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Rapid Note

Logarithmic islanding in submonolayer epitaxial growth
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Abstract. We investigate submonolayer epitaxial growth with a fixed monomer flux and irreversible ag-
gregation of adatom islands due to an effective island diffusion, with a diffusivity for an mass k island
proportional to k−µ. For 0 ≤ µ < 1, there is a steady state, while for µ ≥ 1, continuously evolving log-
arithmic islanding occurs in which the island density grows extremely slowly, as (ln t)µ/2. In the latter
regime, the island size distribution exhibits complex, but universal, multiple-scale mass dependence which
we account for theoretically.

PACS. 68.35.Fx Diffusion; interface formation – 36.40.Sx Diffusion and dynamics of clusters –
66.30.Fq Self-diffusion in metals, semimetals, and alloys

Submonolayer epitaxial thin film growth involves depo-
sition of atoms onto a substrate and diffusion of these
adatoms, leading to their aggregation into islands of ever-
increasing size [1]. The resulting island morphology and
mass distribution depend intimately on the microscopic
hopping mechanisms of the adatoms. While this connec-
tion has long been recognized [1], its ramifications are still
incompletely understood. Experimentally [2], it has been
demonstrated that arbitrarily large islands diffuse due to
various adatom hopping processes [3,4]. This effective is-
land diffusivity Dk has been found to have a power-law
dependence on mass k, Dk ∝ k−µ, with µ typically in the
range (1/2, 3/2) [2–5]. A basic issue is to determine how
this diffusivity affects the distribution of island sizes.

In this paper, we provide a comprehensive description
in a minimal model for epitaxial island growth in the sub-
monolayer regime. Simple and definitive theoretical pre-
dictions emerge which depend only on the mobility expo-
nent µ. For 0 ≤ µ < 1, a steady state arises in which the
concentration of islands of mass k is given by ck ∝ k−τ ,
with τ = (3 − µ)/2. For µ > 1, the island density grows
as (ln t)µ/2, while the island mass distribution exhibits a
complex but universal mass dependence. Our approach
should apply to any epitaxial system in which the diffu-
sivity of an island vanishes more rapidly than inversely
with its mass.

A classic approach to calculate the island mass distri-
bution is based on the Smoluchowski rate equations [6].
This method requires knowledge of the rate Kij at which
an island of mass i and an island of mass j aggregate to
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form an island of mass i + j. In the diffusion-controlled
limit, this aggregation rate is given by the Smoluchowski
formula Kij ∼ (Di +Dj)(Ri +Rj)

d−2 [6]. Here Ri is the
linear size of an island of mass i and d is the spatial di-
mensionality of the substrate. This Smoluchowski formula
is applicable in d > 2, while in the relevant case of two di-
mensions, the reaction rate depends only logarithmically
on the island size [6]. A crucial element in our analysis is
to ignore this logarithmic dependence [7] and thus posit
that the form of the reaction rate is independent of the
geometrical size of islands. This allows us to treat islands
as point-like throughout their evolution, a feature which
further justifies the validity of a rate equation analysis and
also leads to enormous simplifications in simulations.

With Dk ∝ k−µ and an appropriate choice of time
units, the reaction rate in two dimensions becomes

Kij = i−µ + j−µ, (1)

and the Smoluchowski rate equations are

dck

dt
=

1

2

∑
i+j=k

Kijcicj − ck

∞∑
j=1

Kkjcj + F δk1, (2)

where F is the monomer flux. The rate equations (2) rep-
resent a mean-field approximation in which spatial fluctu-
ations are neglected, and also a low-coverage approxima-
tion, since only binary interactions are treated.

Let us first consider the behavior in the steady state
regime. To solve the rate equations in this case, we
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introduce the two generating functions

C(z) =
∞∑
k=1

ckz
k, Cµ(z) =

∞∑
k=1

k−µckz
k. (3)

Multiplying equation (2) by zk, and summing over all k,
gives

Cµ(z)C(z)− Cµ(z)N − C(z)Nµ + Fz = 0. (4)

Here N = C(z = 1) =
∑
ck is the total island density and

Nµ = Cµ(z = 1) =
∑
k−µck.

We now assume an algebraic decay of the steady state
concentration, ck ' C/kτ as k → ∞. For this power law
to hold, the exponent τ must be greater than 1, so that∑
k−τ converges; this leads to the condition µ < 1 for

the mobility exponent, as will be shown below. From ba-
sic Tauberian theorems [8], the asymptotic form for ck
induces the following power-law singularities in the gener-
ating functions as z → 1

C(z) = N + CΓ (1− τ)(1 − z)τ−1 + . . . ,

Cµ(z) = Nµ + CΓ (1− τ − µ)(1− z)τ+µ−1 + . . . (5)

The leading constant factor in each line is finite and co-
incides with the definition given in equation (3) if the ex-
ponent of the second term is positive. Otherwise, the con-
stant factor vanishes and the generating function has a
power-law divergence as z → 1. Substituting these expan-
sions into equation (4) and matching the leading behavior
in (1− z) leads to the decay exponent τ = (3− µ)/2. The
condition for a steady state to occur, τ > 1, thus imposes
an upper bound on the mobility exponent, µ < 1. From
matching the leading behavior in (1 − z), the constant
C may also be determined, from which the island mass
distribution in the steady-state regime 0≤ µ < 1 is

ck '

√
F (1− µ2) cos(πµ/2)

4π
k−(3−µ)/2. (6)

This mass distribution holds only up to a cutoff K(t) ∼
tζ whose value is determined by requiring that the mass
injected into the system equals Ft. Islands of mass greater
than K(t) have not yet had time to form. Therefore

M(t) =
∞∑
k=1

kck(t) ∼

K(t)∑
k=1

k(µ−1)/2 ∼ t(µ+1)ζ/2, (7)

implying ζ(µ) = 2/(µ+ 1).
For µ ≥ 1, we shall show that the system continuously

evolves, but at a logarithmic rate. When µ > 1, the density
of islands and the concentration of islands of size k �
ln(t
√
F ), respectively, are

N(t) '
√
F

[
sin(π/µ)

π
ln(t
√
F )

]µ/2
, (8)

ck(t) ∼
√
F (k!)µ

(
ln(t
√
F )
)−µ(2k−1)/2

.

In the borderline case of µ = 1, nested logarithmic behav-

ior arises with N(t) ∼
√
F ln(t

√
F )/ ln(ln(t

√
F )).

Our argument leading to equations (8) is based on the
physical picture that the system evolves slowly because
the growth of islands by aggregation is counterbalanced
by the input of monomers. These competing effects lead
to nearly time-independent island concentrations over an
“inner” size range, while more strongly-time-dependent
behavior occurs in an “outer” range of the largest island
sizes. In the inner region, this picture motivates the use of
the quasi-static approximation, where the time derivative
in equation (2) is initially neglected, from which relative
island concentrations are obtained. The time dependent
absolute island concentrations are then determined by the
condition that the total mass in the system is proportional
to t. The validity of this approach may be verified a poste-
riori, where the logarithmic dependences in equations (8)
imply that the temporal derivatives in the Smoluchowski
rate equations are asymptotically negligible.

Within this quasi-static framework, equations (2) be-
come

0 = 1− c1 (N +Nµ) ,

0 =
1

2

∑
i+j=k

(
i−µ + j−µ

)
cicj − ck

(
k−µN +Nµ

)
. (9)

Further, by summing equations (9) over all k, the total
island density in the quasi-static limit obeys

0 = 1−NNµ. (10)

In equations (9, 10) we have eliminated the input rate by

the scale transformation ck →
√
F ck, and have also scaled

the time variable by t → t/
√
F so that the mass density

obeys M(t) = t.
Equation (10) immediately gives Nµ = N−1, and then

from the first of equations (9), c1 ' 1/N . The remainder
of equations (9) may then be solved recursively. By writing
the first few of these equations, it is immediately evident
that the dominant contribution to ck is the term in the
quadratic product which is proportional to c1ck−1. If we
keep only this contribution, the resulting recursion may
be straightforwardly solved to yield

ck '
1

N

k∏
j=2

(1 +N2j−µ)−1
k−1∏
j=1

(
1 + j−µ

)
≡

1

N

k∏
j=2

Bj

k−1∏
j=1

bj .

(11)

Since Bj � 1 for jµ � N2 and Bj → 1 for jµ � N2,
this leads to ck being a rapidly decreasing function of k
for k � N2/µ ≡ κ, and then converging to a finite value
defined to be ρ for k > κ (inset to Fig. 1).

To solve for ck, first note that for µ > 1 the product∏
j bj converges, so that it may treated as constant. We

then write the product over the Bj as the exponential of
a sum and take the continuum limit. This leads to

ck ∼
1

N
exp

[
−N2/µ

∫ x

0

ln(1 + w−µ) dw

]
, (12)
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Fig. 1. Plot of ln ck(t) versus k at t ≈ 22 000 for µ = 1.5. The
data is based on 5000 realizations of an initially empty system
of 2000 sites with F = 0.05. This figure shows the existence
of an inner scale k . κ ≈ 100 (inset) and an outer scale for
k ≈ K ≈ 4000.

where w = j/N2/µ and x = k/N2/µ. For µ > 1, the
integral in equation (12) converges as x → ∞ and the
limiting value ρ may be determined by taking the upper
limit of the integral as infinite. This gives

ρ ∼
1

N
exp

[
−AµN

2/µ
]
, (13)

with Aµ =

∫ ∞
0

ln(1 +w−µ) dw = π/ sin(π/µ). Within the

quasi-static approximation, this constancy in ck should
persist over the range, κ . k � K.

However, this quasi-static approximation is inadequate
in the outer region k � κ, because the temporal decay of
the densities becomes important in this size range. We
therefore separately account for the distribution of these
“raw” (evolving) islands and then perform a matched
asymptotic expansion [9], to join the inner (k � K) quasi-
static solution of “ripe” islands to the outer solution of
raw islands in the overlap region κ � k � K. We shall
see that κ ∼ ln t and K ∼ t/(ln t)µ/2, so that the matched
asymptotic expansion is valid.

In the outer region, the maximal reactivity of large is-
lands is with monomers and the asymptotically dominant
terms in the rate equations are [10]

dck

dt
= c1 (ck−1 − ck) . (14)

Since these raw islands are large, we employ the continuum
limit of equation (14),(

∂

∂T
+

∂

∂k
−

1

2

∂2

∂k2

)
ck(T ) = 0, (15)

where T =

∫ t

0

dt′ c1(t′). If we neglect the diffusive term,

the solution of the resulting wave equation is ck(T ) =
f(T − k), with f(x) arbitrary. Matching with the inner
solution, we get

ck(T ) = ρ(T − k), (16)

where T has to be determined self-consistently. Thus the
density of relatively large islands, with k of the order of
T , equals the density of the smallest islands; this is the
mechanism that leads to the peak in ck(t) (Fig. 1). The
above formula also provides the estimate k = K ≈ T for
the cutoff size beyond which the island density vanishes.

To close the solution, we need to determine the time
dependence of the total island density N and hence the
absolute island concentrations. To accomplish this, we use
the sum rules for the mass and island densities,

∑
kck =

M ≡ t and
∑
ck = N . These imply

t =

∫ T

0

du (T − u)ρ(u), N =

∫ T

0

du ρ(u). (17)

In both integrals, the subdominant contribution due to
small islands has been neglected; further, the second term
in the first integral is negligible. The second sum rule also

gives
dN

dT
= ρ(T ). Combining this with equation (13), we

find

ρ(T ) ∼
(lnT )µ/2−1

T
(18)

and we also obtain equation (8). The raw island size dis-
tribution, obtained by combining equations (16, 18), is,

ck(T ) ∼
[ln(T − k)]

µ/2−1

T − k
, (19)

which is singular at k = K = T . Near the mass cutoff, T−
k ∼
√
T , this singularity is smoothed out by the diffusive

term in equation (15). Thus instead of the singularity, the
density of raw islands reaches a peak value of the order of
t−1/2 and then rapidly vanishes.

To check our prediction for ck, we simulated the mean
field limit of submonolayer epitaxial growth. In the simu-
lation, a point island of mass k moves equiprobably to any
site with a probability proportional to k−µ, as mandated
by the power-law mass-dependent island diffusivity. There
is also irreversible aggregation whenever two islands meet,
as well as a steady monomer flux entering the system. We
observe that N(t) grows extremely slowly with time and
that ck(t) has a complex mass dependence where ck(t)
first decreases extremely quickly with k, then increases at
a slower rate over a substantial range in k, and finally ex-
hibits a peak when k ≈ K, in agreement with our theory
(Fig. 1).

In the borderline case µ = 1, subtler nested logarith-
mic behavior arises, as reflected by the additional singu-
larity in equation (8) as µ→ 1. In this case, the contribu-
tion of the next leading term c2ck−2 in the rate equations
(Eqs. (9)) is relevant and we find that for k � N2, ck has
similar qualitative behavior as in the case µ > 1, but the
analog of equation (13) is now ρ ∼ exp

[
−N2 lnN2

]
. Par-

alleling the analysis of the case µ > 1, the total island
concentration and the concentration of islands of mass
k� N2 are (compare with Eqs. (8))

N(t) ∼
√

ln t/ ln(ln t), (20)

ck ∼ (k + 1)! [ln t/ ln(ln t)]−(2k−1)/2
.
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Over the intermediate-mass range κ . k � K, the density
is approximately constant, ck(T ) ' ρ(T ), with

ρ(T ) ∼ T−1(lnT )−1[ln(lnT )]−1. (21)

Finally, the raw island density given by equations
(16, 21) holds up to a mass cutoff which is now K(t) ∼
t
√

ln(ln t)/ ln t.
To apply our results to real submonolayer epitaxial

systems, note that in the submonolayer regime, the cov-
erage must be small, that is, M ≡ Ft � 1 [12]. On the
other hand, the asymptotic predictions of our theory apply
when t

√
F � 1. Consequently, our results should be valid

in the time range F−1/2 � t � F−1. Since the (dimen-
sionless) flux F is small in epitaxy experiments, the time
range over which our theory will apply is correspondingly
large. A further connection with experimental results is to
determine the island density at the end of the submono-
layer regime, tmax ∼ F−1. Our theory predicts that this
island density attains the value

Nmax ∼ F
1/2[ln(1/F )]µ/2. (22)

Various investigations found that Nmax varies as Fχ, with
flux exponent typically in the range 1/3 ≤ χ ≤ 1/2
[11,13]. In fact, for the class of models where only islands
of up to a given size diffuse and larger islands are immo-
bile, the flux exponent depends on this cutoff [13]. Fortu-
nately, the generic situation of power law mass-dependent
island diffusivity is simpler, and the flux exponent is inde-
pendent of the mobility exponent, although the subdomi-
nant logarithmic factor does depend on the mobility expo-
nent. This leads to a corresponding µ dependence for the

effective flux exponent χeff =
1

2

[
1− µ

ln(ln(1/F ))

ln(1/F )

]
, a

feature which may be useful for interpreting experimental
and numerical data.

Finally, our approach can be applied to any mass-
dependent island diffusivity which decays faster than its
inverse mass. For this general situation, the analog of

equation (11) is ck ∼ N−1
∏k

(1 +Dj)(1 +N2Dj)
−1. For

example, if the diffusivity decays exponentially in island
mass, Dk ∼ e−2ak, a case investigated numerically in ref-
erence [14], we obtain N(t) ∼ exp(

√
a ln t). This unusual

growth – faster than any power of logarithm but slower
than any power law – would be difficult to deduce by nu-
merical methods alone. Correspondingly, the maximum is-
land density is

Nmax ∼
√
F exp

[√
a

2
ln(1/F )

]
, (23)

so again χ = 1/2. Numerically, the exponent χ was found
to be a decreasing function of a [14].

In summary, we determined the kinetics of islanding in
submonolayer epitaxial growth, for which adatom hopping
induces a power-law mass-dependent island diffusion, with
Dk ∝ k−µ. For mobility exponent 0 ≤ µ < 1, a steady
state island concentration arises. For µ ≥ 1, logarithmic
time dependence arises in which the total island density

N(t) ∝ (ln t)µ/2. Such a logarithmic dependence, a feature
which generally signals marginal behavior, occurs in the
entire regime 1 ≤ µ < ∞. The island mass distribution
exhibits a rich dependence, with a precipitous decay in
a “boundary layer” k � κ (with κ ∼ ln t); a gradual
growth in the main part of the mass distribution κ <
k < K (with K ∼ t(ln t)−µ/2); followed by an internal
layer |k −K| ∼

√
t where the density of islands reaches a

peak and then sharply vanishes. Our analysis also suggests
that for all epitaxial systems with the diffusivity of an
island decaying more rapidly than its inverse mass, Nmax
is universally proportional to F 1/2 times a subdominant
model-dependent factor, as in equations (22) or (23).
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