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We investigate the kinetics of submonolayer epitaxial growth which is driven by a fixed flux of monomers
onto a substrate. Adatoms diffuse on the surface, leading to irreversible aggregation of islands. We also
account for the effective diffusion of islands, which originates from hopping processes of their constituent
adatoms, on the kinetics. When the diffusivity of an island of nlassales ak™ #, the (mean-field Smolu-
chowski rate equations predicts steady behavior fanB<1, with the concentratior, of islands of masg
varying ask~®~#"2 For =1, a quasistatic approximation of the rate equations predicts a slow continuous
evolution, in which the island density increases astffi. A more refined matched asymptotic expansion
reveals unusual multiple-scale mass dependence for the island size distribution. Our theory also describes basic
features of epitaxial growth in a more faithful model of growing circular islands. For epitaxial growth in an
initial population of monomers and no external flux, a scaling approach predicts power-law island growth and
a mass distribution with a behavior distinct from that of the nonzero flux system. Finally, we extend our results
to one- and two-dimensional substrates. The physically relevant latter case exhibits only logarithmic correc-
tions compared to the mean-field predictiof$0163-182€09)09223-1

[. INTRODUCTION also typically leads to islands maintaining compact shapes,
an important simplifying feature for theoretical modeling.

Submonolayer epitaxial thin-film growth involves deposi- The goal of this paper is to determine the aggregation
tion of atoms onto a substrate, and diffusion of these adatomdnetics of compact islands in the submonolayer regime with
(monomery leading to aggregation of islands of ever- power-law and more general mass-dependent island
increasing sizé2 The resulting island morphology and mass diffusivities 1° An essential, and at first sight surprising, fea-
distribution ultimately depend on these substrate diffusiorfure about such compact islands is that their reactivity de-
processes. While it has long been recognized that these magends only logarithmically on island size in two dimensions.
transport details are crucial to epitaxial growtits ramifica-  Accordingly, our theoretical treatment is based on a model of
tions are still incompletely understood. Part of the reason fopointlike islands. Such a description should accurately de-
this slow progress is that a variety of microscopic details carscribe island growth, up to these logarithmic corrections in
and do influence the rate at which adsorbate islandtghe low-coverage limit.
move3-1° Within the mean-field Smoluchowski rate equations, we

One direction of previous investigation was based on awill consider a system with(i) a fixed monomer flux(ii)
picture that only monomers can diffuse, while larger islandgpointlike islands with diffusivity which decays faster than
are immobile?~ In this case, the island densityscales with  inversely with island mass, andii) irreversible mass-
time ast'® before it reaches a maximum density which conserving coalescence of islands. We will show that the
scales with fluxF asFY3. Subsequent work revealed, how- number of islands grows logarithmically in time, and that the
ever, that basic results are sensitive to minor alterations tisland mass distribution exhibits a multiple-scale mass de-
the mass transport mechanism. For example, if both mongeendence. Our predictions are also found to apply to a more
mers and dimers diffuse while larger islands remain immo-faithful model of epitaxial growth in which islands are grow-
bile, the exponents of the time and flux dependencedg circles, with the radius of a magsisland proportional to
change’® More generally, these exponents depend on the/k. Thus the point-island model provides a useful frame-
threshold size between mobile and immobile islands. work to describe submonolayer epitaxial growth, and gives

On the other hand, there has been increasingjuantitative predictions which are robust to variations in
appreciatioht ™% that adatom hopping continues to occur model parameters.
even when adatoms are incorporated into islands of arbitrary In Sec. Il, we introduce our model and discuss the appli-
size. This leads to a nonzero diffusivity of such islands. Forcability of the Smoluchowski approach to epitaxial growth.
appropriate systems and experimental conditions there ik Sec. Ill, we present our main results about the asymptotic
ample evidence that the effective island diffusivily has a  growth of islands based on the rate equations. Different be-
power-law dependence on mds5 14 This adatom hopping haviors arise depending on whether the mobility exponpent
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is smaller than, larger than, or equal to unity. We also disthe edge of an island can hop freely to neighboring sites on
cuss the flux dependence of the maximum island density anithe periphery. Consider an island of linear sRe 1. In a

the time range where our theory should apply. In Sec. IV, weime interval At~R? an adatom on the edge will typically
briefly discuss island growth kinetics in the absence of exexplore the entire island boundary, so this adatom will typi-
ternal flux. In Sec. V, we present numerical simulations, andtally be a distanceR from its initial location. Hence the
compare results for the epitaxial growth of point islands anceffective island center-of-mass displacementsis~R/R?
growing circular islands with radius proportional {&. Sec- =R~ 1. If each edge adatom diffuses independently, the total
tion VI contains a summary and discussion. In Appendix A,center-of-mass displacemekk is the sum oR independent
we generalize our theory to one-dimensional substrates, andentically distributed random variables with varianég

in Appendix B we outline a more accurate treatment for two-~R~1. This impliesAx~ VR(8x)2~R~Y2 Thus the effec-
dimensional substrates which accounts for the logarithmigive center-of-mass diffusion coefficient Bg~ (Ax)?/At

corrections in the reaction rate. ~R73, or D~k ¥2 For a d-dimensional substrate, a
straightforward generalization of this argument giyes 1
Il. MICROSCOPIC MODEL +1/d. Similarly, in the case of so-called “terrace”

. o _ diffusion!* it is found thatD,~k ! independent ofl.
We consider submonolayer epitaxial growth which results  getore presenting detailed results, we discuss some limi-

from the irreversible deposition of atoms from a gas onto §aigng of our rate-equation approach. As stated previously,
substrate and subsequent irreversible aggregation. Adatomg, jgnore the effect of a finite island radius on the form of
(or monomery diffuse on the substrate and aggregate Upofy, s reaction rates, as this dependence is only logarithmic in

colliding, creating dimers and larger islands. We consider thg, 5 qimensions. Moreover, as the coverage increases a rate-

class of _modc_els for which adqtoms Whi_Ch are a'FeadV inCOranuation description based on two-body aggregation eventu-
porated into islands can continue to diffuse—this often OC'aIIy breaks down. Our approach is also inapplicable to

curs along the periphery of islangsee, e.g., Ref. 34Such ¢, a1 shaped islands, a situation which can arise at low
adatom hopping induces an effective d'|ffu3|.on n which !S'temperaturé-.g Finally, the rate-equation description should
lands of mask hop on the substrate with diffusion coeffi- fail below an upper critical dimensiod, (Ref. 20 which is
cient Dy. This microscopic mechanism also typically leads iven byd.=2/(1— u—\), with A the homogeneity degree
. . C H

to compact island shapes. Whenever tWO. |sland_s meet ant ihe reaction kernel. For our point-island model with kernel
aggregate, we assume that adatom hopping quickly caus fen by Eq.(1), \=—u, and henced,=2. Thus the rel-
the r_eslultlgg agg_reg?te rt]o beﬁome compgctl: We therefo ant two-dimensional case corresponds to the critical di-
treat islands as circular throughout our modeling. mension, and logarithmic corrections to mean-field predic-

Within this pictqre _for i_sIanﬂs, a classic way to C"’llmjl"’lte'rjons, in addition to the previously discussed logarithmic
the island mass distribution is based on the Smoluc:howskdorrections to the reaction rate, can be anticipated

rate equationd’ This approach requires knowledge of the
rateK;; at which an island of madsand an island of mags
aggregate to form an island of massj. If the aggregation

process is diffusion-controlled and islands are spherical, this Consider a point-island system with a steady monomer
aggregation rate is given by the Smoluchowski formki|la  flux F onto the substrate. The mean-field rate equations for
~(D;i+D))(R+R;)? 2 in d dimensions” Here R, is the  the concentrations, of islands of mask in the presence of
radius of an island of masis This formula applies fod this flux are
>2, while in the physically relevant case of two-dimensional
substrates there is only a slow logarithmic dependence on de, 1 :
island radius’ Thus a reasonable starting point for theoret- gt 2 ;‘ik KijCiCj_Ckal KgiCj+F k1. (2
ical investigation is to ignore the logarithmic term; this sig- e -
nificantly simplifies the resulting analysis. In Appendix B we
will return to the two-dimensional case and show that these A. Steady-state regime
logarithmic corrections do not alter our main findings but  As derived in Ref. 16, the steady-state concentration ap-
rathefT give rise to a logarithmic renormalization of the mono-proaches the power-law form
mer flux.

As discussed in the Introduction, we consider the island c~k™7 3
diffusion coefficient to be a homogeneous function of island ) ,
mass, D,~k * with x non-negative on basic physical ask—oo, with 7=(3— u)/2. This steady state holds as long

grounds. In appropriate time units the reaction rate is as>1, which thus imposes an upper boupe<1 on the
mobility exponent. In the special case of constant reaction

Kij=i"#+] " ) rate, =0, one can find the time-dependent solution, which

_ we quote for completeness. The rate equation for the density
However, our approach can equally well be appliecaty g

functional dependence @, on k which decays faster than
k=1 ask—oo. dN
For a self-contained discussion, we give a qualitative ar- ar N?+F, (4)
gument for the exponent valye=3 for the “periphery”
adatom hopping mechanism; this was obtained previously bgnd the rate equation for the generating functig(z,t)

a Langevin approach:*®In periphery diffusion, adatoms on =3}_c,(t)Z", is

. GROWTH WITH FLUX

[’
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dC(z,1) Our approach is based on the physical picture that the
g Gz —20(z YN +Fz. (5)  slow growth of islands by aggregation is substantially coun-
terbalanced by monomer input. This competition leads to
The solutions to these equations for initially clean surfacenearly steady island concentrations within an “inner” size
¢ (0)=0, are range, while time-dependent behavior occurs in an “outer”
range. In the inner region, the near balance between aggre-
N(t)=\/EtanI”(t\/E), gation and input motivates the quasistatic approximation,
(6)  Where the time derivative in Eq2) is initially neglected.
The time dependence of the island concentrations is then
C(z,t)=N(t) - VF(1-2) tanft VF(1-2)]. determined by the condition that the total mass in the system
is proportional ta. The validity of this approach is verifiea
Expanding the generating functidfz,t) in a series iz posteriori—the logarithmic dependences in E¢®). and(10)
gives the concentrationg(t). Relatively simple results are jndeed imply that the temporal derivatives in the Smolu-

obtained in the long-time limit chowski rate equations are asymptotically negligible.
. Solving the resulting quasistatic equations recursively
0 | F I'(k=3) . gives®
=N Tk 1) @
Kooane 1kl

Notice that islands of sizes comparable with—(4) "1, or L
smaller, give dominant contribution to the generating func-
tion, while larger islands provide an asymptotically negli-
gible correction. The second of Eq$) also shows that the This implies that, is a rapidly decreasing function &ffor
crossover from a time-dependent to a saturated behavide<N?*= «, which then convergé$to a finite valuep, for
takes place whem\1—z~1. Usingk~(1—z)"* this im- k>«, whose value is

plies that the steady state is established for small islands in

the size rangek<t?. For a general mobility exponent, one 1 o

physically expects a similar crossover to steady behavior Ck*PNNeXF{_AMN 1, (12)

whenk~t¢, with a mass cutoff exponeidtdependent on.
To determinef, we use the physical condition that the total yith A = [%In(1+w *) dw=m/sin(a/w). This constancy in

. 1 0 M) y
mass on the substra@kck(t) equal Ft t_ogether with the ¢, should persist over the range=<k<K(t). Here K(t)
steady-state asymptotics of E@). This gives defines the upper limit for the “inner” regime where the
quasistatic approximation remains validee below. This

IT (a+ji». (1)

1
Ck=
k=N Ly

j=2 1+j’U’/N2

_ value corresponds to the size where islands are only begin-
kzl ka(t)ngl K DiE— iz, ®) " ning to form, and is determined below.
Because the temporal decay of the densities is relevant in
that is,{=2/(u+1). the outer size rangd> «, an alternative to the quasistatic
approximation is needed. Our approach is to account sepa-
B. Continuous island evolution rately for these “raw”(evolving) islands, and then perform a

matched asymptotic expansiéhfo join the inner k<K)
quasistatic solution of “ripe” islands to the outek:¥ k)
solution of raw islands in the overlap regiasck<<K. This
approach give$

For a mobility exponeni.=1, continuous evolution can
be anticipated. Indeed, in the extreme casg efe (that is,
mobile monomers anonmobileislandg, power-law growth
in the number of island$y (t) = (3F?t) ¥ occurs?~® As dis-

cussed in Sec. Il A, values of the mobility expon 1
% p W [ln(T_k)];.L/27l

naturally appear for different microscopic mass-transport T 13

mechanisms. The marginal caseof 1 is also interesting T-k

since it corresponds to the experimentally relevant case of

terrace diffusiort where T=[{dt’ c,(t'). Thus the density of raw islands
Our primary results are that whea is strictly greater reaches a peak value of the ordertof? when k~K(t)

than unity but still finite, =T, and then rapidly decreases for largemote also that

the relation between the real and modified timés,
=[tdt'c,(t'), together withc,=1/N, gives T=t/N and
! O thus the criteriorK (t) = t/N ~t/(Int)*2. In real time the is-
land density is
Int 1-3ul2
t N
=

"

ul2

N(t)=\F

while the concentration of islands of masslecays in time
as

—S'”(:/“) In(tyF)

ul2
N(t)z[Aﬂlln ] , (14

()~ VF (k1A [In(ty/F)]-#@k-1r2 (10)

for k<In(t\F). Remarkably, these logarithmic dependenceswhere A, = m/sin(m/u). Upon neglecting the logarithmic
a feature which generally signals marginal behavior, occur inemporal factor inside the logarithm, our basic result quoted
the entire regime & u<o. in Eq. (9) is recovered.
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C. The casep=1 IV. GROWTH WITHOUT FLUX

In the borderline casp.=1, a subtler nested logarithmic  \We now consider epitaxial growth for point islands with a
behavior arises, as reflected by a singularity in €).upon  nonzero initial monomer density, reaction raig;=i"*
formal continuation tqu—1. Here we outline the main fea- +j~# and no subsequent monomer flux. Such a system has
tures of our analysis for the inner size range, which closeljheen extensively investigated within the framework of irre-
parallels that for the cas;_a>1.16 The intzirelsting_featgres versible aggregatiof"?as well as in theoretical studies of
associated withu=1 are (i) the productlliZ3(1+j %) in  pointisland aggregation with immobile islan¥ More re-

Eq. (11) now equalsk, i.e., it diverges; andii) the term  gjistic examples of the latter system have also been investi-
C2C—2, in addition toc, ¢, 4, contributes to asymptotic be- gated numerically and experimentally in recent studsee
havior. Due to this latter attribute, the recursion relation forRefs. 13 and 28 and references therein
cx becomes We give here a simple argument for the asymptotic form
) of the island size distribution. This argument is based on first
C 1+K/NT Ck-1 , Ck=2 1 (15 solving for the island and monomer densitidé(t) and
k k/IN? k=1 k—2N? c4(t), respectively, and then using scalthdgo infer the as-
ymptotics of the distribution. According to the scaling an-
satz, the asymptotic island-mass distribution should have the
form

We seek a solution fot, in the form of Eq.(11). Thus we
write

K k

jIN?
NCKN

,1:[2 1+j/N?

c(t)=N2G(x), x=kN, (23

for finite x. The constraintgdx G(x)=1 and [dx x G(x)

= automatically enforce the conditior®c,(t) =N(t) and
mass conservatiod kc,(t) = 6. Starting with the exact rate
equation forN(t),

Ck , (16)

where the factoC, accounts for the additional term in Eq.
(15). Substituting into Eq(15) gives the recursion formula
for this correction factoC, :

dN 1

1 | an Ez—zgl le KijciC; , (24)

k=1 ' N2

Ck:Ck1+Ck2<

we substitute the scaling ansdigq. (23)] to obtain N~

These coefficients are slowly varying knwhenk>1, and S
y varying —NZ2*# whose solution is

we may treak as continuous in this asymptotic regime. Then
the difference equatiofil7) becomes a differential equation N(t)~t~ YAt (25)
whose solution i€~k € (with x=k/N?). Consequently,
Now consider the rate equation for the monomer density,
c1=—Kcy(N+N,). As shown by the quasistatic
approximation'® we may neglect the second term and inte-
grate the resulting equation to yieltj (t)~exd —t“/d#)1],
Thus, foru=1, the concentratios, decreases rapidly ik This result, together with Eq$23) and (25), predicts the
for k<N? and reaches a minimum &t=N* whose value is  smallx asymptotic behavior exp(l/x*) for the scaling
function. Conversely, for the entire class of reaction kernels
p~exd —N?InN?]. (19 of the formK;;=i_#+j~#, the scaling functiorG(x) de-
cays exponentialfy in x for largex. Combining these results

o ) . . ogg'ives the asymptotic forms of the island size distribution in
approach is still valid, and gives the total island concentrag, . abeence of monomer flux:

tion

k2

X
ck~ﬁexp{x—N2fO In(1+w™Y) dwl. (18

e*l/X“, XJ,O,

[ Int G(x)~1 (26)
N(t)"‘ m (20) e 7, XTOO.

To determine the validity of these mean-field predictions,
let us consider the kinetics of this process in general spatial
dimension. To this end, we determine the reactivity of an
arbitrary cluster by a dimensional argument. Consider an is-
21) Ian_d of r_adiusF\_> which diffuses v_vith the_ diffgsion co_efficient

D in d-dimensional space. During a time intentehis par-
ticle traces out the so-called “Wiener sausage,” whose vol-
Then the island mass density is approximately constant, ume i£°

Equation(16) together withC,~k implies that the concen-
tration of islands for mask<N? is

k—1/2

(k+1)!

In(Int)
Ck(t)’“ W’”(k“— 1)'

Int

c()~t"L(Int) " In(Int)] L. (22) Dt[In(Dt/RY)]7L, d=2

Vg(t)~ d-2
This holds over the rangexsk<K with K(t) DR, d>2.
~t VIn(Int)/Int. Finally, the raw island density given by Eq. For epitaxial growth with no fluxk corresponds to &row-
(22) holds up to a mass cutoK(t). ing) average island radius, amito the diffusivity of a mass-

(27)



15954 P. L. KRAPIVSKY, J. F. F. MENDES, AND S. REDNER PRB 59

k island, D~k #~R™9%_ Clearly, all monomers initially -3
within a Wiener sausage aggregate into a typical island by

timet. Consequently, the initial coverage of the substtai® - kw
given by Ri~ gV4(t). This, together with Eq(27), gives 0
R2~Dt for all d=2. Finally, combiningR>~Dt and D 50
~R™ 9% leads to

R~ tM(2+du) Nt d(2+dp), (29)

In two dimensions, the rate-equation predictioisg. -5
(25] and the above heuristic argument agree. Thus in the
absence of a monomer flux, and under the assumption of
compact islands, the two sources of logarithmic FIG. 1. Semilogarithmic plot of lg(t) vs k at t~22000 for
corrections—a logarithmic dependence of the reaction ratg=1.5 based on simulations of point islands. The data are based on
on island radius and the fact that the system is at the critica8000 realizations of an initially empty system of 2000 sites with
dimension—evidently cancel each other. Therefore thé==0.05. Notice the existence of an inner schie k~50 (insed,
Smoluchowski rate equations appear to be asymptoticallgnd an outer scale fde~K~4000.
correct in two dimensions.

0 2000 4000 6000
k

raep= FLZ/(FL?+L3,), and aggregation is chosen with
V. NUMERICAL RESULTS probability r .= 1—r gep- In @ deposition event, a monomer
is deposited onto a randomly chosen vacant site. We checked
that restricting the deposition onto unoccupied sites only
_does not alter our results. In an aggregation event, two sites

ity to any lattice site(diffusion on a complete graphand were c_hosen rar_ld(_)mly from the I'S.t of occup_led sites. If
aggregate whenever two islands occupy the same site. Thﬁg.ese sites C.Qnta'rlflanflf of m?m‘d!’ aggregation occurs
corresponds to the mean-field limit, and thus provides a giith probazbmt); (F+j #)f2. Time |s_then increased by
rect test of some of the delicate approximations made in outtt= 1/(FL“+L5c), and the procedure is repeaféd.
theoretical analysis. The second model is a more faithful 1© test our algorithm, we considered first the extreme
description in which circular island “droplets” with radius €aS€ Of immobile islandsu.=0, where a complete time-
proportional to the square root of the island mass diffuse tgléPendent analytical solution is availabkeg. (6)]. Simula-
nearest-neighbor sites on a two-dimensional lattice. Whenfions were performed for an initially empty system with

ever there is overlap of two islands, they immediately coaPetween 18 and 1d. We found excellent agreement be-

lesce to a single island which is centered at the initial posifWeen numerical and theoretical predictions, both for the
tion of the larger island. After each coalescence, a test isteady state and transient characteristics. More generally for
made to determine if additional overlaps have been creategt <1, our simulations showed that the system reaches a
All such higher-order coalescences are performed until alfteady state with the observed steady-state characteristics, in
overlaps are resolved. Here we treat only the case with ex300d agreement with the theoretical prediction of E).

ternal flux, since growth without flux has already been inves- For #>1, the total number of islands is found to increase
tigated numerically (see, e.g., Ref. 26 and referencesindefinitely, and the island mass distribution substantively
therein. agrees with our theoretical predictio(see Fig. 1 Indeed,

The point-island model is relatively easy to implement.the island mass distributian)(t) sharply decreases for small
Additionally, this model has a technical advantage overMass(ripe islands, and then increases in a mass range which
growing droplets in that the submonolayer description ap£orresponds to raw islands. In the proximitylet K, there is
plies over a longer time range. For point islands, the sub2 Peak inc, as predicted by our description based on
monolayer regime is defined by the criteribire 1, which is ~ Matched asymptotic expansions. Our data for the time depen-
considerably less stringent than the criterfers< 1 appropri- dence of t'he total island densitfig. 2 are consistent with
ate for the droplet-island model. Therefore our theoreticalN(t) growing as a power of Iy as predicted by Eq9), but

results may be compared with the point-island simulations irVith somewhat smaller exponent thai2. We consider our
the time rangeF ~Y2<t<exp(—F Y#), and with droplet- data sufficient to exclude a power-law time dependence of

island simulations in the time range Y2<t<F 1. the island density. However, impractically long simulation
would be needed to determine the exponent of the logarith-
mic factor in Eq.(9).

We performed Monte Carlo simulations for island growth
for two models of epitaxial growth. We first consider point
islands, in which single-site islands hop with equal probabil

A. Point islands

Due to the pointlike nature of islands and the equiproba-
ble hopping to any site of the system, the simulations corre-
spond directly to the Smoluchowski rate equations. Simula- We now consider simulations of compact growing circu-
tions of point islands were performed on a graphLddites  lar islands which we term as droplets. We additionally as-
with the following time evolution. At any stage, the total sume that islands are always centered on sites of the square
deposition rate iL2, while the aggregation rate isf,cc. lattice. In the simulations, we consider a system of &iZ¢o
HereL y is the number of occupied sites in the system. In awhich we add monomer droplets of radiys= 0.495 to guar-
microscopic event, deposition is chosen with probabilityantee that adjacent monomers do not overlap. Monomers,

B. Circular island droplets
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FIG. 2. Plot of N(t)/\F vs logtyF) for u=1.2 (), u

=1.4 (x), andpu=2.0 (), based on simulations of point islands.  FIG. 4. Central portion of a typical droplet configuration fior
The simulation parameters are the same as in Fig. 1. =1.2 andF=0.001 for a system of size 56G500.

however, can overlap with larger droplets. When two drop-gfects become significant, and a coalescence of two large
lets of radiir, andr, overlap they coalesce to form a droplet ygpjets can lead to a large avalanche of coalescence events.
of radius\/r2+r3 which is located at the center of the larger |, Fig. 5 we plot the dependence of the maximum island
of the two initial coalescing droplets. As the coverage in-density as a function of the flux. Using the power-law form
creases, multiple coalescences become increasingly probatle _ —Fx |eads to a best-fit valug~0.43, while taking into
and we therefore check for new island Overlaps after eacaccount the |ogarithmic correction given by Hq_g) gives
coalescence event and pel’fOI’m additional coalescences angOSO, in excellent agreement with our theory_ However,
continue to resolve all additional overlaps, if needed. using the additional flux renormalization from our more ac-
In the time evolution, a microscopic process, either depogyrate treatment of the reaction rafgppendix B to fit the
sition onto any system site or diffusion to a nearest-neighbofjata leads to the somewhat different exponent estimate of
site, is chosen with respective probabilitigge,=F/(F  ,~0.53.
+N) and pgr=1—Pgep- We then test for and perform all e have also performed simulations of two-dimensional
possible subsequent coalescences after each event. Afiejctal islands. Specifically, when two monomers occupy
completion of this microscopic event the time is incrementeoheighboring sites they stick irreversibly to form a dimer.
by At=(FL?+NL? " and the process is repeated. This process continues and leads to the formation of fractal
Figure 3 compares the time evolution of point and grow-isjands which hop as a rigid unit. Simulation of this process
ing circular islands. Fot<1/\/F, the plots ofN(t) versust s simpler than in the growing droplet model because coales-
for the two processes coincide, thus indicating that the pointcences subsequent to the primary event cannot occur. This
island model provides an excellent early-time description for,o4el has been studied earltrand our respective results
the more realistic model of growing droplets. However,agree_ For example, for the case- 1.2 we obtainy~0.43 if
whent>1/JF, multibody aggregation starts to become im- e fit the data foiN,sy versusF to power-law behavior. Our
portant, and the density of droplets decreases with time whilgyterpretation for this exponent value differs, however, from
the density of point islands continues to grow. Thus theihat of Ref. 15. Indeed, they suggest that there might be a
point-island model is a suitable starting point to interpretyeep connection to a point-island model where both mono-
simulational and experimental data of epitaxial growth. mers and dimers diffuse and larger islands are immobile,
A visualization of the aggregation of circular droplets at asince the exponent in that modei= 2,3 is close to their
relatively late stage is shown in Fig. 4. Here many-bodysimulation results. We believe that there is no connection

2.0 5
15} e
E
(:q :/\ —3
& 10 =
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0.5 > -4l
£
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log F
FIG. 3. Plot ofN(t)/\F vs t\F for u=1.2 andF=0.001 for FIG. 5. Plot of 10§Nyq/[l0g(1F)]1*#72] vs logF) for w

point ((J) and growing circular islandsx(). =1.2. The slope of the line is 0.53.
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between these two models and the exponent observed lsp thaty=13 is generic and applies tany model where is-

simulation is just an effective value whose asymptotic valudand diffusion leads to continuous evolution.

is governed by the logarithmic correction in E@3). Our Our theoretical approach can also be applied to epitaxial
theory predicts universal flux exponept 1/2, and the dif- systems with anarbitrary mass-dependent diffusivityp,
ference with observedffectiveflux exponent is due to the which decays faster than the inverse mass. For example, for
logarithmic correction. When this feature is taken into ac-a diffusivity which decays exponentially in island maBx,

count, a value fory very close to our prediction is found. =e 2~ the case investigated numerically in Ref. 33, our
theory predicts
VI. SUMMARY AND DISCUSSION
a
We have investigated the kinetics of submonolayer epi- N(t)~ﬁex;{ \/5'”('[\/E) (30

taxial growth within a simple model which incorporates ba-

sic physical features of epitaxial growth—deposition, islandandK ~t/N, leading again to the same universal value of the
diffusion, and aggregation. We have shown that our modeinass cutoff exponeng(a)=1. Equation(30) exhibits an
displays universal kinetics—up to logarithms—as the gov-unusual time dependence—faster than any power of loga-
erning exponents associated with the time and flux deperrithm and slower than any power law—and may be difficult
dence of observables are detail independent. This is in conte observe numerically. The maximum island density is
trast to the behavior exhibited by models where islands

below a cutoff size are mobile while larger islands are im- a
mobile. In this case, characteristic exponents depend on this Nmax™ \/EGXF{ \ z/n(1/F)
mass threshold.

We analyzed in detail the situation where the effectiveso againy=3%. Numerically, the exponeng(a) appears to
diffusivity Dy for islands of mas& is D>k~ #. Such a dif- decrease aa increases® Our analysis suggests that in the
fusivity arises, e.g., in periphery diffusion, where an adatomasymptotic regimey(a)=3 for all 0<a<. However, fit-
on the edge of an island detaches, hops to a neighboring siteng the functional form in Eq(31) to a single power law in
on the edge, and then reattaches to the island. This mechB-gives y.¢=3— vVa/[4 In(1F)]. Therefore even for small
nism also causes islands to be compact. A SmoluchowsHiux the effective exponent may be considerably smaller than
approach shows that the reaction rate between two islands éf Also, y.«(a) is a decreasing function &, in agreement
massi andj is Kj;oci ~#+j~# multiplied by a factor which  with the observations from the simulatidh.
depends logarithmically on their radii in two dimensions.

This \_/vea_k dependence implies t_hat_ a model with pointlike ACKNOWLEDGMENTS
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Foru=1, alogarithmic time dependence arises in which the
total island densityN(t) < (Int)*. In this regime, the island APPENDIX A: EPITAXIAL GROWTH
distribution exhibits a rich mass dependence in which there ON 1D SUBSTRATES
is (i) a precipitous decay in a “boundary layeK< « (with
x~Int), (i) a gradual growth in the main part of the mass We now extend our results to the case of a one-
distributionxk<k<K [with K~t(Int)~#?], and iii ) an inter- dlmenzs(;onal substr.ate. Smce. the' upper critical d|m_en3|0n
nal layer|k—K|~ t where the density of islands reaches adc=2," the mean-field approximation does not apply in one
peak and then sharply vanishes. The entire reginseul dlmen5|on. In the absence ofatheorghcal framgwork to sys-
<o exhibits this same behavior up to logarithmic correc-tématically treat the case<d., we give a heuristic treat-
tions, while the transition between the steady and evolving"€nt: We will derive results for the specific casesdef 1

regimes atu=1 is characterized by nested logarithmic be_and 2 comparison _between the latter result and the rate-
havior. equation result provides a check of our approach.

Our results are valid in the time range Y2<t<F ! Consider first the simpler case of systems that approach a
where the former inequality is necessary for asymptotic beSt€ady state. We present an argument based on the volume
havior to apply, and the latter corresponds to the low-SWePt out by a Wiener sausage, as in the case of systems
coverage regime. Since thimensionlessflux F is typi- without flux (Sec. I\Q. To mimic the effect_ of the flux, we
cally small in epitaxy experiments, the time range overSUPPOSe that there is no flux but that all islands have initial
which our theory should apply is correspondingly large. AMass whlchdjazqualts At time t, a!l |sIand.s wnhln a reacuon
commonly employed connection between theory and experit0lume Ot)™* have coalesced into a single island. Ignoring
mental results is to determine the maximum island density dP9arithmic correction in two dimensions, this gives the fol-
the end of the submonolayer reginig.,~F L. Our analy- lowing estimate for the average island maés
sis predicts that the maximum island density attains the value

: (31)

Dt, d=2
Nina— FYZIn(1/F) 1472, 29 MO~ Bt g=1. (A1)
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Combining Eq.(A1l) with D~M ~#, and using the fact that (29)]. Overall, universal behavior arises in continuous evo-
the average island mabé scales as the mass cutoff, we find lution which is only slightly affected by model details, sub-
strate dimensionality, etc.
t2’(1+”), d=2

K(t)”[t3/(2+u), d=1. (A2) " APPENDIX B: REACTION RATE IN TWO DIMENSIONS

We now account for the logarithmic corrections to the

In the steady-state regime,~k™". Consequently the sum , ! ' !
reaction ratd Eq. (1)] that appears in two dimensions. We

rule t=3Kkg,~K2 "~t¢C~7 implies the relationr=2

—1/¢. This, together with Eq(A2), gives first demonstrate that these logarithmic corrections can be
' ' accounted for within modified rate equations. Let us first
(3—p)/2, d=2 consider a simpler model where point islands diffuse at the

/ d= (A3) same mass-independent rate. Then the total island density
(4=p)i3, =1 c(t) 0beysé= —c/At, whereAt is the time between succes-
This argument reproduces the correct values of the cutofive collisions. A collision is expected when the island visits
and the decay exponents wher 2, and we anticipate that 1/c distinct sites. Since the number of distinct sites visited by
the one-dimensional results are also exact. Indeed, an exa@t random walk in timet grows asDt/In(Dt) in two
solutior?* of one-dimensional aggregation with monomer in- dimensions;’ the collision time follows from the condition

put and mass-independent island diffusivities givess. Fi- DAt/In(DAt)~1/c. The resulting expression fdxt leads to
nally, note that the exponendsand r attain the critical value the rate equatiobz —Dc?/In(1/c). Similarly, for an island

(= T:.]. whgn the mobility exponent=1 in both one and  of radiusR, we obtainc= — Dc2/In(1/cR?).

two dimensions. For growing droplets with mass dependent diffusivity,

Whenu=1, continuous evolution occurs. We now arguethese |ogarithmic factors imply that the reaction rétg
that the densities asymptotically evolve according to gener— D;+D; should be replaced by

alized rate equations. For monomers, we write

D;+D,;

KijN 1 oot

—=F——. (A4) IN[N™*(Ri+Ry) 7]

] o In the low-coverage limit, the average separation between
HereAt is the collision time for a monomer to encounter an neighboring islandN~ Y2 is much larger than the average
island. During this time interval, a monomer visigdt dif- island size. Keeping only this dominant factor inside the

ferent sites in one dimension, so that the collision time iogarithm gives the asymptotic form of the reaction rate
determined b\ VAt~ 1. Consequently, the rate equation for K/~ (D, +D,)/In(1/N). Moreover, we can replace the total

(B1)

the monomer density becomes island density by/F inside the logarithm. This is obvious
when u <1, since in this case the island density indeed ap-
E =F—N2c,. (A5 proaches a steady-state vaNe~ +/F. For =1, the island
dt density grows according tdN~+/F(Int)*2. However, the

- - . . time-dependent factor is clearly subdominant as it is at most
Continuing this line of reasoning we obtain the rate equa]ogarithmic in the flux, (Irtyq)"2=[In(L/F)]*2. Hence for

tions for the densities,(t), which differ from Eqs.(2) by a arbitrary mobility exponent u, the form K;~(D,

factor N in each reaction term. . . .
. . #+D;)/In(1/F) provide an asymptotically correct description
We now analyze these equations by the same quasistajg, t]rze r((eact)io% rate ymp y P

framework as in Sec. Il. Thus we need to solve Therefore in two dimensions we can continue to use the
mean-field Smoluchowski equations, with the modification

—E_N2
0=F~—N,, of the reactive term by the factor 1/Infly. Upon rescaling
(AB)  the densities by,— c,F In(1/F), and the time variable by
1 t—tF TIn(1/F), we formally map Smoluchowski equa-
0== (i7#+j ")cicj— (K “N+N,,). tions for epitaxial growth in two dimensions onto the mean-
2=k field equationg2) with F=1 and the reaction rates given by
. . I . Eq. (D).
Repeating the steps of our previous derivations we obtain, \ye therefore conclude that we can apply the mean-field
e.g., for the density of islands, results to two-dimensional substrates upon making the flux
renormalization
sin(ar/ w2
N(t)=F 3 ¥|n(t|:2/3) , (A7) F—F In(1/F). (82)

This renormalization does not alter the basic predictions of
and for the behavior of the density of relatively small islandsihe Smoluchowski approach; for example, all exponents re-
c~F3(k!)#/N#K, Thus in the continuously evolving re- main the same. However, this renormalization does alter
gime, the time dependence remains primarily unaffected b¥ome logarithmic factors, e.g., EQR9) for the maximum
the dimensionality of the substrate. However, the flux depenisiand density is replaced by
dence does change withd, and we find Ny
~FYIn(1/F)]1*2 [compared to thé&2 dependence in Eq. Nmax~ F Y4 In(1/F) ]+ D72, (B3)
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