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Dissolution in a field
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We study the dissolution of a solid by continuous injection of reactive “acid” particles at a single point,
with the reactive particles undergoing biased diffusion in the dissolved region. When acid encounters the
substrate material, both an acid particle and a unit of the material disappear. We find that the lengths of the
dissolved cavity parallel and perpendicular to the bias grow?/&s ) andt¥@*1) respectively, ind dimen-
sions, while the number of reactive particles within the cavity grows*45 ). We also obtain the exact
density profile of the reactive particles and the relation between this profile and the motion of the dissolution
boundary. The extension to variable acid strength is also discussed.
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I. INTRODUCTION Il. THE MODEL

. . : : . We consider the following microscopic dissolution pro-
The dissolution of a solid material by contact with a re- . o : . .
. . . . cess(Fig. 1. Initially, all sites are unreacted. Acid particles
active fluid is a fundamental process that underlies corrosion "' . o . ) ;
are injected at ratd at the origin of ad-dimensional solid
substrate. After injection, an acid particle undergoes biased
X ) ) ) @ftfusion until it hits a site at the interface between unreacted
also be viewed as the melting of a solid by heating the mag hstrate and the dissolved cavity. In this interaction, both
terial at a single point in the interidi7]. These types of he host substrate site and the acid disappear. We can think
dissolution(or melting processes are described by the mo-of the acid as having unit strength so that one acid particle
tion of the interface between the reactive fluid and the solidgnd one substrate particle are consumed in a reaction. Later,
In many situations, molecular diffusion is the transportwe will generalize to allow acid to dissolve many substrate
mechanism for the reactive particles, and this leads tgites before being neutralized. In the context of melting, we
diffusion-controlled moving boundary-value problefi@9].  can think of particle injection as the localized input of heat
In this paper, we consider the kinetics of this dissolutionand dissolution as the melting of the solid when heat reaches
process when there is a superimposed bias on the diffusivthe interface.
motion of the acid. Such a bias can be easily realized, for In the limiting case where the reactive particles undergo
example, by an electric field acting on ionized particles, orisotropic diffusion, the resulting dissolution process has been
by a gravitational field or a pressure gradient acting on @xtensively studied, both in the context of meltiig and in
flowing fluid. We find that the bias is a relevant perturbationthe framework of diffusion-controlled reactio0]. Here
with respect to molecular diffusion and gives rise to a dissothe radius of the dissolved regidt(t) grows as {Int)”*and
lution process different from that caused by isotropic diffu-as t* for spatial dimensiord=1 andd=2, respectively.
sion [10]. As a function of time, the size of the dissolved The Qensny profile of'the acid particles is also radially sym-
region grows continuously and preferentially in the directionMetric and asymptotically approaches a steady state as a
of the bias(Fig. 1). The basic questions that we shall study function of the scaled radial distanc£R(t). _
are the density profile of the acid particles inside the dis- These results have a simple origin.dr=1, for N diffus-
solved cavity, as well as the shape and time dependence B9 particles initially located at the origin, the furthest par-
the boundary between the fluid and unreacted material. ~ ticle from the origin after timet will be a distance of the
In Sec. II, we first define the model and write the reactionorder of ¢InN)1/2 [11]. Thus, if At acid particles are in-
diffusion equation that governs the density of reactive parJected continuously at the origin, the most distant particle,
ticles in the continuum limit. In Sec. Ill, we then solve for
the steady-state density profile of reactive particles in the
dissolved cavity. This profile satisfies the anisotropic R@.H) =
Laplace equation, which is the time-independent limit of the
basic equation of motion. In Sec. IV, we investigate the mo- ; i
tion of the interface and determine the different characteristic
lengths of the cavity in the directions parallel and perpen- A
dicular to the bias. We briefly summarize in Sec. V and also
discuss a generalization of the system to variable acid FIG. 1. Schematic illustration of the dissolution process. Reac-
strength. tive particles(dotg are continuously injected at rate at a single
point (circle). Each particle undergoes biased diffusion, with bias in
the parallel direction. When a particle reaches the boundary of the
*Present address: Center for Biomedical Engineering, Massachutissolved cavity, a unit of the host material and the particle both
setts Institute of Technology, Cambridge, MA 02139. disappear.
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and therefore, the position of the interface should be . A
(t In\t)Y? from the origin. Ford=2, since each acid particle c(k)= ——.
dissolves a single substrate particle, the dissolved volume DK"—ivky
can be at moskt. Consequently, the radius can be no larger, : : : - : :
thant'® for d=2. Within the dissolved cavity, the density Icrgvnecrgggatt?ésn Fourier transform gives the steady-state acid
profile of acid particles away from the interface approaches a
static limit for d>2. This density profile thus obeys the R
Css(r)zf

(4)

Laplace equation and decaysr&s 9. Ford<2, the density c(kye kT

profile is not static and it can be obtained conveniently by a (2m)°

scaling solutior{10]. kT
In the presence of the bias, we need to consider separately _ f dk

the growth parallel and perpendicular to the bias. The dy- (2m)D IZZ—iukX/D

namics of this anisotropic dissolution process is governed by
c(F,t), the concentration of acid at positian within the

dissolved region at time. This concentration obeys the N (277)de dkk2+(52/D)2'
convection-diffusion equation

-

e—ilZ~r‘+vX/2D

>

©)

In the last step, we complete the square in the denominator

Jc  ac ) . and then shifk, by k,—iv/2D. The last integral in Eq5) is
Eﬂtv&—DV CH+AS(r), (0] [13],
R )\eux/ZD v di2—-1 or
subject to the absorbing boundary conditiofr,t)=0 for Cs4f>:(2W—D)d/z z_r) Kd’“(ﬁ)' (6)

Ir|=R(6,t), whereR(4,t) is the radius of the moving inter-
face as a function of andt (Fig. 1). Here, we have taken the \yhereK,_, is the modified Bessel function.
bias direction as along. The motion of the interface is then  Thjs exact solution has very different forms in the regions

governed by the flux of acid onto the interface x>0 andx<0. In the interesting case &&0, we substitute
the asymptotic expansidf,(z) ~ (7/2z) %% [14] into Eq.
IR R (6) to obtain
St~ KDVeli—ruy . @ N/ p (@12
CSér)~;(4ﬂ-Dr) e—v(r—x)/ZD_ (7)

whereK is the parameter that quantifies the acid strength.
Here, we define this constant to be one and later generalize {g the special cases af=1, 2, and 3, this reduces to
arbitrary acidity. Notice, also, that there is no convective

contribution to this flux ¢c) because of the absorbing [\
boundary condition. o’ d=1

A basic feature that simplifies much of the analysis is that
the density profile of the acid within the dissolved region is cud) = A T I T ®
stationary in time except near the boundary. This arises be- s '

. ! ; VamDuor

cause the input of particles compensates for their loss at the
boundary. This same simplifying feature, which also applies A e v(r=x)/2D d=3.
in the case of isotropic diffusion fat>2, ultimately stems | 47Dr '

from the transient nature of biased diffusipt?]. We now

exploit this stationarity to obtain the exact concentration pro-Conversely, fox<0, c.{r) decays exponentially as a func-

file of acid within the dissolved cavity. tion of the distance from the origin, with the length scale of
this decay proportional t®/v.

Ill. STEADY-STATE CONCENTRATION PROFILE
_ _ S IV. INTERFACE MOTION
Setting the time derivative in Eq1) equal to zero, an

anisotropic Laplace equation results. For zero bias, this gives To0 gain a fuller appreciation for time-dependent features

the classical Laplace equation with steady-state solutiodnd the motion of the interface, we have performed Monte
cedr)=r2=9 for d>2. To find the corresponding solution in Carlo simulations of the dissolution process. Our simulations

the presence of a bias, we perform a Fourier transform of th@"€ Pased on simply tracking the motion of all the reactive-
anisotropic Laplace equation to yield particles. Each partlclg perfprms a blased.nearest-nelghbor
random walk on ad-dimensional hypercubic lattice, with
g hopping probability equal to 1/@ in the 2d—2 directions
—Dk7c(k) +ivkye(k) +N=0, (3 perpendicular to the bias, and equal to H{Z p, <1/d and
p_=1/d—p, <p. inthe =x directions, respectively. These
with solution hopping probabilities give a bias velocity=p,—p_, as
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40 — - ity (v,—v)/(—pv). Since the reaction has the symmetrical
stoichiometryA(acid)+ B(substrate)-0, the two velocities
20 under conditions of unit flux must be equal. This then leads
to the interface velocity
> 0
=Nv/(\+ . 9
0 v1=Ao/(\+pu) ©)
40 () 50 100 150 200 Forr=R, the density profile decreases sharply from the
X constant value\/v [Eq. (8)] to 0. Because the dissolution

. : : rocess is equivalent to the reactid#- B— 0 with compo-
FIG. 2. Typical shape of the dissolved region on the squareP . . . .
lattice aftert=10" time steps. Reactive particles and sites on thenents approachmg each Other at finite velocity, the width of
dissolution boundary are denoted by crosses and circles, respeTLhe 'reactlon front is proportional D/.U_ and does not grow
tively. The injection point is atx,y) = (0,0) and the bias velocity is " fime [15,16. We have also verified these features by
v=0.2. For this velocitypt>2Dt, and thus, the system is far Monte Carlo simulatior{data not shown

beyond the initial transient regime.

well as a superimposed isotropic diffusion process, with the B. Dimensionsd=2

diffusion coefficient in all coordinate directions equal to . .
1/2d. Henceforth, we fix the injection rate to he=1. Each For d=2, let us locate the reﬁactlve* particles 9by the
lattice site is initially regarded as one unit of solid material d-dimensional cylindrical coordinates= (x,r ), wherer , is
that disappears when it is contacted by a reactive particle. the (d—1)-dimensional radial vector perpendicular to the
The choice of the bias in our simulations is dictated byaxis. Similarly, we writeﬁz(RH ﬁh) to denote the position
basic physical considerations. If the bias velocity is t00of the interface. Since the dissolved cavity grows predomi-
small, there is a long crossover time before the bias dominantly along the direction of the bias, we focus our attention
nates over the diffusion. On the other hand, for a bias velocyp, this downstream portion of the interface.
ity that is close to the maximum value ofdl/the length of We now determine how; andR, depend on time. Let us
the dissolved region becomes extremely large and this resggyme thaR;~t*l and R, ~t"*. Since the motion of the
quires considerable computer memory to store the data of theactive particles in the transverse direction is diffusive, we

system map. For these reasons, we found it optimal to congy et thaRLOCRﬁ/2~t”H/2. Then the volume of the dissolved
sider intermediate values of the velocity. . region is proportional toV~RR{ 1 ~t@+*1"/2 Since v
As a fun_ctlon .Of time, an eIhpUcaIIy-shape_d dissolved cannot grow faster thaint, we must have d+1)v/2<1.
cavity grow in which the interface remains relatively smooth : ' I
. . .0On the other hand, i/ were to grow slower thant, the
(Fig. 2. This smoothness stems from the same mechanism

- L e L number of reactive particles in the dissolved region would
tha_t lead to preferenUaI tp .ngth In dlffu3|on—l!m|t¢d ag9re- pave to grow with time, in contradiction with the steady-state
gation. If there is a protrusion on the surface, it will be pref-

erentially dissolved because of the tendency for a diffusin density profile derived above. Thug,should grow linearly

particle, even in the presence of a bias, to contact such pr%’_\—lgzcgme’ from which we conclude that;=2/(d-+1).
trusions first. Within this cavity, there is a distribution of '

mobile reactive particles that have not yet reached the inter-

face. These physical characteristics have different depen- R~t2@+ D R ~ A+, (10
dences in spatial dimensiat=1 and in higher dimensions;

we therefore discuss these two cases separately.
These predictions are in very good agreement with our nu-

merical simulationgFig. 3).
The dependence @ ont can also be determined inde-

We first apply a simple flux balance argumdn6] to  pendently from the density profite(r,t). Similar to the case
show that forx>0, the interface boundar(t) moves with of d=1, C(F,t) approaches.. far from the interface, while

a fixed propagation velocity — defined to be — which is 2 4 ¢ i f the interf
less than the particle velocity. Since the input of reactive- CVS/rh'ic)h ?;;?dq;ege?a;s\]ffo';%gv;vg (F(i)g;m4)nle:?cr)m ;\éninesre?ce'
particles occurs at rate, the particle flux in the+ x direc- to this figure, we see that the width of this front does not

tion is simply\. Thus, a unit flux would lead to an interface row in time. Using Eq(2), w N then roximate th
velocity v, /\. On the other hand, in a reference frame that9° €. Using Eqls), we can then approximate the

moves at velocity, the reactive particles are at rest while €quation of motion for the interface @&~ Csyw, wherew
the substrate particlesvith densityp) move with velocity ~ ~D/v is the width of the front. Substituting the asymptotic
—v. In this moving frame, a flux of substrate particles €xpansion foK,(2) in Eq.(6) then givesced R)) ~Rf*~ 9.
—pv would lead to the interface moving at velocity—v. Using this inR~cgs/w, we obtainRj~(t/w)2/(d+1), in
Therefore, a unit particle flux would give an interface veloc-agreement with Eq(10).

A. One dimension
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FIG. 3. Plot of R versust on a double logarithmic scale far

=2 and 3(bias velocityv = 0.3 for both casgs The data represent | FlG'_ 5. Plot (,Jf InN(Y VErsus It. The data are from the same
averages over 500dE2) and 1000 ¢=3) realizations and are simulations as Fig. 3. The inset shows the local slopes that appear to

taken at time 1.2with n<63. The inset shows the local slopes of converge 10 2/3 and 1/2 fat=2 and 3(dashed lings consistent

the data versus 1/ln These appear to converge to 2/3dir 2 and with Eq. (13).

1/2 ind=3 (dashed lines in agreement with Eq.10).
From this form, we easily obtain the time dependence of

C. Scaling for the density profile the total number of active particlég(t) to be

To obtain the number of reactive particles, it is convenient
to express their density profile in a scaled form. Based on the
time dependences @} and R, , we introduce the scaled

variables & =x/t?@*Y) and & =r, /t** D In terms of
these scaled coordinates, ~t2’(d“)f d¢jdé, f(&.€.1),

N(t):dec(F,t),

R 1 &2 _L2Kd+1)
r:(Xz+ri)l/zztz/(dﬂ)g”Jr 5 ?; (11) t . (13

Using the asymptotic expansion Kf,, and substituting the
scaled variables into E6), we obtain the scaling form for
the density profile

This prediction is also in excellent agreement with our simu-
lations (Fig. 5).
Alternatively, N(t) equals the difference between the

number of injected particles and the volume of the dissolved

R v ﬁ region. We use this fact to provide a more precise form for
(g€, f)~t7 (@D grd2 ex;{ ~5p f)’ the time dependence of the dissolved volud(¢). By mul-

| tiplying Eqg. (2) by the surface elementS, integrating over

=t~ (@D Df(g ¢)). (12)  the dissolution interface, and using Ed), we have

2 .
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FIG. 4. Density profile of reactive particles th=2 along thex (
axis at equally spaced times on a logarithmic scale. The bias veloc- FIG. 6. Scaled boundary profiles for acid strengtih 1 andA
ity is v=0.2. The data represent averages over 1500 realizations=5 at different times. All graphs are on the same scale. The coor-
Inset: same data on a double logarithmic scale. Except for theinates are divided byAt)”, with v=2/3 for the horizontal scale
sharply decreasing interfacial region, the profilgx,0)xx"*2[see  and »=1/3 for the vertical scale. The smaller contours are Aor
Eq. (8)]. =5,
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- f dV [dc+vac—Nd(r)]

dN
dt

+A. (14

The left-hand side is simply equal Y& Therefore, we obtain
the obvious conservation equatiod/¢t)(V+N)=\. Then

Eq. (13) gives V(t)~\t—at?@*D wherea is a constant
related to the integral in Eq13).

V. DISCUSSION

PHYSICAL REVIEW E64 041606

an acid particle dissolves>1 substrate sites before becom-
ing neutralized(strong acigl In the current modelp=A
=1. The casé>1 is equivalent to having a particle density
in the substratep equal to 1A and with an acid particle
dissolving one substrate particle. Incorporating this scaling
behavior into Eq(2) for the interface motion we have

R D_.
E:—;VCM:R(M)- (15

For p>1, the dissolution boundary becomes smoother
and grows more slowly since it takes many acid particles to
dissolve each substrate site. Fbe 1, this follows immedi-
ately from the expression,=\v/(\+pv) which was ob-
tained from the flux balance argumei8ec. IV A). In gen-
eral, Egs.(1) and (2) are invariant after normalizing
—c/p and rescaling.—\/p. This means that a change of
the substrate density or acid strength will only change the
time scale through the injection rate. We have tested this

In this paper, we studied the dissolution of a substratg,ypothesis by simulations in which acidifyvaried between
when acid particles are continuously injected at a single"ang 160. At short times, the dissolution boundary appears
point and there is an external field that causes these particles pe much rougher fos<1. Asymptotically, it appears that
to undergo biased diffusion. The basic quantities of interesfne poundaries for different values pfapproach a common
in this process are the concentration profile of the acid an¢mit. The overall effect of varying the acidity is simply to
the growth kinetics of the dissolved region. Within the dis'change the time scale. However, the subdominant terms to
solved region, the acid concentration follows the steady-statgqs_(lo) and(13) seem to have strong acidity dependence so

profile of biased diffusion; this is just the solution of the

that there is a long-lived transient correction to this simple

anisotropic Laplace equation. The shape of the dissolved resajing behaviofFig. 6).

gion is strongly anisotropic with its length growing in time

as §~t?@*1) while the transverse width grows as
Ntlléd-%—l).

A simple and relevant extension of our model is to the
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