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Abstract. We investigate how social reinforcement drives the spread of
permanent innovations and transient fads. We account for social reinforcement
by endowing each individual with M + 1 possible awareness states 0, 1, 2, . . . ,M ,
with state M corresponding to adopting an innovation. An individual with
awareness k < M increases to k+1 by interacting with an adopter. Starting with
a single adopter, the time for an initially unaware population that consists of N
individuals to adopt an innovation grows as lnN for M = 1, and as N1−1/M for
M > 1. When individuals can abandon the innovation at rate λ, the population
fraction that remains clueless about the fad undergoes a phase transition at a
critical rate λc; this transition is second order for M = 1 and first order for
M > 1, with macroscopic fluctuations accompanying the latter. The time for the
fad to disappear has an intriguing non-monotonic dependence on λ.
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1. Introduction

Disease propagation [1], the spread of technological innovations [2]–[6], and outbreaks of
social and political unrest [7, 8] are all driven by contagion. In this work, we investigate
how the mechanism of social reinforcement affects the contagion-driven evolution of
permanent innovations and transient fads in a simple agent-based model. Social
reinforcement means that an individual requires multiple prompts from acquaintances
before adopting an innovation. This mechanism was found to foster the adoption of a
desired behavior in a controlled online social network [9]. Social reinforcement stands
in stark contrast to classical models of epidemics [1], where a susceptible individual can
become infected by a single exposure to the infection.

Previous studies of contagion spread have employed a variety of spreading
mechanisms, with some that include the possibility of intermediate states before becoming
infected [10]–[17]. Other mechanisms that have some connection with reinforcement
include the q-voter model [18], where multiple same-opinion neighbors initiate change,
the naming game, and the AB model [19]. Perhaps the mechanism that is most analogous
to social reinforcement arises in the noise-reduced voter model [20], where a voter keeps
a running total of inputs toward changing opinions, and changes opinions each time this
counter reaches a predefined threshold. Here we make use of these types of intermediate
states in the context of eventually adopting an innovation or a fad.

In our models, individual awareness is assumed to have a finite number of possible
states. We quantify this awareness by a variable that ranges over the M + 1 values,
0, 1, 2, . . . , M . We define an individual with awareness 0 as being susceptible, while an
individual moves closer to adopting the innovation as his/her awareness value increases.
Adoption of the innovation occurs when an individual reaches the highest awareness value
M . The population evolves by repeated interactions between two random individuals. In
each interaction with an adopter, someone with awareness k < M advances to awareness
k + 1, while there are no state changes when two non-adopters interact. For simplicity,
and as will be justified in section 2, we restrict opinion-changing interactions to those
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Figure 1. Time dependence of the densities nk by numerical integration of the
rate equations for a population of size N = 104, in which nM (0) = ρ and
n0(0) = 1 − ρ, with ρ = 1/N . Shown are the cases (a) M = 1 and (b) M = 4.

between an adopter and a non-adopter. In our innovation model, an innovation is adopted
permanently; in our fad model, an adopter abandons the fad at a rate λ so that it becomes
passé and is eventually forgotten by the entire population.

2. Permanent innovations

We begin with the simplest situation of no reinforcement [3]–[6], namely, a population
with two classes of individuals: susceptible (state 0) and adopters (state 1). Whenever
a susceptible individual and an adopter meet, the former is converted to an adopter via
0+1 → 1+1. The rate equations that give the evolution of a homogeneous and well-mixed
population (the mean-field limit) are:

ṅ0 = −n0n1, ṅ1 = n0n1. (1)

We generically assume that the evolution begins with a small fraction of adopters in an
otherwise susceptible population: n1(0) = ρ � 1, n0(0) = 1− ρ. For this initial condition
the solution to the rate equations is (figure 1)

n0 =
(1−ρ)e−t

ρ + (1−ρ)e−t
, n1 =

ρ

ρ + (1−ρ)e−t
. (2)

We define the emergence time te of the innovation by the criterion that half the population
has become adopters, n0(te) = n1(te) = 1/2. From equations (2), we have te � ln(1/ρ).
Ultimately everyone is an adopter; we estimate the resulting completion time T from
n1(T ) = 1 − 1/N , corresponding to all but one individual in a population of size N
adopting the innovation. This criterion gives T � ln(N/ρ).3

We now implement social reinforcement by requiring individuals to move to
progressively higher awareness states before adoption ultimately occurs. Possible examples

3 If one uses the criterion that the innovation is complete when n1 = 1, one obtains the unphysical result that the
completion time is infinite.
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of such progressions include: not owning a TV, being aware of TVs, but not owning one,
and finally owning a TV [21], or having no cell phone, being aware of cell phones, to finally
buying a cell phone, etc. We first treat the simplest example of reinforcement, which is
the case of M = 2. For this case, there are three classes of individuals: susceptible
(state 0), aware (state 1), and adopter (state 2), with respective densities n0, n1, and n2.
In an interaction with an adopter, a susceptible agent becomes aware (2 + 0 → 2 + 1),
while an aware agent adopts the innovation (2 + 1 → 2 + 2). It is also reasonable to
include interactions between susceptible and aware individuals. In such an interaction,
the susceptible individual could be made aware (0 + 1 → 1 + 1) or, conversely, the aware
individual could be persuaded to no longer think about an innovation (0+1 → 0+0). As
long as such interactions between intermediate states are symmetric, they play no role in
the dynamics of adoption in the mean-field limit and will be ignored.

When the rates of all processes are the same, the rate equations are:

ṅ0 = −n0n2, ṅ1 = n0n2 − n1n2, ṅ2 = n1n2. (3)

To solve these equations we introduce the internal time τ =
∫ t

0
dt′ n2(t

′) that simplifies
equations (3) to a linear system. A generic initial condition is n2(0) = ρ, n1(0) = 0,
n0(0) = 1 − ρ, corresponding to an initial population that contains a small group of
adopters (perhaps the inventors), while everyone else is susceptible and has no knowledge
of the fad. For these initial conditions, the solution is

n0 = (1 − ρ) e−τ ,

n1 = (1 − ρ) τ e−τ ,

n2 = 1 − (1 − ρ)(1 + τ) e−τ .

(4)

To characterize the point where the innovation first achieves widespread public
awareness, we define the emergence time of the innovation as the point where n1 passes
through a maximum (figure 1(b)). This yields τe = 1, from which the corresponding
physical emergence time te is given by

te =

∫ 1

0

dx

n2(x)
=

∫ 1

0

dx

1 − (1 − ρ)(1 + x)e−x
. (5)

When ρ � 1, the asymptotic behavior of the integral is

te � 1√
ρ

∫ 1/
√

ρ

0

dy

1 + y2/2
� π√

2ρ
,

where y = x/
√

ρ, and sub-leading terms are of order one. For a single innovator in a
population of size N (corresponding to initial density ρ = 1/N), the N dependence of the
emergence time is

te = π
√

N/2 + O(1). (6)

Thus reinforcement changes the emergence time from a logarithmic to a power law N
dependence (figure 1). We now estimate the completion time, where the innovation has
spread to essentially the entire population, by the criterion n2(T ) = 1 − 1/N . This gives

the completion time T = π
√

N/2 + ln N to lowest order4. Thus, in the presence of social

4 Details will be given in [22].
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reinforcement, once the innovation emerges, it takes little additional time before it is
complete.

For an arbitrary number of intermediate states, an individual with awareness k
increases to k + 1 by interacting with a adopter, [M ] + [k] → [M ] + [k + 1], with
k = 0, 1, . . . , M − 1. As discussed above, all other symmetric interactions do not change
the average densities of the various states and will be ignored. The corresponding rate
equations are

ṅ0 = −nMn0,

ṅk = nM(nk−1 − nk), k = 1, . . . , M − 1,

ṅM = nMnM−1.

(7)

By again introducing the internal time τ =
∫ t

0
dt′ nM(t′), we reduce equations (7) to a

linear system whose solution is

nj = (1 − ρ)
τ j

j!
e−τ , j = 0, , . . . , M−1,

nM = 1 − (1 − ρ)
M−1∑

j=0

τ j

j!
e−τ .

(8)

In analogy with the case of M = 2, the innovation emerges at τ = 1, where n1 passes
through a maximum (generally, each nj passes through a maximum at τ = j). To obtain
explicit time dependences, we recast τ in terms of the physical time via t =

∫ τ

0
dx/nM (x).

Applying the same steps as above and setting ρ = 1/N , we find the emergence time

te =
π (M !)1/M

M sin(π/M)
N1−1/M (9)

in the extreme case of a single initial adopter. Thus increasing the number of intermediate
states M progressively delays innovation emergence, as the exponent 1−1/M approaches
1 as M becomes large (figure 1(c)).

3. Transient fads

Transient fads arise when adopters can independently abandon the innovation at rate
λ > 0. In this case, the innovation can spread to some degree before it is abandoned
and fades away. The extent of the fad, as well as its lifetime, are controlled by the
abandonment rate. At the end of the process, a discrete population consists of adopters
who abandoned the fad and individuals who are forever stuck in intermediate awareness
states because of the absence of catalyzing adopters. Of particular interest are the clueless
individuals, those who were never exposed to the fad while it was active. Their fraction,
defined as c∞(λ) ≡ n0(t = ∞), characterizes the competing influences of contagion and fad
abandonment5. This fraction also gives a measure of the penetration of a particular fad
into the marketplace. A large clueless fraction indicates that most people were never
exposed to the fad (or equivalently, the product) so there was no chance to convert
these people to adopters, while a small clueless fraction indicates that the product had

5 The clueless are analogous to the population susceptible fraction in rumor-spreading models, see [23].
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Figure 2. Dependence of nM(τ) versus τ for: (a) no reinforcement (M = 1) and
(b) reinforcement, with one intermediate state (M = 2), equations (10) and (11)
respectively. The inset in (b) shows the near tangency of n2(τ) versus τ for
λ = 0.13 ≈ λc.

enough exposure to attract a considerable number of adopters. In the management science
literature, there is interest in an inverse quantity, the market penetration, which is the
proportion of a population that a product is ultimately able to reach [24, 25].

For an infinite population, c∞ undergoes a continuous transition as a function of λ
for M = 1, but a discontinuous transition for M ≥ 2. Moreover, the time to reach the
final state varies non-monotonically with λ. This discontinuous transition for M ≥ 2
implies that there is a region of metastability near the critical value λ = λc where the net
rate of fad abandonment and adoption are approximately equal. In this critical region,
whether a particular realization of a fad spreads globally or dies out quickly becomes a
random process, as we discuss in more detail below. In contrast, without reinforcement,
the continuous transition implies that the outcome for any realization is deterministic.

The case of no reinforcement coincides with the classic SIR epidemic model [1] with
the identifications: adopter ↔ infected, abandoner ↔ recovered, while the meaning
of susceptible is the same in both models. The rate equations are ṅ0 = −n0n1,
ṅ1 = n0n1 − λn1, with solution

n0 = (1 − ρ) e−τ , n1 = 1 − λτ − (1 − ρ) e−τ , (10)

where τ =
∫ t

0
dt′ n1(t

′). The evolution ceases at an internal stopping time τ∞ defined by
n1(τ∞) = 0; this corresponds to physical time t = ∞. The condition n1(τ∞) = 0 leads to
three regimes of behavior for the clueless fraction c∞ (figure 2(a)). For λ < 1 (subcritical),
adopters abandon the fad sufficiently slowly that the fad can spread globally before dying
out. In the supercritical regime of λ > 1, adopters abandon the fad so quickly that
there is little time for the innovation to spread before it is extinguished. In this limit,
equations (10) give τ∞ = ρ/(λ − 1) and c∞ = 1 − ρ/(λ − 1) to leading order, while for
λ = λc = 1, c∞ = 1 − √

2ρ. Thus c∞ undergoes a continuous transition (in the ρN � 1
limit) as λ passes through the critical value λc = 1 (figure 3(a)).

Let us now investigate the role of reinforcement on the fad dynamics. We consider the
simplest situation of a single intermediate state (M = 2) or, equivalently, three possible

doi:10.1088/1742-5468/2011/12/P12003 6
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Figure 3. Clueless fraction c∞ versus abandonment rate λ for: (a) two-state and
(b) three-state models. The initial adopter fraction is n1(0) = 10−4 in (a) and
n2(0) = 10−2 in (b).

states for each individual. In this case, the evolutions of n0 and n1 are again given by
equations (4), while the solution of n2 is

n2 = 1 − (1 − ρ)(1 + τ)e−τ − λτ. (11)

A curious feature of this result for n2 is that the density of fad adopters n2(τ) can first
decrease, then increase, before ultimately vanishing (figure 2(b)). This unusual behavior
stems from the delicate interplay between fad abandonment and the creation of new
adopters from the remaining reservoir of susceptible individuals. As a result of the two
extrema in n2 as a function of τ , the stopping condition n2(τ∞) = 0 can have one, two, or
three roots, depending on λ. This change in the number of roots underlies the discontinuity
in the clueless fraction c∞ as a function of λ.

To locate this transition in the supercritical case, λ > λc, notice that (11) has three
roots as a function of τ . We are interested in the smallest root and therefore expand the
left-hand side of equation (11) for small τ . Keeping the leading terms gives

n2(τ∞) ≈ ρ + 1
2
τ 2
∞ − λτ∞ = 0. (12)

From this quadratic equation, we see that the interesting behavior arises when λ = μ
√

ρ
where μ = O(1). With this convenient parameterization, the solution for τ∞ is τ∞ =√

ρ [μ ±
√

μ2 − 2]. Using the physically relevant smaller solution, we find, for μ > μc

(which equals
√

2 to lowest order)

c∞ = (1 − ρ) e−τ∞ � 1 −√
ρ (μ −

√
μ2 − 2); (13)

i.e. the clueless fraction is close to one (figure 3(b)). In the subcritical case, μ <
√

2, the
relevant root of n2(τ∞) = 0 is τ∞ = 1/(μ

√
ρ) to leading order. Consequently, the clueless

fraction is

c∞ = e−τ∞ = e−1/(μ
√

ρ), (14)

which is close to zero for ρ → 0. Thus the clueless fraction undergoes a first-order
transition as λ passes through λc.

doi:10.1088/1742-5468/2011/12/P12003 7
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Figure 4. Completion time T versus λ for the fad model, for M = 1 (left)
and M = 2 (right) with ρ = 10−2. Points are simulation results for N =
102, 104, 106, 108 (bottom to top). Dashed lines are the corresponding results
from numerically integrating the rate equations. For M = 1, the width of the
peak at λc = 1 scales as

√
ρ.

4. Fad completion time

A striking aspect of our fad model is that the time for a fad to die out has a non-monotonic
dependence on the abandonment rate λ (figure 4). This non-monotonicity has a simple
qualitative origin. If the abandonment rate is large, then the initial adopters abandon
before they can recruit new adopters. Thus the fad quickly disappears. Conversely, if
the abandonment rate is small, essentially the entire population adopts the innovation en
masse, after which the fad disappears in a time that scales as 1/λ. Between these two
limits, the fad slowly ‘smolders’ because new adopters are replenished at nearly the same
rate as other adopters abandon the fad. In this situation, the fad can be extremely long
lived.

In a population of size N , we determine the time for a fad to end by the criterion
nM (τ ∗) = 1/N . Namely, only a single adopter remains in a finite population. (Notice that
this is distinct from the criterion τ = τ∞, where the number of adopters vanishes in an
infinite population.) This internal time corresponds to the value of the physical stopping

time T =
∫ τ∗

0
dτ/nM(τ) at which the fad disappears. The actual determination of the

completion time is very different for the cases M = 1 and M > 1, and we investigate
these two cases in turn.

4.1. No reinforcement, M = 1

Generically, T is proportional to ln N because n1 goes to zero with a finite slope as
τ approaches τ∞ (figure 2(a)). As a consequence, the integral for T is logarithmically
divergent in N . However, the details of this dependence depend on the value of the
abandonment rate λ.

In the subcritical regime (λ < 1), we determine T by expanding n1 about τ∞ and
using the condition e−τ∞ + λτ∞ = 1 to obtain

T =
1

λ + λτ∞ − 1

∫

1/N

dy

y
=

ln N

λ + λτ∞ − 1
. (15)

doi:10.1088/1742-5468/2011/12/P12003 8
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The lower limit in equation (15) follows from the stopping criterion n1(τ
∗) = 1/N , while

the upper limit is immaterial for the asymptotic behavior.
In the supercritical regime (λ > 1), the density of adopters n1 decreases almost

linearly in τ over the entire range for which n1 is positive. In this case6, an expansion of
n1 about τ∞ leads to T = ln(ρN)/(λ − 1).

In the critical case of λ = 1, n1 decreases quadratically with τ and the same expansion
procedure as outlined above gives T = ln(ρN)/

√
2ρ in the asymptotic limit. Consistent

with the logarithmic dependence at the critical point for the case ρ = 1/N , we find the
completion time distribution has a power law tail, P (T ) ∼ T−2. From this distribution,
the average completion time was found, in the context of epidemic dynamics, to be
T = 1

3
log N [26], a behavior that we confirmed numerically.

4.2. Reinforcement, M > 1

When reinforcement is operative, the fad evolution in the supercritical regime closely
mirrors the behavior of the non-reinforced model (M = 1). In particular, the time
dependence of nM(τ) is similar to n1(τ) in the case of no reinforcement: nM approaches
zero with finite slope, from which the ending time of the fad again scales as lnN . However,
in contrast to the case of M = 1, the value of τ where nM(τ) first reaches zero changes
discontinuously as λ passes through λc (figure 2(b)). More interestingly, when λ ≈ λc, nM

approaches zero with a quadratic minimum, as illustrated in the inset to figure 2(b). This
property is the mechanism that gives an algebraic, rather than a logarithmic, dependence
of the completion time on N . Finally for λ < λc, nM again reaches zero with a finite
slope, leading to a logarithmic dependence of the ending time on N . Thus the time for
the fad to disappear has a local maximum at the critical point (figure 4). Monte Carlo
simulations of the fad dynamics in a finite population mirror our analytic predictions,
except near the first-order transition, where large fluctuations arise.

Let us now focus on the properties of the completion time at the first-order transition
point where fluctuations are particularly strong. There are two independent and natural
scenarios for which to define the lifetime of the fad: (i) a fixed number of initial adopters
(generally we treat the case of one adopter) or (ii) a fixed fraction ρ of initial adopters.
To find the fad lifetime in the former case of ρ = 1/N , it is again convenient to use
parameterization λ = μ

√
ρ because the critical value of μ is O(1). We therefore substitute

the lowest-order approximation for the critical value μc =
√

2 into the expansion (12) for
n2 to obtain n2 = 1

2
(
√

2ρ − τ)2. The ending time for the fad is now given by

T = 2

∫ τ∗

0

dτ

(
√

2ρ − τ)2
, (16)

with τ∗ determined from the criterion n2(τ
∗) = 1/N . The latter gives τ ∗ =

√
2ρ−√

2/N

and using this upper limit in (16) gives T =
√

2N . However, the prefactor
√

2 arises from
using the imprecise criterion n2(τ

∗) = 1/N to define the ending time. Simulations instead

give T ∼ 0.56
√

N . For a fixed fraction of initial adopters ρ, our simulations show that
the average fad lifetime grows with N roughly as N1/4 for M = 2, a result for which we
do not yet have an explanation.

6 Here we assume ρ � 1 and ρN � 1. In the extreme case of ρ = N−1, fluctuations are artificially large and the
rate equation approach becomes invalid.
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Figure 5. Probability density P (c∞) for the fraction of clueless individuals at
the end of the process at the critical point, λc =

√
2ρ, for the M = 2 fad model,

with initial density ρ = 10−2 and population size N = 104. (Note the horizontal
scale break.)

Figure 6. Probability distribution of completion time T for the fad model at the
critical point, for M = 1 (left) and M = 2 (right) with ρ = 1/N . We use N = 109

for M = 1 and N = 106 for M = 2.

As a result of the large fluctuations near the transition, the completion time
distribution consists of two distinct components. One component corresponds to
realizations where the fad quickly dies out so that the population at infinite time consists
almost entirely of clueless individuals (figure 5). In contrast, for the remaining fraction
of realizations, nearly everyone adopts and then abandons the fad. Corresponding to this
dichotomy in the fate of individual realizations, the distribution of times at which the fad
disappears has distinct short-lived and long-lived contributions (figure 6).

5. Summary

We have shown how social reinforcement plays an essential role in determining how
permanent innovations and transient fads are adopted in a socially interacting population.

doi:10.1088/1742-5468/2011/12/P12003 10
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For permanent innovations, we modeled the effect of reinforcement by endowing each
individual with M + 1 levels of awareness 0, 1, 2, . . . , M . An individual increases his/her
level of awareness by one unit as a result of interacting with an adopter, and adoption
occurs when an individual reaches the highest awareness level M . In the mean-field limit,
we found that the time for the innovation to be adopted universally scales as N1−1/M , so
that increasing M delays the onset of the innovation.

For transient fads, the fad quickly disappears for λ > λc, while for λ < λc the fad
is nearly universally adopted before finally being forgotten. Curiously, the fad lasts the
longest for the intermediate case where λ = λc. At this point, new adopters are replenished
at nearly the same rate as others abandon, so that the fad slowly smolders rather than
igniting and quickly burning out. The transition in the fraction of clueless individuals—
those who have no knowledge of the fad before it disappears—is second order as a function
of λ when there is no reinforcement, but first order in λ with reinforcement. Near the
first-order transition, the dynamics exhibits macroscopic sample-to-sample realizations in
the evolution of a fad. As a consequence, the clueless fraction may be either close to zero
or close to one in different realizations of the dynamics with the same initial condition.

Acknowledgments

We thank Damon Centola for helpful discussions, Sam Bowles for literature advice, and
NSF grants CCF-0829541 (PLK) and DMR-0906504 (DV and SR) for financial support.

References

[1] Bailey N T J, 1975 The Mathematical Theory of Infectious Diseases and Its Applications (Oxford: Oxford

University Press)

Anderson R M and May R M, 1992 Infectious Diseases of Humans: Dynamics and Control (Oxford: Oxford

University Press)
[2] Coleman J, Katz E and Menzel H, 1957 Sociometry 20 253

[3] Bass F M, 1969 Manag. Sci. 15 215

[4] Bass F M, 1980 J. Bus. 53 S51

[5] Morris S, 2000 Rev. Econ. Stud. 67 57

[6] Rogers E M, 2003 Diffusion of Innovations (New York: Free Press)

[7] Granovetter M, 1978 Am. J. Sociol. 83 1420
[8] Lohmann S, 1994 World Politics 47 42

[9] Centola D, 2010 Science 329 1194

For theoretical background see Centola D, Wilker R and Macy M W, 2005 Am. J. Sociol. 110 1009

Centola D, Eguiluz V M and Macy M W, 2007 Physica A 374 449

[10] Majumdar S N and Krapivsky P L, 2001 Phys. Rev. E 63 045101(R)
[11] Dodds P S and Watts D J, 2004 Phys. Rev. Lett. 92 218701

[12] Young H P, 2009 Am. Econ. Rev. 99 1899

[13] de Kerchove C, Krings G, Lambiotte R, Van Dooren P and Blondel V D, 2009 Phys. Rev. E 79 016114

[14] Karrer B and Newman M E J, 2010 Phys. Rev. E 82 016101

[15] Onnela J-P and Reed-Tsochas F, 2010 Proc. Nat. Acad. Sci. 107 18375
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