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Synchronization and coarsening„without self-organized criticality… in a forest-fire model

K. E. Chan,* P. L. Krapivsky, and S. Redner
Center for BioDynamics, Center for Polymer Studies, and Department of Physics, Boston University, Boston, Massachusetts

~Received 19 March 2002; published 24 July 2002!

We study the long-time dynamics of a forest-fire model with deterministic tree growth and instantaneous
burning of entire forests by stochastic lightning strikes. Asymptotically the system organizes into a coarsening
self-similar mosaic of synchronized patches within which trees regrow and burn simultaneously. We show that
the average patch length^L& grows linearly with time ast→`. The number density of patches of lengthL,
N(L,t), scales aŝL&22N(L/^L&), and within a mean-field rate equation description we find that this scaling
function decays asN(x);e21/x for x→0, and ase2x for x→`. In one dimension, we develop an event-driven
cluster algorithm to study the asymptotic behavior of large systems. Our numerical results are consistent with
mean-field predictions for patch coarsening.
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I. INTRODUCTION

Forest-fire models@1–4# are simple archetypical ex
amples of driven dissipative systems that exhibit intriguin
rich spatiotemporal structures@4–9#. These models provide
simple paradigm for cooperative time-dependent phen
ena, such as epidemics, oscillatory chemical reactions, e
trical neuron activity, cardiac dynamics, and turbulen
@2,10–13#. As the name indicates, the forest-fire model o
tensibly describes the time evolution of burning trees in
forest. In typical models of this genre, trees are located
regular lattice sites and each can exist in one of three sta
burnt, alive, or burning. The dynamics involves the follow
ing elements:~i! A burnt tree turns into a living tree at som
specified rate;~ii ! a living tree can be ignited, either by
lightning strike or by fire spreading from a neighboring bur
ing tree;~iii ! after a specified time interval a burning tree
consumed and the fire at this location is extinguished.

Depending on which of these processes are operative
well as their relative rates, different dynamical behaviors c
arise, ranging from self-organized critical behavior with fir
of all sizes occurring@2–4#, to spiral fire-front wave propa
gation@2,14#. While forest-fire models have been extensive
investigated, there is still uncertainty about their long-tim
properties even after extensive numerical simulations
many realizations of the model@9#.

This work is focused on a specific version of the fore
fire model which exhibits coarsening@15# rather than self-
organized criticality or complex fire front propagation. B
cause of this phenomenological simplicity, we can apply
rate equations in a natural way to determine the evolution
the system. The model itself was first introduced by Dros
@16#. Its crucial feature is that tree growth is deterministic
tree that has just burned remains dead for exactly one
unit and then a new tree reappears. This particular regro
rule is the mechanism that gives rise to a coarsening mo
of growing synchronized forests. This is a generic feat
and does not require the tuning of model parameters to c
cal values.

*Present address: Siebel Systems Inc., San Mateo, CA.
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Let us define a ‘‘patch’’ as a coherent region of the syst
that is either occupied by live trees or by burnt trees. T
patch evolves by tree regrowth and by the burning of tr
due to lightning strikes. The mechanism for coarsening
that adjacent patches must eventually synchronize, a
which they evolve in phase@16#. While neighboring patches
begin their existence as distinct, eventually the burnt tree
one patch will regenerate while the adjacent patch is s
forested. When this occurs, all the trees in these two patc
become incorporated into an augmented patch which t
evolves as a single unit.~Fig. 1!.

In Ref. @16#, the process was investigated numerically a
the total number of patchesN(t) was found to decay with
time. However, more quantitative observations were not
ported. We will show thatN(t)}t21 and we will investigate
the patch length distribution, both analytically and nume
cally. For our analytic study, we will employ the classic
rate equation of aggregation kinetics@17#. This approach is
ideally suited to treat the coarsening behavior of the sys
under investigation.

Another important feature of our approach is that we tr
the dynamics at a mesoscopic level in which the basic u

FIG. 1. Illustration of the merging of two adjacent patches
lengthsL1 andL2.L1. White space indicates a burned patch wh
the shaded region indicates a forested patch. The times until the
regrowth events aret1 and t2. Each forested patch survives for
time Dt j}L j

21 until lightning strikes and instantaneous burning o
curs. The patch then regrows after exactly one time unit elap
BecauseDt1 andDt2 are different, the two patches will eventuall
synchronize at the joining timeT1,2.
©2002 The American Physical Society22-1
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are synchronized patches rather than individual trees. In
long-time limit, we will argue that the lifetime of suc
patches can be viewed as deterministic. By tracking only
merging events of adjacent patches we are able to invest
systems of effectively much larger size and to much lon
times than those accessible by tree-based simulations. In
dition to obtaining a power-law growth of the average pa
length, our method yields clean results for the probabi
distribution of patch lengths. This distribution is found
obey scaling, with no memory of the initial state retained a
with the asymptotes of the distribution in good agreem
with rate equation predictions. While we focus on the p
ticular case of one dimension, our approach should also
ply in higher dimensions.

In the next section, we define the model and outline
effective mesoscopic picture for the evolution of patches
Sec. III, a rate equation description for this evolution is p
sented and basic results about the patch length distribu
are obtained. We explain our simulational approach and
scribe the results that follow in Sec. IV. Our basic conc
sions are given in the last section.

II. FOREST EVOLUTION IN ONE DIMENSION

The evolution of the system is governed by the comp
tion between two fundamental time scales. Suppose that
tree in the system may be struck by lightning at a rateL.
Then a forest of lengthL has a characteristic lifetimetocc
;(LL)21 before one of its trees is struck by lightning. W
assume that the time to burn the forest completely is m
less than any other time scale in the problem, so that we v
the burning of a forest as instantaneous. There is also
deterministic time intervaltemp between the instant that
forest burns down and the reappearance of trees in this b
patch. We assume that this refractory time is the same fo
trees, so that regrowth of trees in a single burnt patch oc
simultaneously. Without loss of generality, we take this
fractory time to betemp51.

At early times, wheretemp<tocc, the stochastic nature o
lightning events is important. However, as we shall so
show, patches naturally grow with time. Thustempeventually
becomes much larger thantocc and the fire dynamics be
comes nearly deterministic in the long-time limit. To d
scribe this late-stage dynamics, we ignore individual tr
and treat the system mesoscopically as a contiguous arra
patches, each with lengthL j . Each patch can either be fo
ested or burnt. If two distinct but adjoining forested patch
arise by the regrowth of one patch next to a forested pa
they immediately join to form a larger patch~Fig. 1!.

At long times, patches have a small lifetime and they
almost always in the burnt state. Without loss of genera
we initialize the system so that it is effectively in this lon
time state. That is, att50, we consider all patches to b
burnt, and we definet j ~with 0,t j,1) to be the time at
which the j th burnt patch first becomes a forest. Consid
now two adjacent patches, and letf j5t j 112t j be the time
difference between the appearance of forestj and forestj
11. After these two forests undergo one cycle of regrow
and subsequent burning,f j changes byDt j 112Dt j , where
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Dt j5(LL j )
21 is the lifetime of thej th forest. This shift in

the difference of burning times continues untilf j reaches
eitherf j50 or f j51. When this occurs, the forests nece
sarily join and are subsequently synchronized~Fig. 1!.

Since lightning strikes a forest of lengthL j at rateLL j ,
the lifetimeDt j of each forest is a stochastic variable who
average value iŝ Dt j&5(LL j )

21. In the long-time limit,
these lifetimes become very small. Therefore we may repl
the sum of a large number of these lifetimes by the aver
lifetime times the number of cycles. Thus for two adjace
patchesj and j 11 that satisfyL j,L j 11 and t j,t j 11, the
joining time Tj , j 11 is

Tj , j 115H t j 112t j

^Dt j 11&2^Dt j&
, t j,t j 11 ,

12t j1t j 11

^Dt j&2^Dt j 11&
, t j.t j 11 .

~1!

An analogous result holds whenL j.L j 11. From these
joining times between adjacent patches, we conclude tha
typical joining time scales with the average patch length
T;^Dt&21;L^L&. Thus in a time intervaldt;T, a typical
patch grows by an amountdl;L. Consequently (d/dt)^L&
;T21^L&, and we obtain

^L&;L21t. ~2!

In previous forest-fire models that are driven by stocha
tree growth and by stochastic lightning strikes@3,4#, the lat-
ter rate needs to be very small to ensure nontrivial dynam
There is no need for such parameter tuning in the pres
model, as the magnitude ofL determines only the overal
scaling of the typical forest length. Therefore, we setL51
henceforth.

III. RATE EQUATION DESCRIPTION

A natural approach to determine the evolution of the pa
length distribution is the rate equations. LetN(L,t) be the
number density of patches of lengthL at time t, and let
N(t)5*0

`N(L,t)dL be the total number of patches of an
length. In the rate equation description of these quantit
we make the mean-field assumption that there are no co
lations between adjacent patches. In a similar spirit, we a
ignore the initial phase difference between two patches
Eqs. ~1!, so that the joining rate of two patches is simp
proportional to ^Dt j&2^Dt j 11&}uL j

212L j 11
21 u. With these

approximations, the patch length distribution evolves acco
ing to the rate equation

]N~L,t !

]t
5

1

2N~ t !E0

L

dlK~ l ,L2 l !N~ l ,t !N~L2 l ,t !

2
N~L,t !

N~ t ! E
0

`

dlK~L,l !N~ l ,t !. ~3!

Here K(x,y)5ux212y21u is the rate at which a patch o
lengthx joins with a patch of lengthy.
2-2



re

b
in
es

or
h

th
ch
it

th

it
-

n

e
i-

-

m
n
n
t

m
.
es

m

only

y in
sses,
ing

ute
o

urn

the
his
we

es
er

s to
me

ing
in-
d
ady
ply
to

ng
re-
es-
se

Ref.
n-

ing
di-

h is
f-

er-

is
of

i-

SYNCHRONIZATION AND COARSENING~WITHOUT . . . PHYSICAL REVIEW E 66, 016122 ~2002!
This rate equation is nearly identical in form to the cor
sponding equation for the kinetics of aggregation@17#, ex-
cept for the overall factor of 1/N(t). This difference arises
because we consider a finite system and we track the num
of forests of a given length rather than the correspond
probability. However, this factor can be absorbed into a r
caled time variable defined by

T5E
0

t dt8

N~ t8!
, ~4!

to reduce Eq.~3! to the standard form of the rate equation f
aggregation. This can then be analyzed by well-establis
methods@17#.

While the rate equation with reaction rateK(x,y)
5ux212y21u has not been solved, basic features about
long-time solution can be inferred from a scaling approa
In general, the long-time behavior of the rate equations w
homogeneous reaction rates that satisfy~i! K(ax,ay)
5alK(x,y) and ~ii ! K(x,y);xmyn for x!y (l5m1n),
have been generically classified according to whetherm.0,
m,0, or m50 @17,18#. In all cases, the asymptotic leng
distribution approaches a scaling form:

N~L,t !.^L~ t !&22N„L/^L~ t !&…, ~5!

in which the average patch length grows algebraically w
time, ^L&;T 1/(12l), whenl,1. However, the scaling func
tion N exhibits different behaviors in the three cases.

The reaction rate for our forest-fire model,K(x,y)
5ux212y21u, is homogeneous with homogeneity expone
l521, while m521 and thusn50. Therefore, the scaling
theory prediction for the average patch length becomes^L&
;T 1/2. Consequently,N(T);^L&21;T 21/2, and from Eq.
~4!, we recover^L&;t, in agreement with the qualitativ
argument preceding Eq.~2!. According to the general class
fication scheme of van Dongen and Ernst@17,18#, sincem
521, the scaling functionN(x) should vanish exponen
tially in the limits of small and largex:

N~x!;H e21/x, x→0,

e2x, x→`.
~6!

For short patches, this result therefore predictsN(L,t)
;e2t/L. This behavior can also be established directly fro
Eq. ~3!. WhenL!t, the gain term in the rate equation ca
generally be ignored. Additionally, in this limit the reactio
rate K(L,l ) simplifies to L21. Hence the density of shor
patches satisfies]N/]t52L21N, which indeed implies the
above exponential decay.

IV. SIMULATION RESULTS

In our simulations, we start the system with a rando
array of patches of lengths$L j (t50)%. As discussed in Sec
II, it is asymptotically exact to replace the stochastic for
lifetime Dt j by its average valuêDt j&5(L j )

21. The time
for regrowth of a tree is always equal to 1. Thus the dyna
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cal steps become deterministic and randomness enters
through the initial conditions.

For convenience, we assume that each patch is initiall
the burned state. From these regrowth and burning proce
a simulation of forest fires should be based on the follow
steps.

~1! Initialize the line with patches of random lengthsL j
and with random timest j , for j 51,2, . . . ,N at which the
j th patch first turns into a forest. Assign a lifetime (L j )

21 to
a forest of lengthL j .

~2! Using Eq.~1!, compute the joining timesTj , j 11 for all
neighboring pairs of patches.

~3! Sort the list of joining times$Tj , j 11% in ascending
order. A standard sort algorithm@19# requires a time of the
order ofN ln N for a set ofN elements.

~4! Join the pair of patches (j , j 11) with the minimal
joining time and increment the time accordingly. Recomp
the joining timesTj 21,j andTj , j 12 of the patches adjacent t
the newly joined forest.

~5! Decrement the total number of patches by 1 and ret
to step 3.

Such an algorithm is perforce inefficient because of
resorting of joining times after each event. However, t
step is typically unnecessary for two reasons. First,
‘‘cache’’ only a small subset of the joining times withTj , j 11
less than a judiciously chosen cutoff timeTc and sort only
this subset in step 3. We need not consider joining tim
Tj , j 11.Tc because these events in the far future will nev
be considered before the current list of joining times need
be resorted. This restriction significantly reduces the ti
needed to sort the joining time list for largeN.

Second, it is unnecessary to resort this reduced join
time list after each joining event because only the two jo
ing times Tj 21,j and Tj , j 12 are modified. If these update
joining times are greater than the elements in the alre
sorted list, there is no need for resorting. One can sim
continue to use the joining times from the presorted list
define joining events until one of the newly created joini
times becomes less than the next joining time in the p
sorted list. Only when such a misordering occurs is it nec
sary to return to step 3 and resort the joining time list. The
steps are completely analogous to those employed in
@20# to simulate the kinetics of one-dimensional ballistic a
nihilation reactions efficiently.

We initialize the system withN553106 patches whose
lengths are randomly drawn from the distributionN(L,t
50)5L0

21exp(2L/L0), with L050.1. This initial length
should be viewed as much larger than the lattice spac
between individual trees. We are interested in the interme
ate asymptotic regime, where the average patch lengt
growing systematically with time and before finite-size e
fects begin to play a role. Figure 2 indicates that this int
mediate asymptotic regime begins whent.t* '10. An im-
portant feature of the system at long times is that there
only a very short-range spatial correlation in the lengths
neighboring patches~Fig. 3!. In particular, the normalized
correlation function (̂LiLi 1k&2^L&2)/s2, with s25^L2&
2^L&2, quickly approaches zero fork>2. This provides em-
pirical justification for the validity of the mean-field approx
2-3
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mation of the rate equations. It is worth remarking that su
a lack of spatial correlations appears ubiquitously in ma
one-dimensional coarsening processes@15,21#.

We now examine the behavior ofN(L,t) for representa-
tive values oft.t* ~Fig. 4!. The different sets exhibit dat
collapse according to the scaling ansatz of Eq.~5!. The large-
length tail of this distribution appears to be consistent wit
simple exponential decay. However, there is a very small
apparently systematic downward curvature to the data
which we do not have an explanation. The small-length
decays extremely rapidly near the origin and there are es
tially no patches with scaled length less than 0.2. This
consistent with the essential singularity predicted by Eq.~6!.
Again, it is worth remarking that in almost all coarsenin
processes that are controlled by an underlying diffusion p
cess, the small-length tail of the patch-length distribution
linear function. The one well-known example of an essen
singularity in the small-size tail of a cluster distribution is t
aggregation of Brownian particles@17#.

V. CONCLUSIONS

We have developed a mesoscopic description for a for
fire model with stochastic lightning strikes and determinis
tree growth. Instead of treating the system at the leve
single trees, the basic element in our description is a patc
synchronized trees. Each patch undergoes periodic cycle
burning and regrowth, and in the long-time limit, the lifetim

FIG. 2. Average patch lengtĥL(t)& versus timet for initial
length distributionN(L,t50)5L0

21exp(2L/L0), with L050.1. A
straight line of slope 1 is shown for comparison.

FIG. 3. Dependence of the normalized correlation funct
(^LiLi 1k&2^L&2)/s2, wheres25^L2&2^L&2, on patch separation
k at t52.259'1478.
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of patches can be viewed as deterministic. Whenever
adjoining patches are simultaneously in the forested state
patches join and remain synchronized forever. The num
of distinct patches decreases while their typical length gro
continuously with time as in classical coarsening proces
@15#.

This mesoscopic description is well suited to a rate eq
tion approach for the evolution of the patch-length distrib
tion, as well as efficient simulations. Numerically, we fin
that the average patch length grows linearly with time, wh
the number of patches correspondingly decreases as 1/t. The
patch-length distribution is sharply peaked, with an expon
tial large-length tail and an essential singularity in the sm
length tail. These features are consistent with the rate eq
tion predictions. Even though the system has near
neighbor interactions only, there are essentially no spa
correlations in the lengths of neighboring patches. Beca
of this lack of spatial correlation, we can anticipate that t
rate equation predictions, which are based on no correlat
between patch lengths, should provide an accurate accou
the one-dimensional simulations.

Most aspects of our approach can be extended to hig
spatial dimensionsd. A complicating factor in developing
numerical simulations is that the number of neighbors fo
given patch is variable. Nevertheless, the same updating
given by Eqs.~1! will still apply, with patch length being
replaced by patch volume. As a result, we expect that
average patch volume should grow linearly with time. Und
the assumption that patches remain compact, this would
ply that the typical length scale of a growing patch wou
grow in time asL;t1/d. It is, of course, far from obvious tha
patches remain compact. Understanding of the forest-
model in higher dimensions appears to be an interesting c
lenge.

Finally, we want to stress that the seemingly innoce
change of the tree growth rule from stochastic to determ
istic drastically affects the dynamics. Almost all earlier wo
focused on stochastic tree growth. According to the literat
on this model, self-organized critical behavior should occ
in the limit of infinitesimal rate of lightning. However, afte

FIG. 4. Number of patchesN(L,t) of lengthL at t51478, 3325,
7482, and 16 384 (t52.25n with n59 –12) plotted in scaled form
The main plot shows the data on a semilogarithmic scale to il
trate the exponential decay of the large-length tail. The inset sh
the same data in the small-length limit on a linear scale to highli
the essentially singular form.
2-4
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considerable effort, the understanding of the scaling law
still incomplete, and even their very existence has rece
been questioned@9#. In contrast, when the tree growth
deterministic, there is no need to tune the rate of lightn
strikes to zero, and the model exhibits simple coarsen
rather than complex time-dependent phenomena. It is
ys

tt

int
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,
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course, possible that the higher-dimensional version of
model will offer some surprises.
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