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We introduce a class of facilitated asymmetric exclusion processes in which particles are pushed by

neighbors from behind. For the simplest version in which a particle can hop to its vacant right neighbor

only if its left neighbor is occupied, we determine the steady-state current and the distribution of cluster

sizes on a ring. We show that an initial density downstep develops into a rarefaction wave that can have a

jump discontinuity at the leading edge, while an upstep results in a shock wave. This unexpected

rarefaction wave discontinuity occurs generally for facilitated exclusion processes.
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In the asymmetric exclusion process (ASEP), sites of a
lattice are occupied by single particles, each of which can
hop at a fixed rate to a neighboring vacant site on the right
[1–5]. This versatile model describes many systems, in-
cluding traffic [6–9], ionic conductors [10], and RNA tran-
scription [11,12]. Despite its simplicity, the properties of
the ASEP are rich and deep. For example, a density that
increases with x leads to a propagating shock wave, similar
to a traffic jam that propagates along a congested road.
Conversely, when the initial density drops quickly as a
function of x, a rarefaction wave arises in which the drop
gradually smooths out, as occurs in stopped traffic after a
stoplight turns green. Macroscopic aspects of these phe-
nomena can be understood from hydrodynamic theories
[13,14], while the fluctuations about these macrostates
continue to be actively investigated [15–19].

In this work, we investigate facilitated asymmetric ex-
clusion. We primarily focus on occupancy facilitation in
which a particle can hop to its vacant right neighbor only if
its left neighbor is also occupied (Fig. 1). This model was
proposed by Basu and Mohanty [20] in the context of
nonequilibrium absorbing state phase transitions. We also
investigate distance facilitation in which the rate at which a
particle hops to a vacant right site is a decreasing function
of the distance between a particle and its closest left
neighbor.

The notion of facilitated exclusion is part of a general
class of ASEP models in which the hopping rate of a
particle depends on more than just the occupancy of the
neighboring site [6–8,20,21]. For example, in glassy dy-
namics the particle mobility decreases as the local density
increases [22]. Conversely, the presence of nearby particles
may increase hopping rates; for example, in molecular
motor models a moving particle can exert a hydrodynamic
force that pushes other particles along [23]. Moreover, a
subset of phase space in occupancy facilitated exclusion
can be mapped onto the ASEP of extended objects
[11,12,21,24–26], a model that was formulated to mimic
the traffic of ribosomes along RNA.

In occupancy facilitation, a mean-field hypothesis for
the current is J ¼ �2ð1� �Þ; the expression accounts for
the presence of two particles and one vacancy and repre-
sents a natural generalization of the current J ¼ �ð1� �Þ
in the ASEP. As we show below, the current in facilitated
exclusion actually has a very different density dependence.
We also develop a hydrodynamic description for an initial
density step and predict that a rarefaction wave develops a
discontinuity at the leading edge. Finally, we provide a
general criterion to understand this unexpected phenome-
non in the framework of distance facilitation.
Finite ring.—We first determine the density dependence

of the current on a finite ring in occupancy facilitation.
The key to understanding the steady-state spatial distribu-
tion of particles is the notion of islands. An island is a
string of occupied sites that are delimited at both ends by
vacant sites (Fig. 1). Each hopping event transforms a
triplet � � � into � � �. Depending on the occupancy
of the next site, the number of islands either increases,
� � �� ! � � � � , or remains the same, � � �� ! � �
� � , but cannot decrease. Thus the system eventually
reaches a state where the number of islands is maximal.
For � � 1

2 , the constraint that the number of islands can

never decrease ensures that the system eventually reaches a
static state that consists of immobile single-particle is-
lands. The approach to the final state has a rich time
dependence [27], particularly in the marginal case � ¼ 1

2 ,

where the number of active particles asymptotically decays

as t�1=2 (see also Refs. [28–30]).
In the � > 1

2 steady state, the requirement that the num-

ber of islands is maximal ensures that adjacent vacancies
must be separated by at least one particle. Furthermore,

FIG. 1. Illustration of occupancy facilitated asymmetric exclu-
sion. Particles that are eligible to hop to the right are dark, while
immobile particles are shaded. This configuration contains is-
lands of lengths 2, 3, and 1 (left to right).
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configurations that contain the maximal number of islands
are equiprobable. Indeed, let PðCÞ be the steady-state
probability of being in a maximal-island configuration C.
Then the stationarity condition is

PðCÞX
C0
RðC ! C0Þ ¼ X

C0
PðC0ÞRðC0 ! CÞ; (1)

where RðC ! C0Þ is the evolution rate from configuration
C to C0. Since R ¼ 1 if an evolution step is allowed and 0
otherwise, we need to count the number of ways into and
out of a configuration to solve Eq. (1).

The evolution out of a configuration is triggered by
triplets of the form � � � at the right edge of any island
of length � 2. The system can evolve into the configura-
tion C from another maximal-island configuration by the
process � � �� ! � � � � . This evolution can only hap-
pen at the left edge of an island of length� 2. Hence there
is an equal number of terms on both sides of Eq. (1). If
PðCÞ are equal for all configurations, Eq. (1) is clearly
satisfied. Thus, all maximum-island configurations are
equiprobable in the steady state.

The probability of a maximum-island configuration
therefore equals C�1, where C is the total number of such
configurations with N particles and V vacancies on a ring
of L ¼ N þ V sites. To determine C, consider an arbitrary
site that we label by i. If this site is occupied, there are N
possible locations between the N particles to put the V
vacancies (Fig. 2). If site i is unoccupied, there are N � 1
possible places to put the remaining V � 1 vacancies. In
both cases, we cannot put more than one vacancy between
consecutive particles or else the number of islands would
not be maximal. The number of such configurations is
therefore given by

C ¼ N
V

� �
þ N � 1

V � 1

� �
: (2)

To obtain the steady-state current, consider the flow
across a link between arbitrary adjacent sites i and iþ 1.
For a particle to move across this link, the consecutive sites
i� 1 and i must be occupied, while site iþ 1 must be
vacant. We now enumerate the number of maximum-island
configurations that are consistent with the presence of this
triplet by noting that there are N � 2 places between the
remaining particles to place the V � 1 remaining vacancies
so that no two vacancies are adjacent. Thus the number of
allowed configurations consistent with the presence of this

triplet is
N � 2
V � 1

� �
. The current across link ði; iþ 1Þ is

therefore (see Fig. 3)

J ¼
N � 2
V � 1

� �
C

! ð1� �Þð2�� 1Þ
�

; (3)

with � ¼ N
L held constant in the limit N, L ! 1. (This

result can be mapped into an equivalent expression for the
current in the ASEP of extended objects [11,12,21,24–26];
we return to this correspondence below.) The current is
zero at � ¼ 1

2 , since the system eventually reaches the

static state of alternating particles and vacancies. The
current is also zero at � ¼ 1, where no evolution is pos-
sible. The maximal current arises when �� ¼ 1ffiffi

2
p , where

Jð��Þ � Jmax ¼ 3� 2
ffiffiffi
2

p � 0:1716.
We can also determine In, the density of islands of length

n. Using the same enumeration that gave the number of
allowed configurations, there are V � 2 remaining vacan-
cies that can be distributed among the N � n� 1 places
between the rest of the particles so that there are no

consecutive vacant sites. There are
N � n� 1
V � 2

� �
such

configurations. Since each configuration has equal weight,
the density of islands of length n is

In ¼
N � n� 1
V � 2

� �
N
V

� �
þ N � 1

V � 1

� � ! ð1� �Þ2
�

�
2�� 1

�

�
n�1

; (4)

where the latter equality applies for n 	 L; both Eqs. (3)
and (4) were also derived in Refs. [20,21] by independent
methods. The island length distribution decays as �n, with
� ¼ ð2�� 1Þ=�, rather than � ¼ � which occurs for a
random particle distribution. Since ð2�� 1Þ=� < �, long
islands are suppressed compared to a random distribution;
this feature is a consequence of the constraint that the
number of islands is maximal. From these island proba-
bilities we recover the particle density from � ¼ P

nIn,
while the current J can alternatively be expressed as the
probability to have an island that contains at least two
particles, J ¼ P

n�2In.
Density step.—Let us now study the evolution of a

density step on the infinite line by occupancy facilitation.
Initially, the density to the left of the origin is ��, while the
density to the right is �þ. For a downstep, where �� > �þ,
the density profile within a hydrodynamic description

evolves by the continuity equation @�
@t þ @J

@x ¼ 0, which we

may solve by the method of characteristics [13]. The
solution is a function of a scaled variable, z � x=t, so
�ðx; tÞ ¼ fðzÞ. Using the steady-state current expression
(3) for the flux, we find that the scaled profile is composed
of distinct segments in which the density is either constant

or given by f ¼ ð2þ zÞ�1=2. Thus the density profile is

ii

)b()a(

FIG. 2. Illustration of the number of places that V vacancies
can be placed among N particles (filled circles) with site i
(a) occupied or (b) vacant.
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f ¼
(�� z < z�
ð2þ zÞ�1=2 z� < z < zþ
�þ z > zþ:

(5)

The position of the left interface z� is determined from

continuity: ð2þ z�Þ�1=2 ¼ ��. When �� > �� ¼ 1ffiffi
2

p ,

we have z� < 0. In this situation, the density at the origin
�ð0Þ is universal and it coincides with the density �� that
maximizes the current in Eq. (3). Therefore, the number
of particles that penetrates into the region x > 0 is
NðtÞ ¼ J½�ð0Þ
t ¼ Jmaxt.

To determine the location of the right interface zþ, we
apply the constraint that the initial mass within ½z�; zþ

must equal the mass in this region at some later time plus
the net influx into this region. In scaled units, this conser-
vation statement is

� ��z� þ �þzþ ¼
Z zþ

z�

dzffiffiffiffiffiffiffiffiffiffiffiffi
2þ z

p þ J� � Jþ; (6)

with J� ¼ Jð��Þ.
Different density profiles arise depending on whether

�þ < 1
2 or �þ > 1

2 . In the former case the right interface is

located at zþ ¼ ½2� 3�þ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� �þÞð1� 2�þÞ

p 
=�2þ.
As z passes through zþ the density jumps from the value

ð2þ zþÞ�1=2 to �þ. For example, when ð��; �þÞ ¼ ð1; 0Þ,
zþ ¼ 1

4 and the magnitude of the density drop is 2
3 (Fig. 4).

The discontinuity at the front of a rarefaction wave arises
because the leading particle cannot move unless ‘‘pushed’’
by neighboring particles from behind. Consequently, the
density at the leading edge must be nonzero.

For �þ � 1
2 , this jump discontinuity disappears, and

the density profile is everywhere continuous. Continuity

at z ¼ zþ now gives �þ ¼ ð2þ zþÞ�1=2, which manifestly
solves Eq. (6). For this class of rarefaction waves, the
density is sufficiently large ahead of the wave that the

leading edge can get pulled ahead, and there is no need
for a pileup of particles from behind to push the wave front
forward.
To study shock waves, we suppose that 1

2 < �� < �þ
and consider a large region that includes the interface. The
particle influx to this region is J�, while the outflux is Jþ.
The net flux must equal the change in mass cð�� � �þÞ
inside this region, where c is the shock wave speed. Hence
c ¼ ðJ� � JþÞ=ð�� � �þÞ. Using the expression (3) for
the current, the shock wave speed is

c ¼ ð���þÞ�1 � 2: (7)

The shock propagates to the right if �� < ð2�þÞ�1 and to
the left otherwise.
Our results can be extended to a more stringent occu-

pancy facilitation in which r consecutive sites to the left of
a particle must be occupied for a particle to hop to a vacant
right neighbor [20,27]. (For example, for r ¼ 3 the right-
most particle in � � � � � cannot move, while the update
� � � � � ! � � � � � is possible.) A steady state with a
nonvanishing current and a maximal number of islands,
each of length � r, arises when � > r

1þr . All such con-

figurations are again equiprobable.
We now discuss the connection between occupancy

facilitation and the ASEP of extended objects
[11,12,21,24–26]. In the maximal-island steady-state re-
gime with density � � 1

2 , we may equivalently view a

particle followed by a vacancy as an extended object of
length k ¼ 2which hops to the left. Since vacancies cannot
be adjacent in the steady state, these extended objects obey
exclusion and perform a simple ASEP (Fig. 5). This con-
nection continues to hold with the more stringent r-tuple
occupancy facilitation. In the region of phase space where
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FIG. 4 (color online). Scaled density profile of facilitated
exclusion starting from the step initial condition �� ¼ 1 and
�þ ¼ 0. The simulation data are based on 105 realizations for
three representative times and are visibly indistinguishable from
the prediction of Eq. (5) when t ¼ 1:521.

0.5 0.6 0.7 0.8 0.9 1

density

0

0.05

0.1

0.15

cu
rr

en
t

FIG. 3 (color online). Current versus density for occupancy
facilitation. The smooth curve is the prediction (3), while the
circles are simulation data from 104 realizations on a ring of 105

sites.
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� � r
rþ1 , the steady-state behavior of the system maps to

the ASEP of extended objects with length k ¼ 1þ r.
Finally, we treat distance facilitation. Finding the current

even for the simple example in which the hopping rate
equals ‘�1, where ‘ is the distance to the nearest left
particle, is challenging. The hydrodynamic behavior, how-
ever, is robust, and the rarefaction wave discontinuity al-
ways arises [27]. We can demonstrate the universality of
this phenomenon from basic features of the current-density
relation. We know that Jð0Þ ¼ Jð1Þ ¼ 0, and we expect
that Jð�Þ has a single maximum at some density ��.
Applying the scaling ansatz for the continuity equation
shows that either � is constant or dJ

d� ¼ z. The rarefaction

wave therefore has the form

�ðzÞ ¼
(�� z < z�
IðzÞ z� < z < zþ
�þ z > zþ;

where IðzÞ is the inverse function of z ¼ dJ
d� .

Differentiating this relation with respect to z in the region
z� < z < zþ gives J���z ¼ 1. If J�� is everywhere nega-

tive (as in the standard ASEP), then �z must also be
negative. Thus the density �ðzÞ continuously decreases
until it reaches �þ. However, if J�� is positive at some

low density, then �z would become positive. Thus the
smallest possible density �min in a rarefaction wave occurs
at the point where J�� vanishes. If �min > �þ, there must

be a jump discontinuity at the leading edge.
Thus an inflection point in the current-density relation

signals a rarefaction wave discontinuity. Such an inflection
point must exist for any facilitation mechanism, since
J��ð��Þ< 0 at the maximum �� and J�� > 0 for small �.

One example of such a current-density relation is J � ��þ1

as � ! 0 that arises for distance facilitation with hopping
rate ‘��.

In summary, facilitated asymmetric exclusion has fea-
tures that are dramatically different from simple asymmet-
ric exclusion. The most prominent is the jump
discontinuity at the leading edge of rarefaction waves.
This phenomenon arises in a broad class of cooperative
transport models with facilitated dynamics.
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[17] C. A. Tracy and H. Widom, Commun. Math. Phys. 290,

129 (2009); J. Math. Phys. (N.Y.) 50, 095204 (2009); J.

Stat. Phys. 137, 825 (2009).
[18] G. Ben Arous and I. Corwin, arXiv:0905.2993.
[19] I. Corwin, P. L. Ferrari, and S. Péché, J. Stat. Phys. 140,
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