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Freezing in Ising ferromagnets

V. Spirin, P. L. Krapivsky, and S. Redner
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~Received 3 May 2001; revised manuscript received 6 September 2001; published 18 December 2001!

We investigate the final state of zero-temperature Ising ferromagnets that are endowed with single-spin-flip
Glauber dynamics. Surprisingly, the ground state is generallynot reached for zero initial magnetization. In two
dimensions, the system reaches either a frozen stripe state with probability'1/3 or the ground state with
probability'2/3. In greater than two dimensions, the probability of reaching the ground state or a frozen state
rapidly vanishes as the system size increases; instead the system wanders forever in an isoenergy set of
metastable states. An external magnetic field changes the situation drastically—in two dimensions the favor-
able ground state is always reached, while in three dimensions the field must exceed a threshold value to reach
the ground state. For small but nonzero temperature, relaxation to the final state proceeds first by formation of
very long-lived metastable states, as in the zero-temperature case, before equilibrium is reached.

DOI: 10.1103/PhysRevE.65.016119 PACS number~s!: 64.60.My, 05.50.1q, 75.40.Gb
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I. INTRODUCTION

A. Background

Despite extensive study@1,2#, basic questions about th
kinetic Ising model with Glauber dynamics remain una
swered@3#. In this paper, we investigate the following: Wh
is the final state of a finite Ising-Glauber spin system whe
is quenched from infinite temperature to zero tempera
@4#? An infinite system organizes into a coarsening dom
mosaic of up and down spins, with the characteristic len
scale growing ast1/2 @2#. For a finite system, this coarsenin
stops when the typical domain size reaches the system siL.
Intriguingly, such a system typically gets stuck in an in
nitely long-lived metastable state. In two dimensions, t
probability of getting stuck is approximately 1/3 asL→`,
while for d>3 the ground state is essentially never reach

To provide context about the ultimate fate of the Isin
Glauber system, consider the limiting cases ofd51 and
d5`. For a linear chain of lengthL with pL up spins and
(12p)L down spins, the final state of the system follow
from two simple facts. First, the average magnetization
conserved under Glauber dynamics@1,5# and, second, the
only possible final states are all spins up or all spins do
there are no metastable states in one dimension. For the
magnetization to equal the initial magnetization, a fractiop
of all realizations must therefore end with all spins up~and
fraction 12p must end with all spins down!. Thus the prob-
ability P(p) to ultimately have all spins up is simpl
P(p)5p. A very different result holds in the mean-fiel
limit. For this limit, consider the complete graph, in whic
each spin interacts equally with every other spin. For a
nonzero magnetization, it is energetically favorable for a
minority spin to flip so that the majority phase quickly fil
the system forpÞ1/2. ThereforeP(p) is simply the step
function P(p)5u(p21/2).

In two and higher dimensions, the probability that o
phase eventually ‘‘wins’’ also converges to a step function
p21/2, but with strange anomalies whenp51/2. A two-
dimensional system has a nonzero probability of gett
stuck in a metastable state that consists of two or m
straight stripes. In greater than two dimensions, the proba
ity that the ground state is reached vanishes quickly w
1063-651X/2001/65~1!/016119~9!/$20.00 65 0161
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increasing system size@4#. The final state is also not static
but consists of stochastic ‘‘blinkers.’’ These are localiz
spins that can flip without any energy cost. The system w
dersad infinitumon a connected set of equal-energy sta
defined by these blinkers. In the categorization proposed
Newman and Stein@3#, whend>3 the Ising system is of the
‘‘mixed’’ type, because a fraction of the spins flips a fini
number of times, while the complementary fraction flips i
finitely often.

Imposition of an external magnetic field gives rise
bootstrap percolation phenomena for the evolution of
spins @6,7#. On the square lattice, an infinitesimal field
sufficient to drive the system to the energetically favora
ground state. This corresponds ton53 bootstrap percolation
on this lattice@6,7#. On the cubic lattice, the energetical
favorable ground state is reached only if the field exceed
threshold value. For weaker fields, a transition betwe
phase coexistence and field alignment occurs as a functio
the initial concentration of field-aligned spins. This transiti
again can be described in terms ofn54 bootstrap percola-
tion on the cubic lattice.

At low positive temperatures the aforementioned me
stable states continue to play a significant role in the rel
ation toward equilibrium. For example, ind52 and for tem-
peratures up to approximately 0.2Tc , there is a large time
range for which the relaxation is close to that of the ze
temperature system. If a metastable stripe configuration h
pens to form, a time of the order ofL3e4J/T must elapse,
whereJ is the interaction strength between spins, before
system can escape this metastable state and reach eq
rium. Similarly, metastable states will influence the lon
time relaxation even more strongly in higher dimensions.

B. The model

We study the homogeneous ferromagnetic Ising mo
with HamiltonianH52J(^ i j &s is j , wheres i561, and the
sum is over all nearest-neighbor pairs of sites^ i j &. Spins are
initially uncorrelated, corresponding to initial temperatu
Ti5`. This limit implies that the fractions of up and dow
spins are equal. Because we are interested in fluctuation
fects associated with zero initial magnetizationm0, we pre-
pare our systems with fixed magnetization rather than fi
©2001 The American Physical Society19-1
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V. SPIRIN, P. L. KRAPIVSKY, AND S. REDNER PHYSICAL REVIEW E65 016119
probability for each spin orientation. Thus every initial co
figuration hasLd/2 up spins andLd/2 down spins form0

50, and pLd up spins and (12p)Ld down spins form0

52p21Þ0.
The spins evolve by zero-temperature Glauber dynam

@1#, i.e., the system is quenched from an initial temperat
Ti5` to T50. For each initial configuration, one realizatio
of the dynamics was performed until the final state w
reached. We considerd-dimensional hypercubic lattices wit
linear sizeL and periodic boundary conditions. Most of o
results continue to hold for free boundary conditions and
other even-coordinated lattices.~On odd-coordinated lattice
stable convex islands of minority spins readily form and
system always freezes into a disordered state@3,4#.!

Glauber dynamics at zero temperature is implemented
picking flippable spins at random and computing the ene
changeDE if this spin were to flip. Flippable spins are thos
with DE<0. For DE,0 or DE50, respectively, the spin
flip is accepted with probability 1 or 1/2. After each su
event, the time is incremented by 1/~number of flippable
spins!. Thus in one time unit each spin attempts one flip
average.

The rest of this paper is organized as follows. In Sec
we discuss various geometric properties of the final stat
two and three dimensions, including the influence of an
ternal magnetic field on the final state, as well as the dis
butions of final state magnetization and energy. The num
of metastable states as a function of the spatial dimensio
estimated in Sec. III to illustrate the increasing influence
metastable states as the dimension increases. In Sec. IV
discuss the finite-temperature evolution in two dimensio
and argue that the zero-temperature metastable states
tinue to play a significant role even when the system
quenched to a temperatureT'0.2Tc . Section V gives a sum
mary and discusses some open questions.

II. FINAL STATE GEOMETRY

We first studyP(p), the probability that an Ising system
with pLd up spins initially, which is quenched toT50, ul-
timately has all spins up. One could imagine three poss
outcomes:~1!P(p) is a monotonically increasing function o
p. ~2! P(p)50 for 0<p<pc ;P(p) increases monotonically
for pc,p,12pc ;P(p)51 for pc<p<1. ~3! P(p) is the
step functionP(p)5u(p21/2).

In one dimension the first case applies. We argue tha
higher dimensions the third case is realized. If so, then a
tional considerations are needed to determineP(1/2). The
behavior atp51/2 is particularly interesting because th
concentrations of up and down spins are equal for any in
temperature that exceeds the critical temperatu
Tc,Ti<`, as long as the magnetic field is zero. Naive
one might expect that the system always reaches one o
ground states in the thermodynamic limit. Up-down symm
try then impliesP(1/2)51/2. Surprisingly, this hypothesis i
incorrect for all spatial dimensionsd>2. A two-dimensional
system does not always reach the ground state, while fod
>3 the system never reaches the ground state asL→`.

The crucial difference between one and higher dimensi
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is that there are numerous metastable states ford.1 and no
such states ford51. Metastable states are easily visualiz
in two dimensions, where any straight stripe of width>2
that traverses the entire system is stable at zero temper
@4,8#. Metastable states are geometrically more complex
three and higher dimensions, as will be discussed
Sec. II B.

A. Two dimensions

1. Stripe state in zero magnetic field

Our simulations indicate that a system with zero init
magnetization reaches a stripe state with nonzero probab
as L→` ~Fig. 1!. Linear extrapolation of the last four dat
points for the probability of reaching the stripe state,Pstr(L),
versusL gives Pstr(`)'0.315 and 0.344 on the square a
triangular lattices, respectively. While an arbitrary even nu
ber of stripes is possible, we typically obtain two stripes
similar widths for a square system. Metastable states w
more than two stripes rarely appear. For example, the p
ability of reaching the four-stripe state grows slowly withL
but is less than 0.07% forL5200.

We can understand qualitatively the dependence of
probability of obtainingk vertical stripes in the final state
Pv(k,A), by analyzing anAL3L rectangular system an
then taking theL→` limit. For example, for aspect ratio
A59 andL532, the final probabilitiesPv(k,A) in 104 real-
izations are 0.0028, 0.101, 0.351, 0.359, and 0.152,
k50, 2, 4, 6, and 8. There is also a probability 0.034 fo
horizontal stripe. In general, the probabilityPv(k,A) is
peaked aroundkmax}A. Invoking the assumption of analytic
ity in A then implies that the probabilitiesPv(k,A) of
k-stripe states are positive for all evenk and arbitrary aspec
ratio A.

Our data also qualitatively suggest thatPv(k,A) decays
faster than exponentially ink. This is analogous to the be
havior of the number of spanning clusters on large but fix
aspect ratio rectangles at the percolation threshold. In
problem, it has been recently shown that the number of sp

FIG. 1. Probability that anL3L system (h square lattice,D
triangular lattice! eventually reaches a stripe state,Pstr(L), as a
function of 1/log2L for L up to 512. Each data point, with error ba
smaller than the size of the symbol, is based on>105 initial spin
configurations.
9-2
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FREEZING IN ISING FERROMAGNETS PHYSICAL REVIEW E65 016119
ning clusters is greater than 1@11,12#. We now employ an
argument similar to that of Ref.@12# to estimate the large-k
behavior ofP(k,A).

Consider the probabilityPh(k,A) of reaching a state with
k horizontal stripes. Now divide the rectangle into two thi
ner rectangles each of sizeAL3L/2. In the large-k limit, the
dominant contribution toPh(k,A) comes from situations
where approximatelyk/2 stripes traverse each of the rec
angles. This argument impliesPh(k,A);@Ph(k/2,2A)#2,
which may be iterated to give

Ph~k,A!;@Ph~2,Ak/2!#k/2. ~1!

The quantityPh(2,Ak/2) is the probability to have a hori
zontal stripe in a rectangle of dimensionAL32L/k. If we
take L;k as the original rectangle width, then the sub
vided rectangleAL32L/k has a width of order 1. For such
narrow rectangle, a stripe can occur only if it existed initial
This clearly occurs with probability 222L522Ak. Thus, sub-
stituting Ph(2,Ak/2);e2Ak into Eq. ~1!, we deduce that

Ph~k,A!;e2const3Ak2
. ~2!

That is,Ph(k,A) has a Gaussian tail and states with a la
number of stripes are extremely rare.

For a small initial magnetization, an Ising system is dom
nated by the majority phase. To quantify this we study~i! the
probabilityM(p,L) that the minority phase wins, that is, th
sign of the magnetization in the final~ground! state is oppo-
site to that in the initial state, and~ii ! the probabilityS(p,L)
that the system reaches a stripe state. Both quantities ex
scaling whenL→` and initial magnetizationm0→0, with
the combinationz[Lu2p21un held constant.

The best data collapse is achieved withn'1.5 and
n'1.35, respectively, forM andS. Further,M(z) appears
to decay exponentially inz while S(z) decays more quickly
~Fig. 2!. The exponential behavior forM can be inferred by
considering the limiting case ofp→0. Here a minority span-
ning cluster exists with probability}pL from which M(z)
also decays exponentially withz. Therefore in two dimen-
sions the initial majority phase always ‘‘wins’’ asL→` and

FIG. 2. Probability that the minority phase wins,M(z) ~lower!,
or that a stripe state is reached,S(z) ~upper! as a function of
Lup21/2un, with n51.5 andn51.35, respectively. Data are base
on systems withL<200 and>53104 initial configurations.
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P(p)5u(p21/2), just as in the mean-field limit. Thus w
expect thatP(p) is a step function for all spatial dimension
d>2.

2. Finite magnetic field

An external magnetic fieldH strongly affects the fate o
the system. On the square lattice and forH.2J ~strong
field!, down spins that have three aligned neighbors can n
flip parallel to the field and the system necessarily ends u
the field-aligned ground state. Conversely, for 0,H,2J
~weak field!, only the dynamics of spins that have two mi
aligned neighbors is modified. In zero field such spins fl
with rate 1/2, while in a weak field they flip parallel to th
field with rate 1. This means that kinks on interfaces move
only one direction rather than diffusing~Fig. 3!.

The most interesting case is that of weak field and sm
initial concentration of up spins. The system consists
small clusters of up spins in a background of down spi
Due to the unidirectional motion of kinks on interfaces, clu
ters of up spins can grow until each fills out its convex h
~Fig. 4!. If the convex hull of one cluster overlaps with eith
another up cluster or its convex hull, then the resulting
gregate can expand further to fill out this enlarged conv
hull. If there is yet another cluster~or convex hull! within
this expansion zone, growth continues.

This growth is closely related to bootstrap percolation@6#,
in which a lattice is occupied at initial densityr0, and then
all sites that do not have at leastn occupied neighbors are
removed. This deletion is repeated until no more sites can
removed. The casen53 is closely related to our weak-fiel
system, with spins antiparallel to the field playing the role
occupied sites in bootstrap percolation. Inn53 bootstrap
percolation, all occupied sites will eventually be removed
L→`, even ifr0 is arbitrarily close to 1. Translating this t
the Ising system, we conclude that for any nonzero conc
tration of up spins the system will evolve to the spin-
ground state.

FIG. 3. In a weak positive field an interface kink can move on
to the right, while in zero field this kink diffuses.

FIG. 4. Expansion of a cluster of up spins~dark shaded! in a
weak magnetic fieldH,2J. The convex hull~union of dark and
light shaded regions! overlaps with the cluster on the upper righ
The convex hull of this aggregate~outer rectangle! then overlaps
with yet another cluster on the lower right, leading to continu
expansion.
9-3
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V. SPIRIN, P. L. KRAPIVSKY, AND S. REDNER PHYSICAL REVIEW E65 016119
B. Three dimensions

1. Blinkers in zero magnetic field

On the simple cubic lattice, the structure of the final st
is surprisingly complex. A representative example is sho
in Fig. 5. In the figure, each spin occupies a unit cube~only
one phase is shown!. For nearly all initial states with initial
concentration of up spinsp51/2 ~much greater than the pe
colation thresholdpc'0.3116@7#!, the final state consists o
only two clusters, each of which percolates in all three co
dinate directions. For example, forL520, 30, and 40, the
probability that both phases percolate in all three directi
equals 0.83, 0.92, and 0.97, respectively. The number of
tinct spin clusters almost always equals 2—there are
small clusters of spins.

Generically, this cluster consists of a core three-arm
@Fig. 6~a!#, augmented with several straight filaments. T
three-arm star permits two clusters of oppositely orien
spins, each devoid of convex corners, to percolate in all th
directions. Each arm is oriented along one coordinate di

FIG. 5. Typical final state on a 323 cubic lattice with periodic
boundary conditions. Spins of one phase are indicated by s
blocks. The dark shaded spins can flip freely and are part of blin
states.

FIG. 6. ~a! A three-arm star consisting of four cubic blocks
linear dimensionL/2 in anL3L3L system with periodic boundary
conditions. The other phase occupies the remainder of the volu
A convex corner~for free boundary conditions! is shown shaded
~b! Stochastic blinker on the cubic lattice. The shaded region of
x3y3(n2m) contains a fluctuating interface which can range b
tween all spins up and all spins down.
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tion and joins onto itself so that there are no convex corn
This is the three-dimensional analog of stripes on the squ
lattice.

Another striking feature of the final state is the presen
of stochastic blinker spins that reside in convex corners. T
typical geometry of such blinkers is shown in Fig. 6~b!. Here
we view the percolating cluster of up spins as a building w
an m-story section~markedm), an adjacentn-story section
~with n.m), and a section~marked`) that wraps around
the torus in the vertical direction and rejoins the building
the ground floor. The wiggly lines indicate wrapping arou
the torus in thex and y directions. Thus the arms of thi
three-arm star cannot shrink under Glauber kinetics. T
shaded portion of Fig. 6~b! supports a blinker. This blinke
starts at the upper left corner of the shaded region of he
m, where it costs zero energy to flip the heavy shaded s
Once this spin flips, its three nearest neighbors@two light
shaded and one just above the dark shaded spin in Fig. 6~b!#
can also flip with no energy cost. Continuing this proce
gives rise to a fluctuating interface in the shaded parallele
ped that is bounded by the states of all spins up and all s
down. Thus a blinking state wanders forever by transitio
between connected metastable configurations with the s
energy.

Because of the pervasiveness of blinker states, the p
ability of reaching either the ground state or a frozen me
stable state decreases rapidly with increasing system
~Fig. 7!. In fact, we find that the ground state is nev
reached in 53104 realizations ford53 systems with linear
dimensionL>60. The fact that the final state is usually
blinker leads to a subtlety in deciding when the ‘‘final’’ sta
has actually been reached. Ford>3, the energy evolves by
small decrements separated by increasingly long plate
These plateaus are indicative of blinkers and it is nota priori
obvious if a plateau extends forever or if it will be terminat
by an energy decrement. As a time-saving measure, we
sider that the final state has been reached when a simula
reaches 1.1t, wheret is the time of the most recent energ
decrement. We verified on medium-size systems that cha
ing the stopping criterion to 5t had a negligible influence on
the value of the final energy. This ambiguity in the stoppi

all
er

e.

e
-

FIG. 7. Probability that the system reaches the ground s
~dots!, a frozen metastable state~circles!, or a blinker state~tri-
angles! as a function of the linear dimension. The number of re
izations is>104 for each system size. The lines are a guide for
eye.
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FREEZING IN ISING FERROMAGNETS PHYSICAL REVIEW E65 016119
time also leads to a larger uncertainty in the final magnet
tion, which is proportional to the fraction of blinker sites.

2. Finite magnetic field

An external magnetic field again drastically changes
final state of the system. On the cubic lattice there are n
two critical field,H152J andH254J, which demarcate dif-
ferent behaviors. A weak field 0,H,2J modifies the dy-
namics of spins that have three misaligned neighbors—n
they can only flip to align with the field. These spins, wh
flipped, fill in concavities and eventually complete conv
corners, as illustrated in Fig. 8~a!. This weak-field regime
also corresponds ton54 bootstrap percolation on the cub
lattice @6#, where again clusters of spins antiparallel to t
field correspond to occupied sites in the percolation probl
Numerically we find that there is a threshold initial conce
tration of up spins,pH , below which finite droplets of up
spins, with each spin having at least three aligned neighb
freeze. Forp.pH , the infilling of concavities leads to re
peated mergings of clusters of up spins and the ground s
is ultimately reached. Our simulations givepH'0.25, dis-
tinctly less than the site percolation thresholdpc'0.3116.

The intermediate-field regime 2J,H,4J corresponds to
n55 bootstrap percolation on the cubic lattice. Here it
possible for a spin adjacent to a straight but concave in
face to flip@Fig. 8~b!#. This filling ultimately allows a cluster
of up spins to systematically expand and fill its convex hu
This then leads to a picture similar to then53 bootstrap on
the square lattice, namely, the coalescence of convex hul
neighboring clusters leads to a final state where all spins
aligned with the field for any initial magnetization. Finall
in the strong-field regime (H.4J), even a single up spin
nucleates the growth of additional up spins and the sys
quickly reaches the ground state with all spins pointing u

C. Final magnetization and energy distributions

The magnetization and energy distributions are import
physical characteristics of the final state. While we have
theoretical understanding of these distributions, numeric
we find that these quantities exhibit intriguing behaviors.
hope that these results will trigger future theoretical work

In two dimensions, we have found that either the grou
state or a stripe state, typically with two stripes of appro
mately the same width, is reached. This qualitative obse
tion can be made more precise by studying the magnetiza

FIG. 8. ~a! Cluster of up spins with a concave trough. Th
trough is sequentially filled in, for 0,H,2J, by flipping spins that
each have three misaligned neighbors. The dashed cube indi
the spin that is about to flip.~b! Cluster of up spins with a concav
interface. The energy cost of flipping the indicated spin isJ
22H; thus, this spin will flip whenH.2J.
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distribution of the final state. Configurations that reach
ground state givem511 or 21, while configurations that
reach the stripe state lead to a continuous component o
magnetization distribution@Fig. 9~a!#. The width of this peak
gradually narrows as the system size increases but conve
to a nonzero limit asL→`.

For d>3, the probability of reaching the ground state
vanishingly small so that there is only the continuous co
ponent of the magnetization distribution. Ford53, the dis-
tribution is much broader than in two dimensions@Fig. 9~b!#,
with evidence of singular behavior asumu→1. Based on
much less data, we previously suggested@4# that the magne-
tization distribution could be fitted by the form 3(12m2)/4.
This hypothesis now seems to be incorrect.

We also simulated the magnetization distribution f
d.3 and find that it becomes systematically narrower as
dimension increases@Figs. 9~c! and 9~d!#. The width of the
magnetization distribution appears to approach zero a
power law L2n, where n'0.44 in d54 and n'0.94 in
d55.

In two dimensions, the distribution of final energ
P(E,L) is a series of d-function peaks at energie
E54n/L, with n a non-negative integer; these correspond
configurations with 2n stripes. HereE is the energy per spin
in units of J ~with E50 the ground state energy!. Con-
versely, ford>3, the distributionP(E,L) becomes smooth
in the thermodynamic limit since the separation between
jacent energies decreases asL2d.

In d53, the energy distribution exhibits single-parame
scaling,P(E,L)5^E&21P(E/^E&), where^E& is the average
energy per spin~Fig. 10!. We find that^E& decays asL2x,
with the exponentx in the range 0.85–0.90. Thus the tot
energy of the final state, which is proportional to the to
interfacial area, grows asL32x'L2.1. This is consistent with

tes

FIG. 9. Final magnetization distribution versusm in 2–5 dimen-
sions. The number of configurations is>105 for all system sizes in
d52, 4, and 5, and>53104 in d53. In d52, the d-function
peaks atm561 have been suppressed.
9-5
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V. SPIRIN, P. L. KRAPIVSKY, AND S. REDNER PHYSICAL REVIEW E65 016119
the qualitative picture for the geometry of the final sta
given in Fig. 5.

In higher dimensions, the energy distribution apparen
exhibits two scales~Fig. 11!—the average energŷE& and
the widthw[Š(E2^E&)2

‹

1/2, which decays faster inL than
^E& itself. In other words,P(E,L)5w21P@(E2^E&)/w#.
The average energy per spin appears to approach the gr
state energy according to the power law^E&;L2x, with x
'0.5 in d54 andx'0.4 in d55.

III. NUMBER OF METASTABLE STATES

The fact that the kinetic Ising system with Glauber kin
ics is more likely to get stuck in a metastable state ind53
compared tod52 suggests that such states become syst
atically more numerous asd increases. It is therefore instruc
tive to determine the number of metastable states as a f
tion of the spatial dimension. On the square lattice th
metastable states are simply related to the ground state
one-dimensional Ising model with competing interactio
For 2,d,`, we give a simple lower bound for the numb
of metastable states which shows that such states bec
more prevalent asd increases. Finally, we compute the num
ber of metastable states on a three-coordinated Cayley tre
an estimate for the number of metastable states whend5`.

A. Finite dimensions

It is easy to verify that the metastable states of the fe
magnetic Ising-Glauber model on anL3L square lattice
with periodic boundary conditions consist of purely vertic
or horizontal stripe arrays, with the width of each stri

FIG. 10. Scaled distribution of final energy per spin ind53.
The number of configurations is>53104 for all system sizes.

FIG. 11. Scaled distribution of final energy per spin ind54 and
5 as a function of (E2^E&)/w. The number of configurations i
>105 for all system sizes.
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greater than or equal to 2. As discussed in@4#, these states are
essentially identical to the ground states of the axial ne
nearest-neighbor Ising~ANNNI ! chain with nearest-neighbo
ferromagnetic interactionJ1 and second-neighbor antiferro
magnetic interactionJ2 whenJ252J1/2 @13#. For a chain of
L sites, the number of ground states on the linear ch
grows asymptotically asgL, where g5(11A5)/2 is the
golden ratio. Consequently, the number of metasta
states on a square ofN5L2 sites asymptotically scales a
M2(N);eB2AN, whereB25 ln g50.481 21 . . . .

Metastable states are geometrically more complex
greater than two dimensions~Fig. 5!. However, a simple
lower bound for the number of such states can be rea
established by considering the higher-dimensional analo
the stripe states. In three dimensions, for example, this c
of metastable states consists of an array of straight filam
of general cross-sectional shape, with the constraints tha
linear dimension of any feature must be>2 and that the
separation between any two filaments in either coordin
direction is also>2. The number of such filament states
three dimensions clearly scales as exp(C3N2/3), and the gen-
eralization tod dimensions gives exp(CdN121/d) as a lower
bound to the number of metastable statesMd(N). Exact enu-
meration of all the metastable states ford>3 appears to be a
tantalizing combinatorial problem. We believe th
ln Md(N)}N121/d, i.e., the lower bound provides qualita
tively correct asymptotic behavior.

B. Infinite spatial dimension

For infinite spatial dimension, we estimate the number
metastable states by considering the Cayley tree. The Ca
tree is pathological because a finite fraction of sites are
the surface, but it has the virtue of being tractable. We s
exactly enumerate all the metastable states on the Cayley
and show that their number scales as exp(C`N), as expected
from the lower bound from the previous subsection. It is a
worth mentioning the alternative of considering either ra
dom graphs@14# or ‘‘thin’’ graphs @15# to model infinite spa-
tial dimension. Both these types of graph are random and
latter additionally satisfy the constraint that every site is co
nected with afixed number of other sites. On the rando
graph system, numerical simulations show that an Ising s
tem on this graph tends to freeze into a metastable state
intermediate values of coordination number@14#. On thin
graphs, a computation of the number of metastable st
@15# yields a qualitatively similar result to that of the Cayle
tree.

For the Cayley tree, there is a subtlety that depends on
coordination number being even or odd. While od
coordinated lattice systems exhibit the pathology of me
stable freezing for any initial magnetization, eve
coordinated lattices naturally give rise to blinker states. Si
we are interested in the number of metastable states, we
sider only the three-coordinated tree. The fact that the Is
system on this tree necessarily freezes into a glassy final
fits with our expectation for what occurs ond-dimensional
hypercubic lattices asd→` @16#.
9-6
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FREEZING IN ISING FERROMAGNETS PHYSICAL REVIEW E65 016119
We consider the three-coordinated tree with root at le
N ~Fig. 12!. Two nodes in levelN21 attach to the root site
then four nodes form levelN22, etc. To enumerate the num
ber of metastable statesMN on anN-level tree, first note tha
there are two types of spin in any metastable state. For a
at leveln, if the two daughter spins in leveln21 agree, then
the state of the parent spin is uniquely determined. C
versely, if the daughters disagree, then the state of the sp
level n ~circled in Fig. 12! is determined by that of its paren
in level n11. ~The neighboring spins at level 0 must agre!

Let DN and UN be the number of metastable states w
the root spin determined and undetermined by their dau
ters, respectively. By enumerating all possible daugh
states and the outcome of the root site, we find thatDN and
UN obey the recursion relations

DN115
1

2
DN

2 1
1

2
UN

2 12DNUN , ~3!

UN115DN
2 , ~4!

subject to the initial conditionsD050 and U052. For
example, the recurrence~4! expresses the fact that th
root spin is undetermined only when two daughter sp
are uniquely determined and of opposite sign. Th
UN11523DN3 1

2 DN , where the factor 2 accounts for th
fact that the root spin remains undetermined and the fact1

2

ensures that the root spins in the daughter trees are o
sitely oriented.

From the first few terms in these recursion formulas,
see thatUN andDN grow very rapidly with increasingN. To
obtain their asymptotic behavior, we divide Eq.~3! by UN11
and use Eq.~4! to find the following recursion relation fo
LN5DN /UN :

LN115
1

2
1

2

LN
1

1

2LN
2

[R~LN!. ~5!

The fixed points of this recurrence are atL1* 521 and
L6* 5(36A17)/4. Only the fixed pointL1* [L is positive
and therefore physically acceptable. This fixed point is a
attractive, so that DN /UN→L. Thus, on the three

FIG. 12. A typical metastable state on a three-coordinated C
ley tree. Circled spins are those whose state is determined b
parent one level higher while boxed spins are uniquely determ
by the states of the daughter spins. Clusters of negative spins
joined by dashed lines.
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coordinated tree there areL>1.7808 times more metastab
states with determined root spin than with undetermined r
spin.

To determineDN we iterateDN5DN21
2 LN to give

DN5~D1!2N21

)
k52

N

~Lk!
2N2k

. ~6!

This equation implies thatDN}d2N
with

d5 lim
N→`

~DN!22N
5~D1!1/2)

j 52

`

~L j !
22 j

. ~7!

From Eqs.~3! and~4!, and with initial conditionsD050 and
U052, we obtainD152 andL251/2. Using these values
and the recurrence ~5! we numerically determine
d51.5658̄ .

To complete the derivation ofDN andUN we employ Eqs.
~6! and ~7! to find the exact expression for the ratio

d2N
/DN5)

j 51

`

~L j 1N!22 j
. ~8!

SinceLN→L, the product on the right-hand side of Eq.~8!
approachesL as N→`. Together with the fact tha
DN /UN→L, we obtain

DN→L21d2N
, UN→L22d2N

. ~9!

These results should be compared to the total number of
spin statesSN52N, whereN52N1121 is the total number
of sites in the three-coordinatedN-level tree. The entropy of
the number of metastable states, ln(UN1DN), grows asymp-
totically asCN, with C5 1

2 ln d'0.2242. The linearN depen-
dence fits with the previous lower bound according to wh
the metastable state entropy increases asN121/d in d
dimensions.

IV. FINITE TEMPERATURE

For a system that is quenched from infinite to low b
nonzero temperature, equilibrium is eventually reach
However, the approach to equilibrium proceeds in two d
tinct stages. In the initial stage, the evolution is essentia
the same as that of the zero temperature case. Thus in
dimensions the system first relaxes to a metastable s
state with probability'1/3. This would be the final state a
zero temperature. At finite temperature, however, there
slow escape from this metastable state whose rate we
determine by a simple geometric approach~Fig. 13!.

The disappearance of a stripe occurs by the follow
steps. First, a dent is created by flipping a spin at a dom
wall. The time required for this event is of the order ofe4J/T,
where 4J is the energy cost associated with the spin fl
Once a dent is created, the spin at the dent, as well its
vertical neighbors, are now free to flip. This gives rise
diffusive motion for the two horizontal segments of the de
Thus the vertical length of the dent performs a on
dimensional random walk which terminates when the ho
zontal segments meet.
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V. SPIRIN, P. L. KRAPIVSKY, AND S. REDNER PHYSICAL REVIEW E65 016119
From elementary facts about the first passage of a o
dimensional random walk in the presence of an absorb
boundary @17#, the dent recombines with probabilit
(L21)/L and the domain wall returns to its original stat
while with probability 1/L the dent expands and ultimate
changes the sign of one column of spins. Thus we neeL
dent creation events before the stripe width changes by61.
The time needed for this event is of orderL e4J/T. Since the
typical width of a stripe is of the order ofL, there must
typically beL2 such stripe width hopping events before tw
interfaces meet and annihilate. Thus the time for a str
state to disappear is of ordert;L3 e4J/T. This time scale
greatly exceeds the formation time~of order L2) to form a
stripe during the initial zero-temperature relaxation stage@4#,
so that the asymptotic behavior is controlled byt.

Our simulations agree with this prediction even up
T/Tc&0.2 ~Fig. 14!. Here we define the relaxation time a
the time for the system to first reach the equilibrium value
the magnetization of the Ising model at temperatureT. This
relaxation time is dominated by configurations that fi
reach a stripe state; configurations that avoid the stripe s
relax to equilibrium much more quickly.

We can develop a similar argument in three dimensio
Since a typical metastable state has the form of two interp
etrating three-arm stars, let us estimate the time for suc
structure to disappear. The lowest energy excitation is to
of the order ofL2 spins in a planar region to complete a
L3L slab of aligned spins. This excitation then relaxes re
tively more quickly to the ground state. The time needed
create this planar barrier scales as exp(4JL2/T). However, this

FIG. 13. Relaxation of a stripe state in two dimensions at sm
nonzero temperature:~a! nucleation of a dent~freely flippable spins
are indicated!; ~b! diffusive growth of the dent;~c! dent reaches the
system size and hence the domain wall steps to the left. This ov
process ultimately leads to the disappearance of the stripe.

FIG. 14. Time to reach the equilibrium state on the square
tice. The straight line isL3e4J/T.
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time is too long to observe this relaxation mechanism
direct simulations.

V. SUMMARY AND DISCUSSION

Our main result is that a finite homogeneous Ising fer
magnet with Glauber kinetics generally does not reach
ground state when it is quenched to zero temperature. In
dimensions, the final state can be either the ground state
frozen stripe phase. It is nota priori obvious which of these
possibilities can occur in the thermodynamic limit. O
simulations indicate that for zero initial magnetization t
probability of ending in a stripe phase is close to 1/3. We a
argued thatk-stripe states occur with probabilityPk.0 for
evenk, with Pk;e2k2

as k→`. A rigorous proof of these
results represents a fundamental challenge.

We also tested the universality of our findings by cons
ering different lattices and different boundary condition
While these changes slightly affect various quantitative
sults ~see Fig. 1!, they do not affect our major conclusion
We also checked that starting from a specific initial conditi
~for example, the antiferromagnetic initial state! and averag-
ing only over different realizations of the dynamics giv
essentially identical results to those where we consider
realization of the dynamics for each initial spin state.

A more fundamental test of universality is to consid
systems with different dynamical rules that still belong to t
universality class of nonconserved order-parameter dyn
ics. The phase-ordering kinetics of a generic two-phase
tem with a nonconserved scalar order parameter is gen
cally described by a time-dependent Ginzburg-Land
~TDGL! equation@2#. In the absence of thermal noise th
dynamics is deterministic, while Glauber dynamics is s
chastic even at zero temperature. Despite this distinc
both dynamics lead to similar final states in two dimensio
viz., TDGL dynamics leads to a stripe state in approximat
30% of the realizations. Strictly speaking, the stripe state
not absolutely stable with respect to the TDGL dynamics
straight stripe of widthW disappears on a time scale of th
order of eW, as follows from the analysis of the one
dimensional TDGL equation@18#. For a macroscopic system
and when W is of the order of L, the relaxation time
eW;eL is ‘‘infinite’’ in any practical sense. Thus, the appea
ance of stripes in the TDGL equation indicates that this g
metrical feature should appear ubiquitously in the lo
temperature relaxation of two-dimensional spin systems w
nonconserved dynamics.

In spatial dimensionsd>3, the probability that the sys
tem reaches either the ground state or a frozen state is
ishingly small~again in the most relevant case of zero init
magnetization!. Essentially all realizations end up wanderin
forever on connected isoenergy sets of blinker states.
existence of blinkers means that thed>3 kinetic Ising-
Glauber system belongs to the mixed type according to
Newman-Stein classification@3#. That is, a fraction of the
spins flip infinitely often~those on blinkers!, while the rest of
the spins flip a finite number of times.

Blinkers appear to be a general feature of discrete-s
ferromagnets. For example, they arise readily in theq-state
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FREEZING IN ISING FERROMAGNETS PHYSICAL REVIEW E65 016119
Potts model with Glauber kinetics, even in two dimensio
Here zero-temperature Glauber kinetics means that a
flips to agree with the majority of its neighbors. In cases o
‘‘tie,’’ that is, if half the neighbors of a given spin are in on
state and the other half are in another state, then the spin
to one of these states equiprobably. For the three-state P
model on the square lattice with equal initial concentratio
of all three states, blinker states of the form illustrated in F
15 typically arise. The shaded region can blink between
spins in theA or theC states. While it was previously argue
that domains become pinned for quenches toT50 whenq
>3 @10#, our simulations of the three-state Potts model in
cate that the probabilities of reaching the ground state an
frozen state decrease with increasing system sizeL and ap-
proach zero asL→`. In short, the Potts system gets pinn
in a blinking state rather than in a frozen state.

One reason that the system does not reach the gro

FIG. 15. Generic blinker in the kinetic three-state Potts mo
on the square lattice. The shaded region can flip between all spi
theA andC states. The remaining spins are stable since they hav
most one misaligned neighbor. A typical position of theAC inter-
face in the shaded region is shown~thick line!.
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state is that metastable states become more numerous a
spatial dimension increases. We argued that the numbe
these metastable states scales as exp(N121/d) in d dimen-
sions, whereN is the total number of spins. Thus a sp
system is increasingly likely to first encounter and g
trapped in a metastable state before the ground state ca
reached as the dimension increases. Associated with
metastable states are a variety of interesting and unexpla
features, such as the distribution of magnetization and
distribution of energy. The determination of the number
metastable states ford>3 also appears to be a deep en
meration problem.

At low temperature, the Ising-Glauber ferromagnet nec
sarily reaches equilibrium, but via a two-stage relaxat
process. Initially, the kinetics is nearly identical to that of t
zero-temperature case. For those systems that reach a m
stable stripe state in two dimensions, there is then a s
approach to equilibrium by the nucleation of defects wh
cause the stripe boundaries to diffuse, ultimately merge,
thus disappear. Because this kinetics is an activated proc
the equilibration time is extremely long and scales asL3eJ/T.
Surprisingly, this two-stage picture persists for temperatu
up to 0.2Tc in two dimensions. A similar picture arises i
higher dimensions, but with astronomically long time sca
associated with surmounting metastable barriers and re
ing equilibrium.
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