PHYSICAL REVIEW E 66, 016122 (2002
Synchronization and coarsening(without self-organized criticality) in a forest-fire model
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We study the long-time dynamics of a forest-fire model with deterministic tree growth and instantaneous
burning of entire forests by stochastic lightning strikes. Asymptotically the system organizes into a coarsening
self-similar mosaic of synchronized patches within which trees regrow and burn simultaneously. We show that
the average patch lengti) grows linearly with time as—o<. The number density of patches of lendgth
N(L,t), scales agL) 2ML/{L)), and within a mean-field rate equation description we find that this scaling
function decays a8/(x) ~e~** for x—0, and ae~* for x—. In one dimension, we develop an event-driven
cluster algorithm to study the asymptotic behavior of large systems. Our numerical results are consistent with
mean-field predictions for patch coarsening.
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[. INTRODUCTION Let us define a “patch” as a coherent region of the system
that is either occupied by live trees or by burnt trees. This
Forest-fire models[1—-4] are simple archetypical ex- patch evolves by tree regrowth and by the burning of trees
amples of driven dissipative systems that exhibit intriguinglydue to lightning strikes. The mechanism for coarsening is
rich spatiotemporal structur€4—9]. These models provide a that adjacent patches must eventually synchronize, after
simple paradigm for cooperative time-dependent phenomwhich they evolve in phasil6]. While neighboring patches
ena, such as epidemicsy Osci"atory chemical reactionsl e|e§)egin their existence as distinct, eventually the burnt trees in
trical neuron activity, cardiac dynamics, and turbulenceone patch will regenerate while the adjacent patch is still
[2,10-13. As the name indicates, the forest-fire model os-forested. When this occurs, all the trees in these two patches
tensibly describes the time evolution of burning trees in @ecome incorporated into an augmented patch which then
forest. In typical models of this genre, trees are located agvolves as a single unitFig. 1).
regular lattice sites and each can exist in one of three states: In Ref.[16], the process was investigated numerically and
burnt, alive, or burning. The dynamics involves the follow- the total number of patche¥(t) was found to decay with
ing elements(i) A burnt tree turns into a living tree at some time. However, more quantitative observations were not re-
specified ratefii) a living tree can be ignited, either by a ported. We will show thaN(t)et~* and we will investigate
lightning strike or by fire spreading from a neighboring burn-the patch length distribution, both analytically and numeri-
ing tree;(iii ) after a specified time interval a burning tree is cally. For our analytic study, we will employ the classical
consumed and the fire at this location is extinguished. rate equation of aggregation kinetick7]. This approach is
Depending on which of these processes are operative, ddeally suited to treat the coarsening behavior of the system
well as their relative rates, different dynamical behaviors catinder investigation.
arise, ranging from self-organized critical behavior with fires  Another important feature of our approach is that we treat
of all sizes occurring2—4, to spiral fire-front wave propa- the dynamics at a mesoscopic level in which the basic units
gation[2,14]. While forest-fire models have been extensively space
investigated, there is still uncertainty about their long-time | Aty
properties even after extensive numerical simulations in = 1
many realizations of the modg9]. >
This work is focused on a specific version of the forest- T
fire model which exhibits coarsenirid5] rather than self-
organized criticality or complex fire front propagation. Be-
cause of this phenomenological simplicity, we can apply the
rate equations in a natural way to determine the evolution of
the system. The model itself was first introduced by Drossel = 1
[16]. Its crucial feature is that tree growth is deterministic; a At, T
tree that has just burned remains dead for exactly one time 12

unit _and then a ne‘_N tree rea.ppear.s. This particulay regrOWt_h FIG. 1. lllustration of the merging of two adjacent patches of
rule is the mechanism that gives rise to a coarsening mosajgngths| , andL,>L ,. White space indicates a burned patch while

of growing synchronized forests. This is a generic featurgnhe shaded region indicates a forested patch. The times until the first
and does not require the tuning of model parameters to Critiregrowth events are, and r,. Each forested patch survives for a

cal values. time Atijfl until lightning strikes and instantaneous burning oc-
curs. The patch then regrows after exactly one time unit elapses.
BecauseAt,; andAt, are different, the two patches will eventually

*Present address: Siebel Systems Inc., San Mateo, CA. synchronize at the joining timé, ,.
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are synchronized patches rather than individual trees. In thAtjz(ALi)*l is the lifetime of thejth forest. This shift in
long-time limit, we will argue that the lifetime of such the difference of burning times continues unfi| reaches
patches can be viewed as deterministic. By tracking only theither ¢;=0 or ¢;=1. When this occurs, the forests neces-
merging events of adjacent patches we are able to investigagarily join and are subsequently synchronizEit. 1).

systems of effectively much larger size and to much longer  Since lightning strikes a forest of length at rateAL;,
times than those accessible by tree-based simulations. In athe lifetime At; of each forest is a stochastic variable whose
dition to obtaining a power-law growth of the average patchaverage value igAtJ):(ALj)‘l_ In the long-time limit,
length, our method yields clean results for the probabilitythese lifetimes become very small. Therefore we may replace
distribution of patch lengths. This distribution is found to the sum of a large number of these lifetimes by the average
obey scaling, with no memory of the initial state retained andifetime times the number of cycles. Thus for two adjacent
with the asymptotes of the distribution in good agreemenpatches andj+1 that satisfyLj<L;,; and 7j<7j 4, the
with rate equation predictions. While we focus on the parjoining timeT; ;. ; is

ticular case of one dimension, our approach should also ap-

ply in higher dimensions. Tit1— 7]

In the next section, we define the model and outline the m TS Ti+1
effective mesoscopic picture for the evolution of patches. In Tij+1= ! ! (1)
Sec. Ill, a rate equation description for this evolution is pre- ' 1-7+ 741 >
sented and basic results about the patch length distribution (At)—(Atj 1)’ I

are obtained. We explain our simulational approach and de-
scribe the results that follow in Sec. IV. Our basic conclu- An analogous result holds when>L;. ;. From these
sions are given in the last section. joining times between adjacent patches, we conclude that the
typical joining time scales with the average patch length as
T~(At)"'~A(L). Thus in a time intervatit~T, a typical
patch grows by an amoumtl~L. Consequently d/dt){L)

The evolution of the system is governed by the competi-~T~*(L), and we obtain
tion between two fundamental time scales. Suppose that each
tree in the system may be struck by lightning at a rate (L)~A". )
Then a forest of length. has a characteristic lifetimg,.. ] ] . )
~(AL) ! before one of its trees is struck by lightning. We In previous forest-fire models that are driven by stochastic

assume that the time to burn the forest completely is mucif€€ growth and by stochastic lightning striK@s4], the lat-
less than any other time scale in the problem, so that we viee" ate needs to be very small to ensure nontrivial dynamics.
the burning of a forest as instantaneous. There is also thEn€re is no need for such parameter tuning in the present
deterministic time intervate,, between the instant that a Model, as the magnitude of determines only the overall
forest burns down and the reappearance of trees in this burfi€@ling of the typical forest length. Therefore, we et 1
patch. We assume that this refractory time is the same for affénceforth.
trees, so that regrowth of trees in a single burnt patch occurs
simultaneously. Without loss of generality, we take this re- Ill. RATE EQUATION DESCRIPTION
fractory time to betem,=1.

At early times, wheré <t the stochastic nature of
lightning events is important. However, as we shall soo
show, patches naturally grow with time. Thiys, , eventually

Il. FOREST EVOLUTION IN ONE DIMENSION

A natural approach to determine the evolution of the patch
nIength distribution is the rate equations. Lé(L,t) be the
number density of patches of lengthat timet, and let
becomes much larger thap., and the fire dynamics be- N(t)=JoN(L.t)dL be the total number of patches of any
length. In the rate equation description of these quantities,

comes nearly deterministic in the long-time limit. To de- ) .
scribe this late-stage dynamics, we ignore individual treeﬁe make the mean-field assumption that there are no corre-

and treat the system mesoscopically as a contiguous array ¢ tions betV\./e'e.n adjacent patches. In a similar spirit, we al§o

patches, each with length; . Each patch can either be for- '9M0r€ the initial phase difference between two patches in

ested or burnt. If two distinct but adjoining forested patche<EdS: (1), so that the joining rate Qfl twoigatche_s is simply

arise by the regrowth of one patch next to a forested patctProportional to (Atj)—(At;, e[l "—L,[. With these

they immediately join to form a larger patcRig. 1). approximations, the patch length distribution evolves accord-
At long times, patches have a small lifetime and they ard"d to the rate equation

almost always in the burnt state. Without loss of generality

we initialize the s_ystem so that it is _effectively in this long- aN(L't): 1 de”(“ L—DN(I,HN(L=1,1)
time state. That is, at=0, we consider all patches to be ot 2N(t) Jo
burnt, and we define; (with 0<7;<1) to be the time at
which the jth burnt patch first becomes a forest. Consider _ N(L,D) (=

. . dIK(L,I)N(I,t). ©)]
now two adjacent patches, and Ig{= 7, ,— 7; be the time N(t) Jo

difference between the appearance of foljeand forestj
+1. After these two forests undergo one cycle of regrowthHere K(x,y)=|x"1—y~!| is the rate at which a patch of
and subsequent burningy; changes byAt;,,;—At;, where lengthx joins with a patch of lengtly.
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This rate equation is nearly identical in form to the corre-cal steps become deterministic and randomness enters only
sponding equation for the kinetics of aggregatjda], ex-  through the initial conditions.
cept for the overall factor of N(t). This difference arises For convenience, we assume that each patch is initially in
because we consider a finite system and we track the numb#re burned state. From these regrowth and burning processes,
of forests of a given length rather than the corresponding simulation of forest fires should be based on the following
probability. However, this factor can be absorbed into a ressteps.

caled time variable defined by (1) Initialize the line with patches of random lengths
and with random times;, for j=1,2,... N at which the
t dt’ jth patch first turns into a forest. Assign a Iifetirrlej-r1 to

7= N’ (4)  aforest of lengtfL ;.

(2) Using Eq.(1), compute the joining times; ; ., for all
neighboring pairs of patches.
(3) Sort the list of joining times{T; ;. 4} in ascending
der. A standard sort algorithfid9] requires a time of the
order ofNIn N for a set ofN elements.
(4) Join the pair of patchesj(+1) with the minimal

—ly—1_\,—1 .
I?) r|]X -timg SJILTt?oSnn:;nbgzr}nsfglr\r/:g’frt:)ﬁ';fses;ﬁ;esaab?g;?]'oining time and increment the time accordingly. Recompute
9 X . g approachy, . joining timesT; _,; andT; ; , , of the patches adjacent to

In general, the long-time behavior of the rate equations wnqhe newly joined forest :

rlorr;ogeneous reaction  rates chat satisfy K_(ax,ay) (5) Decrement the total number of patches by 1 and return
=a*K(x,y) and (i) K(x,y)~x*y” for x<y (A=u+v), to step 3.
have been_generlcally cIasI'T‘|f|ed accc;]rdmg to Wh‘?mf"’ h Such an algorithm is perforce inefficient because of the
':j*.<0.’b°r. #=0 [17’1% In a clgse?, the asymptotic 1ength osorting of joining times after each event. However, this
Istribution approaches a scaling form: step is typically unnecessary for two reasons. First, we
_ s “cache” only a small subset of the joining times witl ;. ;
N(L. 8 =(L())“MLIL D)), ®) less than a judiciously chosen cutoff tirig and sotrt] Jonly
this subset in step 3. We need not consider joining times
j,j+1> T because these events in the far future will never
be considered before the current list of joining times needs to
be resorted. This restriction significantly reduces the time

to reduce Eq(3) to the standard form of the rate equation for
aggregation. This can then be analyzed by weII—estain:shegr
methodg 17].

While the rate equation with reaction rati€(x,y)

in which the average patch length grows algebraically wit
time, (L)~7Y(2"% when\ <1. However, the scaling func-
tion A/ exhibits different behaviors in the three cases.

The reaction rate for our forest-fire modek(x,y) needed to sort the joining time list for large

="y .1|’ is homogeneous with homogeneity exponent Second, it is unnecessary to resort this reduced joining
'Z\h:o_r L \r’\gg:;’i‘g : E)?tﬁzdz;ceursa}:eo';;xrgr?rfﬁ tgzci%‘zggg time list after each joining event because only the two join-
~71/z pConsequentIyN(T)~<L)g*137'*1’2, agnd from Eq ing timesT;_,; and Tj ;. zre mr?dlfnled. If these rl]dealttedd
(4), we recover{L)~t, in agreement with the qualitative joning t'lmes are .greater than the eements n the aready
’ : ’ : ~ sorted list, there is no need for resorting. One can simply
e_lrgu.ment preceding E¢). According to the genergl classi- continue to use the joining times from the presorted list to
fication scheme of van Dongen and Erfis?,18, sincex  gefine joining events until one of the newly created joining
=—1, the scaling functionV(x) should vanish exponen- imes hecomes less than the next joining time in the pre-
tially in the limits of small and largex sorted list. Only when such a misordering occurs is it neces-

1k sary to return to step 3 and resort the joining time list. These
e x—0 ;
NX)~ ' ' ©6) steps are completely analogous to those employed in Ref.
e ’, X—om, [20] to simulate the kinetics of one-dimensional ballistic an-
nihilation reactions efficiently.
For short patches, this result therefore predisi(d.,t) We initialize the system wittN=5x 10 patches whose

~e YL, This behavior can also be established directly fromlengths are randomly drawn from the distributiod(L ,t
Eqg. (3). WhenL<t, the gain term in the rate equation can =0)=Lglexp(—L/L0), with Ly=0.1. This initial length
generally be ignored. Additionally, in this limit the reaction should be viewed as much larger than the lattice spacing
rate K(L,l) simplifies toL 1. Hence the density of short between individual trees. We are interested in the intermedi-
patches satisfiegN/dt=—L N, which indeed implies the ate asymptotic regime, where the average patch length is

above exponential decay. growing systematically with time and before finite-size ef-
fects begin to play a role. Figure 2 indicates that this inter-
IV. SIMULATION RESULTS mediate asymptotic regime begins whent* ~10. An im-

portant feature of the system at long times is that there is
In our simulations, we start the system with a randomonly a very short-range spatial correlation in the lengths of
array of patches of lengtH4.;(t=0)}. As discussed in Sec. neighboring patchegFig. 3. In particular, the normalized
II, it is asymptotically exact to replace the stochastic forestcorrelation function (LiL;,)—(L)?)/a?, with o?=(L?)
lifetime At; by its average valuéAtj)z(Lj)*l. The time  —(L)?, quickly approaches zero fée=2. This provides em-
for regrowth of a tree is always equal to 1. Thus the dynamiypirical justification for the validity of the mean-field approxi-
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FIG. 2. Average patch lengttL(t)) versus timet for initial FIG. 4. Number of patche§(L,t) of lengthL att=1478, 3325,

L N . 7482, and 16 384t 2.28' with n=9-12) plotted in scaled form.
Iength d!StI’IbutIOﬂN(L,F=0)=LO exp(—L/Lo_), with Lo=0.1. A The main plot shows the data on a semilogarithmic scale to illus-
straight line of slope 1 is shown for comparison. trate the exponential decay of the large-length tail. The inset shows

. . . . th data in th Il-length limit li le to highlight
mation of the rate equations. It is worth remarking that sucl‘lhz er;eentiZII?/ gngaz:nfirmeng Imit on & finear scale to ghlg
y .

a lack of spatial correlations appears ubiquitously in man

one-dimensional coarsening procesgEs21].
We now examine the behavior &f(L,t) for representa- of patches can be viewed as deterministic. Whenever two

tive values oft>t* (Fig. 4). The different sets exhibit data adjoining patches are simultaneously in the forested state, the
collapse according to the scaling ansatz of &. The large-  patches join and remain synchronized forever. The number
length tail of this distribution appears to be consistent with aof distinct patches decreases while their typical length grows
simple exponential decay. However, there is a very small butontinuously with time as in classical coarsening processes
apparently systematic downward curvature to the data fof15].

which we do not have an explanation. The small-length tail This mesoscopic description is well suited to a rate equa-
decays extremely rapidly near the origin and there are esseflon approach for the evolution of the patch-length distribu-
tially no patches with scaled length less than 0.2. This igjon, as well as efficient simulations. Numerically, we find
consistent with the essential singularity predicted by @Y.  that the average patch length grows linearly with time, while
Again, it is worth remarking that in almost all coarsening the number of patches correspondingly decreasest asHe
processes that are controlled by an underlying diffusion propatch-length distribution is sharply peaked, with an exponen-
cess, the small-length tail of the patch-length distribution is &ja| |arge-length tail and an essential singularity in the small-
linear function. The one well-known example of an essentialength tail. These features are consistent with the rate equa-
singularity in the small-size tail of a cluster distribution is the tjoy  predictions. Even though the system has nearest-

aggregation of Brownian particlg47]. neighbor interactions only, there are essentially no spatial
correlations in the lengths of neighboring patches. Because
V. CONCLUSIONS of this lack of spatial correlation, we can anticipate that the

We have develoned a mesoscoic description for a fores ate equation predictions, which are based on no correlations
. X pedam COpIC ( P .~ between patch lengths, should provide an accurate account of
fire model with stochastic lightning strikes and deterministic h di ional simulati
tree growth. Instead of treating the system at the level 0% e one-dimensional simufations. .
) ' : ; L Most aspects of our approach can be extended to higher
single trees, the basic element in our description is a patch of _.. : ; o ) :

) o Spatial dimensiongl. A complicating factor in developing
synchronized trees. Each patch undergoes periodic cycles Q ical simulati is that th b f neighbors f
burning and regrowth, and in the long-time limit, the lifetime Numerical simulations is that the number of neighbors for a

' ' given patch is variable. Nevertheless, the same updating rule
given by Egs.(1) will still apply, with patch length being
replaced by patch volume. As a result, we expect that the
average patch volume should grow linearly with time. Under

"o 08 the assumption that patches remain compact, this would im-
N’S 0.6 1 ply that the typical length scale of a growing patch would
2 - Ud 5 ;
Py grow in time ad-~t*"“. It is, of course, far from obvious that
i patches remain compact. Understanding of the forest-fire
o 02 model in higher dimensions appears to be an interesting chal-
0 lenge.
s s ‘ s Finally, we want to stress that the seemingly innocent
62 4 6 &8 10 change of the tree growth rule from stochastic to determin-
k istic drastically affects the dynamics. Almost all earlier work

FIG. 3. Dependence of the normalized correlation functionfocused on stochastic tree growth. According to the literature
((LiLi 1) —{(LY)/a?, whereo?=(L2)—(L)?2, on patch separation on this model, self-organized critical behavior should occur
katt=2.25~1478. in the limit of infinitesimal rate of lightning. However, after
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considerable effort, the understanding of the scaling laws isourse, possible that the higher-dimensional version of the
still incomplete, and even their very existence has recentlynodel will offer some surprises.

been questioned9]. In contrast, when the tree growth is
deterministic, there is no need to tune the rate of lightning LSS

strikes to zero, and the model exhibits simple coarsening We are grateful to NSF Grant No. DMR9978902 for par-
rather than complex time-dependent phenomena. It is, dial support of this work.
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