invoking the assumption of analytic-
T.<T;=w%, as long as the magnetic field is zero. Naively,ity in A then implies that the probabilitie®,(k,A) of
one might expect that the system always reaches one of thestripe states are positive for all evkrand arbitrary aspect
ground states in the thermodynamic limit. Up-down symme-atio A.
try then impliesP(1/2)= 1/2. Surprisingly, this hypothesis is Our data also qualitatively suggest tHag(k,A) decays
incorrect for all spatial dimensiords=2. A two-dimensional faster than exponentially ik. This is analogous to the be-
system does not always reach the ground state, while for havior of the number of spanning clusters on large but fixed
=3 the system never reaches the ground stale-as-. aspect ratio rectangles at the percolation threshold. In that

The crucial difference between one and higher dimensionproblem, it has been recently shown that the number of span-
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FIG. 2. Probability that the minority phase wins{(z) (lower),
or that a stripe state is reachefi(z) (uppey as a function of
L|p—1/2%, with »=1.5 andv=1.35, respectively. Data are based
on systems with. <200 and=5x 10" initial configurations.

ning clusters is greater than[11,12. We now employ an
argument similar to that of Ref12] to estimate the largk-
behavior ofP(k,A).

Consider the probability?,(k,A) of reaching a state with
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FIG. 3. In a weak positive field an interface kink can move only
to the right, while in zero field this kink diffuses.

P(p)=60(p—1/2), just as in the mean-field limit. Thus we
expect thaP(p) is a step function for all spatial dimensions
d=2.

2. Finite magnetic field

An external magnetic fieltH strongly affects the fate of
the system. On the square lattice and fdr2J (strong
field), down spins that have three aligned neighbors can now
flip parallel to the field and the system necessarily ends up in
the field-aligned ground state. Conversely, foxld<2J
(weak field, only the dynamics of spins that have two mis-
aligned neighbors is modified. In zero field such spins flip
with rate 1/2, while in a weak field they flip parallel to the
field with rate 1. This means that kinks on interfaces move in
only one direction rather than diffusingig. 3.

The most interesting case is that of weak field and small

k horizontal stripes. Now divide the rectangle into two thin- initial concentration of up spins. The system consists of

ner rectangles each of si2d_XL/2. In the largek limit, the
dominant contribution toP,(k,A) comes from situations

where approximatehk/2 stripes traverse each of the rect-

angles. This argument implie®,(k,A)~[Py(k/2,2A)]2,
which may be iterated to give

.Y

The quantityP,(2,Ak/2) is the probability to have a hori-
zontal stripe in a rectangle of dimensiél X 2L/k. If we

Ph(k,A)~[P,(2,Ak/2)]¥2.

take L~k as the original rectangle width, then the subdi-

vided rectangl L X 2L/k has a width of order 1. For such a

small clusters of up spins in a background of down spins.
Due to the unidirectional motion of kinks on interfaces, clus-
ters of up spins can grow until each fills out its convex hull
(Fig. 4). If the convex hull of one cluster overlaps with either
another up cluster or its convex hull, then the resulting ag-
gregate can expand further to fill out this enlarged convex
hull. If there is yet another clustdor convex hull within
this expansion zone, growth continues.

This growth is closely related to bootstrap percolafiéh
in which a lattice is occupied at initial densipy, and then
all sites that do not have at leastoccupied neighbors are
removed. This deletion is repeated until no more sites can be

narrow rectangle, a stripe can occur only if it existed initially. removed. The case=3 is closely related to our weak-field

This clearly occurs with probability 22-=2""k Thus, sub-
stituting P(2,Ak/2)~e Ak into Eq. (1), we deduce that

)

Ph(k A)~ e—const><Ak2.

system, with spins antiparallel to the field playing the role of
occupied sites in bootstrap percolation. =3 bootstrap
percolation, all occupied sites will eventually be removed for
L—oo, even ifpg is arbitrarily close to 1. Translating this to
the Ising system, we conclude that for any nonzero concen-

That is, Py (k,A) has a Gaussian tail and states with a largeyation of up spins the system will evolve to the spin-up

number of stripes are extremely rare.

For a small initial magnetization, an Ising system is domi-

nated by the majority phase. To quantify this we stiidyhe
probability M(p,L) that the minority phase wins, that is, the
sign of the magnetization in the fin@round state is oppo-
site to that in the initial state, ar(d) the probabilityS(p,L)

that the system reaches a stripe state. Both quantities exhibit

scaling whenL—oo and initial magnetizationmy— 0, with
the combinatiorz=L|2p—1|” held constant.

The best data collapse is achieved witk=1.5 and
v~1.35, respectively, foM andS. Further, M(z) appears
to decay exponentially iz while S(z) decays more quickly
(Fig. 2. The exponential behavior fok1 can be inferred by
considering the limiting case @— 0. Here a minority span-
ning cluster exists with probability: p- from which M(z)
also decays exponentially with Therefore in two dimen-
sions the initial majority phase always “wins” ds—« and

ground state.

I;

FIG. 4. Expansion of a cluster of up spifdark shadedin a
weak magnetic fieldH<<2J. The convex hull(union of dark and
light shaded regionsoverlaps with the cluster on the upper right.
The convex hull of this aggregateuter rectanglethen overlaps
with yet another cluster on the lower right, leading to continued
expansion.
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FIG. 5. Typical final state on a 8Zubic lattice with periodic  tion and joins onto itself so that there are no convex corners.
boundary conditions. Spins of one phase are indicated by smalfhis is the three-dimensional analog of stripes on the square
blocks. The dark shaded spins can flip freely and are part of blinkejattice.
states. Another striking feature of the final state is the presence
of stochastic blinker spins that reside in convex corners. The
typical geometry of such blinkers is shown in Figbp Here

1. Blinkers in zero magnetic field we view the percolating cluster of up spins as a building with

On the simple cubic lattice, the structure of the final Statean_mstory sectlon(markgdm), an adjacentrstory section
is surprisingly complex. A representative example is shown(Wlth n>m), and a_sectpr(m_arkedoo) thgt wraps a_ro_und
in Fig. 5. In the figure, each spin occupies a unit ciiely the torus in the vertical _dlrect!on a_nd rejoins the l_)undlng on
one phase is shownFor nearly all initial states with initial the ground floor. The wiggly lines indicate wrapping around
concentration of up spins=1/2 (much greater than the per- the torus in thex andy dlrgct|ons. Thus the arms qf this
colation thresholgh,~0.3116[7]), the final state consists of three-arm star cannot shrink under Glauber kinetics. The
only two clusters, each of which percolates in all three coorshaded portion of Fig. ) supports a blinker. This blinker
dinate directions. For example, far=20, 30, and 40, the starts at the upper left corner of the shaded region of height
probability that both phases percolate in all three directiongn, where it costs zero energy to flip the heavy shaded spin.
equals 0.83, 0.92, and 0.97, respectively. The number of digonce this spin flips, its three nearest neighbjaveo light
tinct spin clusters almost always equals 2—there are nshaded and one just above the dark shaded spin in fhy. 6
small clusters of spins. can also flip with no energy cost. Continuing this process

Generically, this cluster consists of a core three-arm stagives rise to a fluctuating interface in the shaded parallelepi-
[Fig. 6(@], augmented with several straight filaments. Theped that is bounded by the states of all spins up and all spins
three-arm star permits two clusters of oppositely orientedlown. Thus a blinking state wanders forever by transitions
spins, each devoid of convex corners, to percolate in all threbetween connected metastable configurations with the same
directions. Each arm is oriented along one coordinate direcenergy.

Because of the pervasiveness of blinker states, the prob-
ability of reaching either the ground state or a frozen meta-
stable state decreases rapidly with increasing system size

b m (Fig. 7). In fact, we find that the ground state is never

W reached in 5 10* realizations ford=3 systems with linear
i y dimensionL=60. The fact that the final state is usually a
blinker leads to a subtlety in deciding when the “final” state
e has actually been reached. Fbe 3, the energy evolves by
L small decrements separated by increasingly long plateaus.

(&) (b) These plateaus are indicative of blinkers and it isanptiori

FIG. 6. () A three-arm star consisting of four cubic blocks of obvious if a plateau extends forgver or if_it will be terminated
linear dimensiori./2 in anL X L X L system with periodic boundary PY an energy decrement. As a time-saving measure, we con-
conditions. The other phase occupies the remainder of the voluméider that the final state has been reached when a simulation
A convex corner(for free boundary conditionss shown shaded. reaches 1.4, wherer is the time of the most recent energy
(b) Stochastic blinker on the cubic lattice. The shaded region of sizélecrement. We verified on medium-size systems that chang-
xXyX(n—m) contains a fluctuating interface which can range be-ing the stopping criterion to 6had a negligible influence on
tween all spins up and all spins down. the value of the final energy. This ambiguity in the stopping

B. Three dimensions
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—2H; thus, this spin will flip wherH>2J. oL=10 oL=8 &,
15| L2 = d=4 ‘L0 6% ges |2
) ) ) ] ) aL=14 ﬁ‘f aL=12 ﬁ...'At
time also leads to a larger uncertainty in the final magnetiza- *+L=16 %gj +L=l4 S L5
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tion, which is proportional to the fraction of blinker sites. vL=20 & % £ @ 1
2. Finite magnetic field
An external magnetic field again drastically changes the 0 il

final state of the system. On the cubic lattice there are NoWye ' ' (d)
two critical field,H,=2J andH,=4J, which demarcate dif-
ferent behaviors. A weak field<OH<2J modifies the dy- FIG. 9. Final magnetization distribution versusn 2-5 dimen-

namics of spins that have three misaligned neighbors—nowions. The number of configurations=sl0® for all system sizes in
they can only flip to align with the field. These spins, whend=2, 4, and 5, and=5x10" in d=3. In d=2, the 5-function
flipped, fill in concavities and eventually complete convexpeaks am=*1 have been suppressed.

corners, as illustrated in Fig.(@. This weak-field regime _ _ _

also corresponds to=4 bootstrap percolation on the cubic distribution of the final state. Configurations that reach the
lattice [6], where again clusters of spins antiparallel to theground state given=+1 or —1, while configurations that
field correspond to occupied sites in the percolation problemf€ach the stripe state lead to a continuous component of the
Numerically we find that there is a threshold initial concen-magnetization distributiofFig. %a)]. The width of this peak
tration of up spinspy, below which finite droplets of up gradually narrows as the system size increases but converges
spins, with each spin having at least three aligned neighbord0 & nonzero limit ag. —co.

freeze. Forp>py, the infilling of concavities leads to re- ~ Ford=3, the probability of reaching the ground state is
peated mergings of clusters of up spins and the ground sta¥@nishingly small so that there is only the continuous com-
is ultimately reached. Our simulations giyg,~0.25, dis- Ponent of the magnetization distribution. Fa+ 3, the dis-
tinctly less than the site percolation threshpld~0.3116. tribution is much broader than in two dimensidifrsg. 9(b)],

The intermediate-field regimeJ2H<4J corresponds to  With evidence of singular behavior ge|—1. Based on
n=5 bootstrap percolation on the cubic lattice. Here it isMuch less data, we previously suggedfthat the magne-
possible for a spin adjacent to a straight but concave intefization distribution could be fitted by the form 3¢Im?)/4.
face to flip[Fig. 8(b)]. This filling ultimately allows a cluster This hypothesis now seems to be incorrect.
of up spins to systematically expand and fill its convex hull. We also simulated the magnetization distribution for
This then leads to a picture similar to the=3 bootstrap on  d>3 and find that it becomes systematically narrower as the
the square lattice, namely, the coalescence of convex hulls gimension increasefs=igs. dc) and 9d)]. The width of the
neighboring clusters leads to a final state where all spins af@agnetization distribution appears to approach zero as a
aligned with the field for any initial magnetization. Finally, Power law L ™", where v~0.44 in d=4 and »~0.94 in
in the strong-field regimeH{>4J), even a single up spin d=5
nucleates the growth of additional up spins and the system N two dimensions, the distribution of final energy
quickly reaches the ground state with all spins pointing up. P(E.L) is a series of 5-function peaks at energies
E=4n/L, with n a non-negative integer; these correspond to
configurations with B stripes. Herek is the energy per spin
in units of J (with E=0 the ground state energyCon-

The magnetization and energy distributions are importanversely, ford=3, the distributionP(E,L) becomes smooth
physical characteristics of the final state. While we have ndn the thermodynamic limit since the separation between ad-
theoretical understanding of these distributions, numericalljacent energies decreaseslas’.
we find that these quantities exhibit intriguing behaviors. We In d=3, the energy distribution exhibits single-parameter
hope that these results will trigger future theoretical work. scaling,P(E,L)=(E)~P(E/(E)), where(E) is the average

In two dimensions, we have found that either the grouncenergy per spir(Fig. 10. We find that(E) decays at " *,
state or a stripe state, typically with two stripes of approxi-with the exponenjy in the range 0.85-0.90. Thus the total
mately the same width, is reached. This qualitative observaenergy of the final state, which is proportional to the total
tion can be made more precise by studying the magnetizatiointerfacial area, grows ds® X~L?%2, This is consistent with

C. Final magnetization and energy distributions
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greater than or equal to 2. As discussefiih these states are
20 ° L=20 A.g! -3 | essentially identical to the ground states of the axial next-
' - LL:ig L nearest-neighbor ISingANNNI) chain with nearest-neighbor
a > C;O ferromagnetic interactiod,; and second-neighbor antiferro-
E/ @‘5 ' magnetic interactiod, whenJ,= —J;/2[13]. For a chain of
o 10 5 . L sites, the number of ground states on the linear chain
h F 8 grows asymptotically ag®, where g=(1+5)/2 is the
golden ratio. Consequently, the number of metastable
0.0 states on a square df=L? sites asymptotically scales as
0.0 0.5 1.0 L5 M,(N) ~eB2 ™ whereB,=Ing=0.4812 . . ..

EXE) Metastable states are geometrically more complex in
greater than two dimensiondig. 5. However, a simple
lower bound for the number of such states can be readily
established by considering the higher-dimensional analog of
the qualitative picture for the geometry of the final statethe stripe states. In three Qimensions, for example, this class
given in Fig. 5. of metastable states consists of an array of straight filaments
In higher dimensions, the energy distribution apparentlyof general cross-sectional shape, with the constraints that the
exhibits two scalegFig. 1)—the average energ¢E) and linear dimension of any feature must be2 and that the
the Widtth((E—(E»z)l/z, which decays faster ih than ~ Separation between any two filaments in either coordinate
(E) itself. In other words,P(E,L)=w *P[(E—(E))/w].  direction is alsc=2. The number of such filament states in
The average energy per spin appears to approach the groutittee dimensions clearly scales as &g)?”), and the gen-
state energy according to the power |&4&)~L X, with y eralization tod dimensions gives ex@E\*~ 1) as a lower

FIG. 10. Scaled distribution of final energy per spinde 3.
The number of configurations 5% 10* for all system sizes.

~0.5ind=4 andy~0.4 ind=5. bound to the number of metastable stateg ). Exact enu-
meration of all the metastable states digr 3 appears to be a
. NUMBER OF METASTABLE STATES tantalizing combinatorial problem. We believe that

InMg(N) =Nt~ e, the lower bound provides qualita-

The fact that the kinetic Ising system with Glauber kinet- . . .
tively correct asymptotic behavior.

ics is more likely to get stuck in a metastable staten3
compared tal=2 suggests that such states become system- o o )
atically more numerous asincreases. It is therefore instruc- B. Infinite spatial dimension
tive to determine the number of metastable states as a func- For infinite spatial dimension, we estimate the number of
tion of the spatial dimension. On the square lattice thesgnetastable states by considering the Cayley tree. The Cayley
metastable states are simply related to the ground state oft@e is pathological because a finite fraction of sites are on
one-dimensional Ising model with competing interactions.the surface, but it has the virtue of being tractable. We shall
For 2<d<, we give a simple lower bound for the number gy 4 ctly enumerate all the metastable states on the Cayley tree
of metastable states which sh_ows that such states becomeq show that their number scales as &), as expected
more prevalent ad increases. Finally, we compute the num- g0, the lower bound from the previous subsection. It is also
ber of metastable states on a three-coordinated Cayley tree g3, mentioning the alternative of considering either ran-
an estimate for the number of metastable states whew. dom graphg14] or “thin” graphs [15] to model infinite spa-
tial dimension. Both these types of graph are random and the
A. Finite dimensions latter additionally satisfy the constraint that every site is con-

It is easy to verify that the metastable states of the ferronected with afixed number of other sites. On the random
magnetic Ising-Glauber model on dnxL square lattice graph system, numerical S|mulat|0|js show that an Ising sys-
with periodic boundary conditions consist of purely vertical €M ©n this graph tends to freeze into a metastable state for

or horizontal stripe arrays, with the width of each stripeintérmediate values of coordination numkdd]. On thin
graphs, a computation of the number of metastable states

05 - 05 [15] yields a qualitatively similar result to that of the Cayley
o L=14 i - oL=10 3 - tree.

41 s M T I Jo d0s For the Cayley tree, there is a subtlety that depends on the
J 03| +1L=20 o - L - 03 coordination number being even or odd. While odd-
<) . % . & . . . o
T o2 £ 7 &t o2 coordinated lattice systems exhibit the pathology of meta-
g P F stable freezing for any initial magnetization, even-

0.1 -3 3 _' ‘;? . ol coordinated lattices naturally give rise to blinker states. Since

0 ot 5;--‘ - f@ - ;»» x we are interested in the number of metastable states, we con-

sider only the three-coordinated tree. The fact that the Ising
FIG. 11. Scaled distribution of final energy per spirdin4 and ~ System on this tree necessarily freezes into a glassy final state
5 as a function of E—(E))/w. The number of configurations is fits with our expectation for what occurs @hdimensional
=10 for all system sizes. hypercubic lattices ad— o [16].
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coordinated tree there are=1.7808 times more metastable
states with determined root spin than with undetermined root
spin.

To determineDy we iterateD = Dﬁ,_lAN to give

N
DN=<D1)2”’1k1]2 T 6)

This equation implies thad e 82 with
FIG. 12. A typical metastable state on a three-coordinated Cay-
ley tree. Circled spins are those whose state is determined by its ) >N 12 - .
parent one level higher while boxed spins are uniquely determined o= lim (Dy)* =(Dy) H (Aj) - (7)
by the states of the daughter spins. Clusters of negative spins are N I=2
joined by dashed lines. From Eqgs.(3) and(4), and with initial conditiondD,=0 and

. . . =2, we obtainD,;=2 andA,=1/2. Using these values
0 ’ 1 2

We consider the thrge-coordlnated tree with root at_ Ievegnd the recurrence(5) we numerically determine

N (Fig. 12. Two nodes in leveN—1 attach to the root site, 5=1.5658 --

then four nodes form levél — 2, etc. To enumerate the num- X '

. To complete the derivation &, andU, we employ Egs.
ber of metastable statd4, on anN-level tree, first note that P N N oy =9

@) and (7) to find the exact expression for the ratio

there are two types of spin in any metastable state. For a spi "
at leveln, if the two daughter spins in level— 1 agree, then 2D = 1—[ (A, )2—1 )
the state of the parent spin is uniquely determined. Con- N =1 N

versely, if the daughters disagree, then the state of the spin

level n (circled in Fig. 12 is determined by that of its parent

in level n+ 1. (The neighboring spins at level 0 must agyee.
Let Dy andUy be the number of metastable states with

the root spin determined and undetermined by their daugh- Do A~ 152" Uns A 252" 9)

ters, respectively. By enumerating all possible daughter N ’ N '

states and the outcome of the root site, we find Bigtand  These results should be compared to the total number of the

@inceAN—>A, the product on the right-hand side of E)
approachesA as N—x. Together with the fact that
Dy/Uy— A, we obtain

Uy obey the recursion relations spin statesSy=2", whereA/=2"*1—1 is the total number
1 1 of sites in the three-coordinatédtlevel tree. The entropy of

DNH:_DﬁJr —Uﬁ+2DNUN, 3) thg number of m'etastalgle states,UR(-Dy), grows asymp-

2 2 totically asC, with C= %In §~0.2242. The linea® depen-

dence fits with the previous lower bound according to which
Unii= Dﬁ, (4) the metastable state entropy increases Ads Y in d
dimensions.

subject to the initial condition®,=0 and Uy=2. For
example, the recurrencél) expresses the fact that the IV. FINITE TEMPERATURE
root spi_n is undeterm_ined only when two .daug_hter Spins  Eor a system that is quenched from infinite to low but
are uniquely dletermlned and of opposite sign. Thusyonzero temperature, equilibrium is eventually reached.
Un+1=2XDynX 3Dy, where the factor 2 accounts for the However, the approach to equilibrium proceeds in two dis-
fact that the root spin remains undetermined and the fdctor tinct stages. In the initial stage, the evolution is essentially
ensures that the root spins in the daughter trees are oppge same as that of the zero temperature case. Thus in two
sitely oriented. _ _ dimensions the system first relaxes to a metastable stripe
From the first few terms in these recursion formulas, Westate with probability~1/3. This would be the final state at
see thally andDy grow very rapidly with increasindl. To zerg temperature. At finite temperature, however, there is a
obtain their asymptotic behavior, we divide E8) by Un.1  slow escape from this metastable state whose rate we now
and use Eq(4) to find the following recursion relation for getermine by a simple geometric approdEiy. 13.

An=Dy/Uy: The disappearance of a stripe occurs by the following
steps. First, a dent is created by flipping a spin at a domain
1 2 1 wall. The time required for this event is of the orderedf',
Ania=5+ A—+2A—25R(AN)- (5 where 4 is the energy cost associated with the spin flip.
N N Once a dent is created, the spin at the dent, as well its two

vertical neighbors, are now free to flip. This gives rise to
The fixed points of this recurrence are A =—1 and diffusive motion for the two horizontal segments of the dent.
A% =(3+/17)/4. Only the fixed pointA\* =A is positive  Thus the vertical length of the dent performs a one-
and therefore physically acceptable. This fixed point is alsalimensional random walk which terminates when the hori-
attractive, so thatDy/Uy—A. Thus, on the three- zontal segments meet.
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time is too long to observe this relaxation mechanism by
direct simulations.

L[

V. SUMMARY AND DISCUSSION

Our main result is that a finite homogeneous Ising ferro-
(@) (b) © magnet with Glauber kinetics generally does not reach the
Iground state when it is quenched to zero temperature. In two
dimensions, the final state can be either the ground state or a
frozen stripe phase. It is nat priori obvious which of these
Jjossibilities can occur in the thermodynamic limit. Our
simulations indicate that for zero initial magnetization the
probability of ending in a stripe phase is close to 1/3. We also

From elementary facts about the first passage of a onealrgued thak-stripe states occur with probabilify,>0 for

. _Kk2 .

dimensional random walk in the presence of an absorbin§venk, with P,~e™*" ask—oc. A rigorous proof of these
boundary [17], the dent recombines with probability results represents a fundamental challenge. .
(L—-1)/L and the domain wall returns to its original state, Ve also tested the universality of our findings by consid-
while with probability 1L the dent expands and ultimately ring different lattices and different boundary conditions.
changes the sign of one column of spins. Thus we reed While these changes slightly affect various quantitative re-
dent creation events before the stripe width changes by ~ Sults(see Fig. 1, they do not affect our major conclusions.
The time needed for this event is of ordee®’T. Since the e also checked that starting from a specific initial condition
typical width of a stripe is of the order df, there must (for example, the antiferromagnetic initial statnd averag-
typically beL2 such stripe width hopping events before two iNg only over different realizations of the dynamics gives
interfaces meet and annihilate. Thus the time for a strip&@Ssentially identical results to those where we consider one
state to disappear is of orderL3e*'T. This time scale realization of the dynamics for each initial spin state.
greatly exceeds the formation tinfef orderL2) to form a A more fundamental test of universality is to consider
stripe during the initial zero-temperature relaxation sfage ~ SyStéms with different dynamical rules that still belong to the
so that the asymptotic behavior is controlled hy universality class of nonconserved order-parameter dynam-

Our simulations agree with this prediction even up to!S- The phase-ordering kinetics of a generic two-phase sys-
T/T.=<0.2 (Fig. 14. Here we define the relaxation time as tem with a nonconserved scalar order parameter is generi-

=0. . 14, : ) )
the time for the system to first reach the equilibrium value ofc@lly described by a time-dependent Ginzburg-Landau
the magnetization of the Ising model at temperafr@his (' DGL) equation[2]. In the absence of thermal noise this
relaxation time is dominated by configurations that firstdynamics is deterministic, while Glauber dynamics is sto-

reach a stripe state; configurations that avoid the stripe staﬁbaStiC even at zero temperature. Despite this distinction
relax to equilibrium much more quickly. oth dynamics lead to similar final states in two dimensions,

We can develop a similar argument in three dimensionsYiZ- TDGL dynamics leads to a stripe state in approximately

Since a typical metastable state has the form of two interper20% Of the realizations. Strictly speaking, the stripe state is
etrating three-arm stars, let us estimate the time for such 30t absolutely stable with respect to the TDGL dynamics: A
structure to disappear. The lowest energy excitation is to fliptraight stripe of widthW disappears on a time scale of the
of the order ofL2 spins in a planar region to complete an ©rder of %, as follows from the analysis of the one-
L XL slab of aligned spins. This excitation then relaxes reladimensional TDGL equatiofiL8]. For a macroscopic system
tively more quickly to the ground state. The time needed tgAnd whenW is of the order ofL, the relaxation time

W__ Al i #imfimiean ; _
create this planar barrier scales as edp?4T). However, this € —€ IS “infinite”in any practical sense. Thus, the appear
ance of stripes in the TDGL equation indicates that this geo-

0 metrical feature should appear ubiquitously in the low-

FIG. 13. Relaxation of a stripe state in two dimensions at smal
nonzero temperaturéa) nucleation of a denffreely flippable spins
are indicatey} (b) diffusive growth of the dent{c) dent reaches the
system size and hence the domain wall steps to the left. This over.
process ultimately leads to the disappearance of the stripe.

10 temperature relaxation of two-dimensional spin systems with
. nonconserved dynamics.
10" ¢ In spatial dimensionsl=3, the probability that the sys-
tem reaches either the ground state or a frozen state is van-
- 10° | ishingly small(again in the most relevant case of zero initial
. magnetizatioh Essentially all realizations end up wandering
10* | . forever on connected isoenergy sets of blinker states. The
. existence of blinkers means that tlle=3 kinetic Ising-
2 Glauber system belongs to the mixed type according to the
10 0O 2 4 6 8§ 10 Newman-Stein classificatiof8]. That is, a fraction of the
TJT spins flip infinitely often(those on blinkers while the rest of

the spins flip a finite number of times.
FIG. 14. Time to reach the equilibrium state on the square lat- Blinkers appear to be a general feature of discrete-state
tice. The straight line is 3e™'T. ferromagnets. For example, they arise readily in dghstate
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state is that metastable states become more numerous as the
spatial dimension increases. We argued that the number of
these metastable states scales as.éxpt) in d dimen-
sions, where\ is the total number of spins. Thus a spin
system is increasingly likely to first encounter and get
trapped in a metastable state before the ground state can be
reached as the dimension increases. Associated with the
metastable states are a variety of interesting and unexplained
features, such as the distribution of magnetization and the

FIG. 15. Generic blinker in the kinetic three-state Potts modeldistribution of energy. The determination of the number of
on the square lattice. The shaded region can flip between all spins ifetastable states fat=3 also appears to be a deep enu-
the A andC states. The remaining spins are stable since they have aneration problem.

most one misaligned neighbor. A typical position of th€ inter-
face in the shaded region is showthick line).

Potts model with Glauber kinetics, even in two dimensions
Here zero-temperature Glauber kinetics means that a sp
flips to agree with the majority of its neighbors. In cases of
“tie,” that is, if half the neighbors of a given spin are in one
state and the other half are in another state, then the spin fliﬁ
to one of these states equiprobably. For the three-state Po
model on the square lattice with equal initial concentration
of all three states, blinker states of the form illustrated in Fig.
15 typically arise. The shaded region can blink between al

a

At low temperature, the Ising-Glauber ferromagnet neces-
sarily reaches equilibrium, but via a two-stage relaxation
process. Initially, the kinetics is nearly identical to that of the
zero-temperature case. For those systems that reach a meta-
'-ﬁjr'able stripe state in two dimensions, there is then a slow
approach to equilibrium by the nucleation of defects which
cause the stripe boundaries to diffuse, ultimately merge, and
us disappear. Because this kinetics is an activated process,
e equilibration time is extremely long and scales 3s"".
urprisingly, this two-stage picture persists for temperatures
up to 0., in two dimensions. A similar picture arises in

igher dimensions, but with astronomically long time scales

spins in theA or theC states. While it was previously argued associated with surmounting metastable barriers and reach-

that domains become pinned for quenched o0 whenq

=3 [10], our simulations of the three-state Potts model indi-

ing equilibrium.
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