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Influence of island diffusion on submonolayer epitaxial growth
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We investigate the kinetics of submonolayer epitaxial growth which is driven by a fixed flux of monomers
onto a substrate. Adatoms diffuse on the surface, leading to irreversible aggregation of islands. We also
account for the effective diffusion of islands, which originates from hopping processes of their constituent
adatoms, on the kinetics. When the diffusivity of an island of massk scales ask2m, the ~mean-field! Smolu-
chowski rate equations predicts steady behavior for 0<m,1, with the concentrationck of islands of massk
varying ask2(32m)/2. For m>1, a quasistatic approximation of the rate equations predicts a slow continuous
evolution, in which the island density increases as (lnt)m/2. A more refined matched asymptotic expansion
reveals unusual multiple-scale mass dependence for the island size distribution. Our theory also describes basic
features of epitaxial growth in a more faithful model of growing circular islands. For epitaxial growth in an
initial population of monomers and no external flux, a scaling approach predicts power-law island growth and
a mass distribution with a behavior distinct from that of the nonzero flux system. Finally, we extend our results
to one- and two-dimensional substrates. The physically relevant latter case exhibits only logarithmic correc-
tions compared to the mean-field predictions.@S0163-1829~99!09223-1#
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I. INTRODUCTION

Submonolayer epitaxial thin-film growth involves depo
tion of atoms onto a substrate, and diffusion of these adat
~monomers! leading to aggregation of islands of eve
increasing size.1,2 The resulting island morphology and ma
distribution ultimately depend on these substrate diffus
processes. While it has long been recognized that these
transport details are crucial to epitaxial growth,1 its ramifica-
tions are still incompletely understood. Part of the reason
this slow progress is that a variety of microscopic details
and do influence the rate at which adsorbate isla
move.3–15

One direction of previous investigation was based o
picture that only monomers can diffuse, while larger islan
are immobile.2–5 In this case, the island densityN scales with
time as t1/3 before it reaches a maximum density whi
scales with fluxF asF1/3. Subsequent work revealed, how
ever, that basic results are sensitive to minor alteration
the mass transport mechanism. For example, if both mo
mers and dimers diffuse while larger islands remain imm
bile, the exponents of the time and flux dependen
change.10 More generally, these exponents depend on
threshold size between mobile and immobile islands.

On the other hand, there has been increas
appreciation11–14 that adatom hopping continues to occ
even when adatoms are incorporated into islands of arbit
size. This leads to a nonzero diffusivity of such islands. F
appropriate systems and experimental conditions ther
ample evidence that the effective island diffusivityDk has a
power-law dependence on massk.11–14This adatom hopping
PRB 590163-1829/99/59~24!/15950~9!/$15.00
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also typically leads to islands maintaining compact shap
an important simplifying feature for theoretical modeling.

The goal of this paper is to determine the aggregat
kinetics of compact islands in the submonolayer regime w
power-law and more general mass-dependent isl
diffusivities.16 An essential, and at first sight surprising, fe
ture about such compact islands is that their reactivity
pends only logarithmically on island size in two dimension
Accordingly, our theoretical treatment is based on a mode
pointlike islands. Such a description should accurately
scribe island growth, up to these logarithmic corrections
the low-coverage limit.

Within the mean-field Smoluchowski rate equations,
will consider a system with~i! a fixed monomer flux,~ii !
pointlike islands with diffusivity which decays faster tha
inversely with island mass, and~iii ! irreversible mass-
conserving coalescence of islands. We will show that
number of islands grows logarithmically in time, and that t
island mass distribution exhibits a multiple-scale mass
pendence. Our predictions are also found to apply to a m
faithful model of epitaxial growth in which islands are grow
ing circles, with the radius of a mass-k island proportional to
Ak. Thus the point-island model provides a useful fram
work to describe submonolayer epitaxial growth, and giv
quantitative predictions which are robust to variations
model parameters.

In Sec. II, we introduce our model and discuss the ap
cability of the Smoluchowski approach to epitaxial growt
In Sec. III, we present our main results about the asympt
growth of islands based on the rate equations. Different
haviors arise depending on whether the mobility exponenm
15 950 ©1999 The American Physical Society
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is smaller than, larger than, or equal to unity. We also d
cuss the flux dependence of the maximum island density
the time range where our theory should apply. In Sec. IV,
briefly discuss island growth kinetics in the absence of
ternal flux. In Sec. V, we present numerical simulations, a
compare results for the epitaxial growth of point islands a
growing circular islands with radius proportional toAk. Sec-
tion VI contains a summary and discussion. In Appendix
we generalize our theory to one-dimensional substrates,
in Appendix B we outline a more accurate treatment for tw
dimensional substrates which accounts for the logarith
corrections in the reaction rate.

II. MICROSCOPIC MODEL

We consider submonolayer epitaxial growth which resu
from the irreversible deposition of atoms from a gas ont
substrate and subsequent irreversible aggregation. Ada
~or monomers! diffuse on the substrate and aggregate up
colliding, creating dimers and larger islands. We consider
class of models for which adatoms which are already inc
porated into islands can continue to diffuse—this often
curs along the periphery of islands~see, e.g., Ref. 14!. Such
adatom hopping induces an effective diffusion in which
lands of massk hop on the substrate with diffusion coeffi
cient Dk . This microscopic mechanism also typically lea
to compact island shapes. Whenever two islands meet
aggregate, we assume that adatom hopping quickly ca
the resulting aggregate to become compact. We there
treat islands as circular throughout our modeling.

Within this picture for islands, a classic way to calcula
the island mass distribution is based on the Smoluchow
rate equations.17 This approach requires knowledge of th
rateKi j at which an island of massi and an island of massj
aggregate to form an island of massi 1 j . If the aggregation
process is diffusion-controlled and islands are spherical,
aggregation rate is given by the Smoluchowski formulaKi j
;(Di1D j )(Ri1Rj )

d22 in d dimensions.17 Here Ri is the
radius of an island of massi. This formula applies ford
.2, while in the physically relevant case of two-dimension
substrates there is only a slow logarithmic dependence
island radius.17 Thus a reasonable starting point for theor
ical investigation is to ignore the logarithmic term; this si
nificantly simplifies the resulting analysis. In Appendix B w
will return to the two-dimensional case and show that th
logarithmic corrections do not alter our main findings b
rather give rise to a logarithmic renormalization of the mon
mer flux.

As discussed in the Introduction, we consider the isla
diffusion coefficient to be a homogeneous function of isla
mass, Dk;k2m with m non-negative on basic physica
grounds. In appropriate time units the reaction rate is

Ki j 5 i 2m1 j 2m. ~1!

However, our approach can equally well be applied toany
functional dependence ofDk on k which decays faster tha
k21 ask→`.

For a self-contained discussion, we give a qualitative
gument for the exponent valuem5 3

2 for the ‘‘periphery’’
adatom hopping mechanism; this was obtained previously
a Langevin approach.14,18 In periphery diffusion, adatoms o
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the edge of an island can hop freely to neighboring sites
the periphery. Consider an island of linear sizeR@1. In a
time intervalDt;R2 an adatom on the edge will typicall
explore the entire island boundary, so this adatom will ty
cally be a distanceR from its initial location. Hence the
effective island center-of-mass displacement isdx;R/R2

5R21. If each edge adatom diffuses independently, the to
center-of-mass displacementDx is the sum ofR independent
identically distributed random variables with variancedx
;R21. This impliesDx;AR(dx)2;R21/2. Thus the effec-
tive center-of-mass diffusion coefficient isDR;(Dx)2/Dt
;R23, or Dk;k23/2. For a d-dimensional substrate,
straightforward generalization of this argument givesm51
11/d. Similarly, in the case of so-called ‘‘terrace
diffusion,14 it is found thatDk;k21 independent ofd.

Before presenting detailed results, we discuss some l
tations of our rate-equation approach. As stated previou
we ignore the effect of a finite island radius on the form
the reaction rates, as this dependence is only logarithmi
two dimensions. Moreover, as the coverage increases a
equation description based on two-body aggregation eve
ally breaks down. Our approach is also inapplicable
fractal-shaped islands, a situation which can arise at
temperature.19 Finally, the rate-equation description shou
fail below an upper critical dimensiondc ~Ref. 20! which is
given bydc52/(12m2l), with l the homogeneity degre
of the reaction kernel. For our point-island model with kern
given by Eq.~1!, l52m, and hencedc52. Thus the rel-
evant two-dimensional case corresponds to the critical
mension, and logarithmic corrections to mean-field pred
tions, in addition to the previously discussed logarithm
corrections to the reaction rate, can be anticipated.

III. GROWTH WITH FLUX

Consider a point-island system with a steady monom
flux F onto the substrate. The mean-field rate equations
the concentrationsck of islands of massk in the presence of
this flux are

dck

dt
5

1

2 (
i 1 j 5k

Ki j cicj2ck(
k51

`

Kk jcj1F dk1 . ~2!

A. Steady-state regime

As derived in Ref. 16, the steady-state concentration
proaches the power-law form

ck;k2t ~3!

ask→`, with t5(32m)/2. This steady state holds as lon
as t.1, which thus imposes an upper boundm,1 on the
mobility exponent. In the special case of constant react
rate,m50, one can find the time-dependent solution, wh
we quote for completeness. The rate equation for the den
is

dN

dt
52N21F, ~4!

and the rate equation for the generating function,C(z,t)
5(k51

` ck(t)z
k, is
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dC~z,t !

dt
5C~z,t !22C~z,t !N~ t !1Fz. ~5!

The solutions to these equations for initially clean surfa
ck(0)50, are

N~ t !5AF tanh~ tAF !,

~6!

C~z,t !5N~ t !2AF~12z! tanh@ t AF~12z!#.

Expanding the generating functionC(z,t) in a series inz
gives the concentrationsck(t). Relatively simple results are
obtained in the long-time limit

ck~ t !5A F

4p

G~k2 1
2 !

G~k11!
. ~7!

Notice that islands of sizes comparable with (12z)21, or
smaller, give dominant contribution to the generating fun
tion, while larger islands provide an asymptotically neg
gible correction. The second of Eqs.~6! also shows that the
crossover from a time-dependent to a saturated beha
takes place whentA12z;1. Using k;(12z)21 this im-
plies that the steady state is established for small island
the size range,k!t2. For a general mobility exponent, on
physically expects a similar crossover to steady beha
whenk;tz, with a mass cutoff exponentz dependent onm.
To determinez, we use the physical condition that the tot
mass on the substrate(kck(t) equal Ft together with the
steady-state asymptotics of Eq.~3!. This gives

(
k51

`

kck~ t !;(
k51

tz

k(m21)/2;t (m11)z/2;t, ~8!

that is,z52/(m11).

B. Continuous island evolution

For a mobility exponentm>1, continuous evolution can
be anticipated. Indeed, in the extreme case ofm5` ~that is,
mobile monomers andimmobileislands!, power-law growth
in the number of islands,N(t).(3F2t)1/3, occurs.2–5 As dis-
cussed in Sec. II A, values of the mobility exponentm>1
naturally appear for different microscopic mass-transp
mechanisms. The marginal case ofm51 is also interesting
since it corresponds to the experimentally relevant case
terrace diffusion.14

Our primary results are that whenm is strictly greater
than unity but still finite,

N~ t !.AF Fsin~p/m!

p
ln~ tAF !Gm/2

, ~9!

while the concentration of islands of massk decays in time
as

ck~ t !;AF ~k! !m @ ln~ tAF !#2m(2k21)/2 ~10!

for k! ln(tAF). Remarkably, these logarithmic dependenc
a feature which generally signals marginal behavior, occu
the entire regime 1,m,`.
,
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Our approach is based on the physical picture that
slow growth of islands by aggregation is substantially cou
terbalanced by monomer input. This competition leads
nearly steady island concentrations within an ‘‘inner’’ si
range, while time-dependent behavior occurs in an ‘‘oute
range. In the inner region, the near balance between ag
gation and input motivates the quasistatic approximati
where the time derivative in Eq.~2! is initially neglected.
The time dependence of the island concentrations is t
determined by the condition that the total mass in the sys
is proportional tot. The validity of this approach is verifieda
posteriori—the logarithmic dependences in Eqs.~9! and~10!
indeed imply that the temporal derivatives in the Smo
chowski rate equations are asymptotically negligible.

Solving the resulting quasistatic equations recursiv
gives16

ck.
1

N F)
j 52

k
j m/N2

11 j m/N2G )
j 51

k21

~11 j 2m!. ~11!

This implies thatck is a rapidly decreasing function ofk for
k!N2/m[k, which then converges16 to a finite valuer, for
k.k, whose value is

ck→r;
1

N
exp@2Am N2/m#, ~12!

with Am5*0
`ln(11w2m) dw5p/sin(p/m). This constancy in

ck should persist over the range,k&k!K(t). Here K(t)
defines the upper limit for the ‘‘inner’’ regime where th
quasistatic approximation remains valid~see below!. This
value corresponds to the size where islands are only be
ning to form, and is determined below.

Because the temporal decay of the densities is relevan
the outer size range,k@k, an alternative to the quasistat
approximation is needed. Our approach is to account se
rately for these ‘‘raw’’~evolving! islands, and then perform
matched asymptotic expansion,21 to join the inner (k!K)
quasistatic solution of ‘‘ripe’’ islands to the outer (k@k)
solution of raw islands in the overlap regionk!k!K. This
approach gives16

ck~T!;
@ ln~T2k!#m/221

T2k
, ~13!

where T5*0
t dt8 c1(t8). Thus the density of raw island

reaches a peak value of the order oft21/2 when k'K(t)
5T, and then rapidly decreases for largerk. Note also that
the relation between the real and modified times,T
5*0

t dt8c1(t8), together withc1>1/N, gives T.t/N and
thus the criterionK(t). t/N ;t/( ln t)m/2. In real time the is-
land density is

N~ t !.H Am
21 lnF tS ln t

Am
D 123m/2G J m/2

, ~14!

where Am5p/sin(p/m). Upon neglecting the logarithmic
temporal factor inside the logarithm, our basic result quo
in Eq. ~9! is recovered.
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C. The caseµ51

In the borderline casem51, a subtler nested logarithmi
behavior arises, as reflected by a singularity in Eq.~9! upon
formal continuation tom→1. Here we outline the main fea
tures of our analysis for the inner size range, which clos
parallels that for the casem.1.16 The interesting feature
associated withm51 are ~i! the product) j 51

k21(11 j 21) in
Eq. ~11! now equalsk, i.e., it diverges; and~ii ! the term
c2ck22, in addition toc1ck21, contributes to asymptotic be
havior. Due to this latter attribute, the recursion relation
ck becomes

ck

k

11k/N2

k/N2 5
ck21

k21
1

ck22

k22

1

N2 . ~15!

We seek a solution forck in the form of Eq.~11!. Thus we
write

ck;Ck

k

N F)
j 52

k
j /N2

11 j /N2G , ~16!

where the factorCk accounts for the additional term in Eq
~15!. Substituting into Eq.~15! gives the recursion formula
for this correction factorCk :

Ck5Ck211Ck22S 1

k21
1

1

N2D . ~17!

These coefficients are slowly varying ink when k@1, and
we may treatk as continuous in this asymptotic regime. Th
the difference equation~17! becomes a differential equatio
whose solution isCk;k ex ~with x5k/N2). Consequently,

ck;
k2

N
expFx2N2E

0

x

ln~11w21! dwG . ~18!

Thus, form51, the concentrationck decreases rapidly ink
for k!N2 and reaches a minimum atk5N4 whose value is

r;exp@2N2 ln N2#. ~19!

In the outer size range, the matched asymptotic expan
approach is still valid, and gives the total island concen
tion

N~ t !;A ln t

ln~ ln t !
. ~20!

Equation~16! together withCk;k implies that the concen
tration of islands for massk!N2 is

ck~ t !;
~k11!!

N2k21
;~k11!! F ln~ ln t !

ln t Gk21/2

. ~21!

Then the island mass density is approximately constant,

ck~ t !;t21~ ln t !21@ ln~ ln t !#21. ~22!

This holds over the rangek&k!K with K(t)
;t Aln(ln t)/ln t. Finally, the raw island density given by Eq
~22! holds up to a mass cutoffK(t).
ly

r

on
-

IV. GROWTH WITHOUT FLUX

We now consider epitaxial growth for point islands with
nonzero initial monomer density, reaction rateKi j 5 i 2m

1 j 2m, and no subsequent monomer flux. Such a system
been extensively investigated within the framework of irr
versible aggregation,22–26 as well as in theoretical studies o
point-island aggregation with immobile islands.3,27 More re-
alistic examples of the latter system have also been inve
gated numerically and experimentally in recent studies~see
Refs. 13 and 28 and references therein!.

We give here a simple argument for the asymptotic fo
of the island size distribution. This argument is based on fi
solving for the island and monomer densities,N(t) and
c1(t), respectively, and then using scaling17 to infer the as-
ymptotics of the distribution. According to the scaling a
satz, the asymptotic island-mass distribution should have
form

ck~ t !.N2G~x!, x5kN, ~23!

for finite x. The constraints*dx G(x)51 and *dx x G(x)
5u automatically enforce the conditions(ck(t)5N(t) and
mass conservation(kck(t)5u. Starting with the exact rate
equation forN(t),

dN

dt
52

1

2 (
i 51

`

(
j 51

`

Ki j cicj , ~24!

we substitute the scaling ansatz@Eq. ~23!# to obtain Ṅ;
2N21m, whose solution is

N~ t !;t21/(11m). ~25!

Now consider the rate equation for the monomer dens
ċ152Kc1(N1Nm). As shown by the quasistati
approximation,16 we may neglect the second term and in
grate the resulting equation to yieldc1(t);exp@2tm/(11m)#.
This result, together with Eqs.~23! and ~25!, predicts the
small-x asymptotic behavior exp(21/xm) for the scaling
function. Conversely, for the entire class of reaction kern
of the form Ki j 5 i 2m1 j 2m, the scaling functionG(x) de-
cays exponentially17 in x for largex. Combining these results
gives the asymptotic forms of the island size distribution
the absence of monomer flux:

G~x!;H e21/xm
, x↓0,

e2x, x↑`.
~26!

To determine the validity of these mean-field prediction
let us consider the kinetics of this process in general spa
dimension. To this end, we determine the reactivity of
arbitrary cluster by a dimensional argument. Consider an
land of radiusR which diffuses with the diffusion coefficien
D in d-dimensional space. During a time intervalt this par-
ticle traces out the so-called ‘‘Wiener sausage,’’ whose v
ume is29

Vd~ t !;H Dt @ ln~Dt/R2!#21, d52

DtRd22, d.2.
~27!

For epitaxial growth with no flux,R corresponds to a~grow-
ing! average island radius, andD to the diffusivity of a mass-
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k island, D;k2m;R2dm. Clearly, all monomers initially
within a Wiener sausage aggregate into a typical island
time t. Consequently, the initial coverage of the substrateu is
given by Rd;uVd(t). This, together with Eq.~27!, gives
R2;Dt for all d>2. Finally, combiningR2;Dt and D
;R2dm leads to

R;t1/(21dm), N;t2d/(21dm). ~28!

In two dimensions, the rate-equation predictions@Eq.
~25!# and the above heuristic argument agree. Thus in
absence of a monomer flux, and under the assumptio
compact islands, the two sources of logarithm
corrections—a logarithmic dependence of the reaction
on island radius and the fact that the system is at the crit
dimension—evidently cancel each other. Therefore
Smoluchowski rate equations appear to be asymptotic
correct in two dimensions.

V. NUMERICAL RESULTS

We performed Monte Carlo simulations for island grow
for two models of epitaxial growth. We first consider poi
islands, in which single-site islands hop with equal proba
ity to any lattice site~diffusion on a complete graph! and
aggregate whenever two islands occupy the same site.
corresponds to the mean-field limit, and thus provides a
rect test of some of the delicate approximations made in
theoretical analysis. The second model is a more faith
description in which circular island ‘‘droplets’’ with radiu
proportional to the square root of the island mass diffuse
nearest-neighbor sites on a two-dimensional lattice. Wh
ever there is overlap of two islands, they immediately c
lesce to a single island which is centered at the initial po
tion of the larger island. After each coalescence, a tes
made to determine if additional overlaps have been crea
All such higher-order coalescences are performed until
overlaps are resolved. Here we treat only the case with
ternal flux, since growth without flux has already been inv
tigated numerically ~see, e.g., Ref. 26 and referenc
therein!.

The point-island model is relatively easy to impleme
Additionally, this model has a technical advantage o
growing droplets in that the submonolayer description
plies over a longer time range. For point islands, the s
monolayer regime is defined by the criterionN!1, which is
considerably less stringent than the criterionFt!1 appropri-
ate for the droplet-island model. Therefore our theoreti
results may be compared with the point-island simulation
the time rangeF21/2!t!exp(2F21/m), and with droplet-
island simulations in the time rangeF21/2!t!F21.

A. Point islands

Due to the pointlike nature of islands and the equipro
ble hopping to any site of the system, the simulations co
spond directly to the Smoluchowski rate equations. Simu
tions of point islands were performed on a graph ofL sites
with the following time evolution. At any stage, the tot
deposition rate isFL2, while the aggregation rate isLocc

2 .
HereLocc is the number of occupied sites in the system. I
microscopic event, deposition is chosen with probabi
y
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r dep5FL2/(FL21Locc
2 ), and aggregation is chosen wit

probability r agg512r dep. In a deposition event, a monome
is deposited onto a randomly chosen vacant site. We chec
that restricting the deposition onto unoccupied sites o
does not alter our results. In an aggregation event, two s
were chosen randomly from the list of occupied sites.
these sites contain islands of massi andj, aggregation occurs
with probability (i 2m1 j 2m)/2. Time is then increased b
Dt51/(FL21Locc

2 ), and the procedure is repeated.30

To test our algorithm, we considered first the extrem
case of immobile islands,m50, where a complete time
dependent analytical solution is available@Eq. ~6!#. Simula-
tions were performed for an initially empty system withL
between 103 and 104. We found excellent agreement be
tween numerical and theoretical predictions, both for
steady state and transient characteristics. More generally
m,1, our simulations showed that the system reache
steady state with the observed steady-state characteristic
good agreement with the theoretical prediction of Eq.~3!.

For m.1, the total number of islands is found to increa
indefinitely, and the island mass distribution substantiv
agrees with our theoretical predictions~see Fig. 1!. Indeed,
the island mass distributionck(t) sharply decreases for sma
mass~ripe islands!, and then increases in a mass range wh
corresponds to raw islands. In the proximity ofk'K, there is
a peak in ck as predicted by our description based
matched asymptotic expansions. Our data for the time dep
dence of the total island density~Fig. 2! are consistent with
N(t) growing as a power of lnt, as predicted by Eq.~9!, but
with somewhat smaller exponent thanm/2. We consider our
data sufficient to exclude a power-law time dependence
the island density. However, impractically long simulatio
would be needed to determine the exponent of the logar
mic factor in Eq.~9!.

B. Circular island droplets

We now consider simulations of compact growing circ
lar islands which we term as droplets. We additionally a
sume that islands are always centered on sites of the sq
lattice. In the simulations, we consider a system of sizeL2 to
which we add monomer droplets of radiusr 050.495 to guar-
antee that adjacent monomers do not overlap. Monom

FIG. 1. Semilogarithmic plot of lnck(t) vs k at t'22 000 for
m51.5 based on simulations of point islands. The data are base
5000 realizations of an initially empty system of 2000 sites w
F50.05. Notice the existence of an inner scalek&k'50 ~inset!,
and an outer scale fork'K'4000.
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however, can overlap with larger droplets. When two dro
lets of radiir 1 andr 2 overlap they coalesce to form a dropl
of radiusAr 1

21r 2
2 which is located at the center of the larg

of the two initial coalescing droplets. As the coverage
creases, multiple coalescences become increasingly prob
and we therefore check for new island overlaps after e
coalescence event and perform additional coalescences
continue to resolve all additional overlaps, if needed.

In the time evolution, a microscopic process, either de
sition onto any system site or diffusion to a nearest-neigh
site, is chosen with respective probabilitiespdep5F/(F
1N) and pdif512pdep. We then test for and perform a
possible subsequent coalescences after each event.
completion of this microscopic event the time is incremen
by Dt5(FL21NL2)21 and the process is repeated.

Figure 3 compares the time evolution of point and gro
ing circular islands. Fort,1/AF, the plots ofN(t) versust
for the two processes coincide, thus indicating that the po
island model provides an excellent early-time description
the more realistic model of growing droplets. Howev
when t.1/AF, multibody aggregation starts to become im
portant, and the density of droplets decreases with time w
the density of point islands continues to grow. Thus
point-island model is a suitable starting point to interp
simulational and experimental data of epitaxial growth.31

A visualization of the aggregation of circular droplets a
relatively late stage is shown in Fig. 4. Here many-bo

FIG. 2. Plot of N(t)/AF vs log(tAF) for m51.2 (L), m
51.4 (!), andm52.0 (h), based on simulations of point island
The simulation parameters are the same as in Fig. 1.

FIG. 3. Plot ofN(t)/AF vs tAF for m51.2 andF50.001 for
point (h) and growing circular islands (!).
-

-
ble
h
nd

-
r
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-

t-
r
,

le
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t

y

effects become significant, and a coalescence of two la
droplets can lead to a large avalanche of coalescence ev

In Fig. 5 we plot the dependence of the maximum isla
density as a function of the flux. Using the power-law for
Nmax;Fx leads to a best-fit valuex'0.43, while taking into
account the logarithmic correction given by Eq.~29! gives
x'0.50, in excellent agreement with our theory. Howev
using the additional flux renormalization from our more a
curate treatment of the reaction rate~Appendix B! to fit the
data leads to the somewhat different exponent estimat
x'0.53.

We have also performed simulations of two-dimensio
fractal islands. Specifically, when two monomers occu
neighboring sites they stick irreversibly to form a dime
This process continues and leads to the formation of fra
islands which hop as a rigid unit. Simulation of this proce
is simpler than in the growing droplet model because coa
cences subsequent to the primary event cannot occur.
model has been studied earlier,15 and our respective result
agree. For example, for the casem51.2 we obtainx'0.43 if
we fit the data forNmax versusF to power-law behavior. Our
interpretation for this exponent value differs, however, fro
that of Ref. 15. Indeed, they suggest that there might b
deep connection to a point-island model where both mo
mers and dimers diffuse and larger islands are immob
since the exponent in that model,x5 2

5 ,32 is close to their
simulation results. We believe that there is no connect

FIG. 4. Central portion of a typical droplet configuration form
51.2 andF50.001 for a system of size 5003500.

FIG. 5. Plot of log@Nmax/@ log(1/F)# (11m)/2# vs log(F) for m
51.2. The slope of the line is 0.53.
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between these two models and the exponent observe
simulation is just an effective value whose asymptotic va
is governed by the logarithmic correction in Eq.~B3!. Our
theory predicts universal flux exponentx51/2, and the dif-
ference with observedeffectiveflux exponent is due to the
logarithmic correction. When this feature is taken into a
count, a value forx very close to our prediction is found.

VI. SUMMARY AND DISCUSSION

We have investigated the kinetics of submonolayer e
taxial growth within a simple model which incorporates b
sic physical features of epitaxial growth—deposition, isla
diffusion, and aggregation. We have shown that our mo
displays universal kinetics—up to logarithms—as the g
erning exponents associated with the time and flux dep
dence of observables are detail independent. This is in c
trast to the behavior exhibited by models where islan
below a cutoff size are mobile while larger islands are i
mobile. In this case, characteristic exponents depend on
mass threshold.

We analyzed in detail the situation where the effect
diffusivity Dk for islands of massk is Dk}k2m. Such a dif-
fusivity arises, e.g., in periphery diffusion, where an adat
on the edge of an island detaches, hops to a neighboring
on the edge, and then reattaches to the island. This me
nism also causes islands to be compact. A Smoluchow
approach shows that the reaction rate between two island
massi and j is Ki j } i 2m1 j 2m multiplied by a factor which
depends logarithmically on their radii in two dimension
This weak dependence implies that a model with pointl
diffusing islands should be quantitatively accurate when
plied to the submonolayer regime. The net effect of the lo
rithmic factor is the flux renormalization,F→F ln(1/F), as
demonstrated in Appendix B.

For mobility exponent 0<m,1, there is a steady state
with the concentration of islands of massk, ck}k2(32m)/2.
For m>1, a logarithmic time dependence arises in which
total island densityN(t)}(ln t)m/2. In this regime, the island
distribution exhibits a rich mass dependence in which th
is ~i! a precipitous decay in a ‘‘boundary layer’’k!k ~with
k; ln t), ~ii ! a gradual growth in the main part of the ma
distributionk,k,K @with K;t(ln t)2m/2], and~iii ! an inter-
nal layeruk2Ku;At where the density of islands reaches
peak and then sharply vanishes. The entire regime 1<m
,` exhibits this same behavior up to logarithmic corre
tions, while the transition between the steady and evolv
regimes atm51 is characterized by nested logarithmic b
havior.

Our results are valid in the time rangeF21/2!t!F21,
where the former inequality is necessary for asymptotic
havior to apply, and the latter corresponds to the lo
coverage regime. Since the~dimensionless! flux F is typi-
cally small in epitaxy experiments, the time range ov
which our theory should apply is correspondingly large.
commonly employed connection between theory and exp
mental results is to determine the maximum island densit
the end of the submonolayer regime,tmax;F21. Our analy-
sis predicts that the maximum island density attains the va

Nmax;F1/2@ ln~1/F !#m/2, ~29!
by
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so thatx5 1
2 is generic and applies toany model where is-

land diffusion leads to continuous evolution.
Our theoretical approach can also be applied to epita

systems with anarbitrary mass-dependent diffusivityDk
which decays faster than the inverse mass. For example
a diffusivity which decays exponentially in island mass,Dk
5e2a(k21), the case investigated numerically in Ref. 33, o
theory predicts

N~ t !;AF expFAa

2
ln~ tAF !G ~30!

andK;t/N, leading again to the same universal value of t
mass cutoff exponentz(a)[1. Equation~30! exhibits an
unusual time dependence—faster than any power of lo
rithm and slower than any power law—and may be diffic
to observe numerically. The maximum island density is

Nmax;AF expFAa

4
ln~1/F !G , ~31!

so againx5 1
2 . Numerically, the exponentx(a) appears to

decrease asa increases.33 Our analysis suggests that in th
asymptotic regimex(a)[ 1

2 for all 0,a,`. However, fit-
ting the functional form in Eq.~31! to a single power law in
F gives xeff5

1
2 2Aa/@4 ln(1/F)#. Therefore even for smal

flux the effective exponent may be considerably smaller th
1
2 . Also, xeff(a) is a decreasing function ofa, in agreement
with the observations from the simulation.33
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APPENDIX A: EPITAXIAL GROWTH
ON 1D SUBSTRATES

We now extend our results to the case of a on
dimensional substrate. Since the upper critical dimens
dc52,20 the mean-field approximation does not apply in o
dimension. In the absence of a theoretical framework to s
tematically treat the cased,dc , we give a heuristic treat-
ment. We will derive results for the specific cases ofd51
and 2; comparison between the latter result and the r
equation result provides a check of our approach.

Consider first the simpler case of systems that approa
steady state. We present an argument based on the vo
swept out by a Wiener sausage, as in the case of sys
without flux ~Sec. IV!. To mimic the effect of the flux, we
suppose that there is no flux but that all islands have ini
mass which equalst. At time t, all islands within a reaction
volume (Dt)d/2 have coalesced into a single island. Ignori
logarithmic correction in two dimensions, this gives the fo
lowing estimate for the average island massM:

M ~ t !;t3H Dt, d52

ADt, d51.
~A1!
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Combining Eq.~A1! with D;M 2m, and using the fact tha
the average island massM scales as the mass cutoff, we fin

K~ t !;H t2/(11m), d52

t3/(21m), d51.
~A2!

In the steady-state regime,ck;k2t. Consequently the sum
rule t5(Kkck;K22t;tz(22t) implies the relationt52
21/z. This, together with Eq.~A2!, gives

t5H ~32m!/2, d52

~42m!/3, d51.
~A3!

This argument reproduces the correct values of the cu
and the decay exponents whend52, and we anticipate tha
the one-dimensional results are also exact. Indeed, an e
solution34 of one-dimensional aggregation with monomer
put and mass-independent island diffusivities givest5 4

3 . Fi-
nally, note that the exponentsz andt attain the critical value
z5t51 when the mobility exponentm51 in both one and
two dimensions.

Whenm>1, continuous evolution occurs. We now arg
that the densities asymptotically evolve according to gen
alized rate equations. For monomers, we write

dc1

dt
5F2

c1

Dt
. ~A4!

HereDt is the collision time for a monomer to encounter
island. During this time interval, a monomer visitsADt dif-
ferent sites in one dimension, so that the collision time
determined byNADt'1. Consequently, the rate equation f
the monomer density becomes

dc1

dt
5F2N2c1 . ~A5!

Continuing this line of reasoning we obtain the rate eq
tions for the densitiesck(t), which differ from Eqs.~2! by a
factor N in each reaction term.

We now analyze these equations by the same quasis
framework as in Sec. II. Thus we need to solve

05F2N2c1 ,

~A6!

05
1

2 (
i 1 j 5k

~ i 2m1 j 2m!cicj2ck~k2mN1Nm!.

Repeating the steps of our previous derivations we obt
e.g., for the density of islands,

N~ t !.F1/3Fsin~p/m!

p
ln~ tF2/3!Gm/2

, ~A7!

and for the behavior of the density of relatively small islan
ck;F1/3 (k!) m/Nmk. Thus in the continuously evolving re
gime, the time dependence remains primarily unaffected
the dimensionality of the substrate. However, the flux dep
dence does change withd, and we find Nmax
;F1/3@ ln(1/F)#m/2 @compared to theF1/2 dependence in Eq
ff

act

r-

s

-

tic

n,

s

y
-

~29!#. Overall, universal behavior arises in continuous ev
lution which is only slightly affected by model details, su
strate dimensionality, etc.

APPENDIX B: REACTION RATE IN TWO DIMENSIONS

We now account for the logarithmic corrections to t
reaction rate@Eq. ~1!# that appears in two dimensions. W
first demonstrate that these logarithmic corrections can
accounted for within modified rate equations. Let us fi
consider a simpler model where point islands diffuse at
same mass-independent rate. Then the total island de
c(t) obeysċ52c/Dt, whereDt is the time between succes
sive collisions. A collision is expected when the island vis
1/c distinct sites. Since the number of distinct sites visited
a random walk in timet grows as Dt/ ln(Dt) in two
dimensions,29 the collision time follows from the condition
DDt/ ln(DDt);1/c. The resulting expression forDt leads to
the rate equationċ52Dc2/ln(1/c). Similarly, for an island
of radiusR, we obtainċ52Dc2/ln(1/cR2).

For growing droplets with mass dependent diffusivit
these logarithmic factors imply that the reaction rateKi j
5Di1D j should be replaced by

Ki j ;
Di1D j

ln@N21~Ri1Rj !
22#

. ~B1!

In the low-coverage limit, the average separation betw
neighboring islandsN21/2 is much larger than the averag
island size. Keeping only this dominant factor inside t
logarithm gives the asymptotic form of the reaction ra
Ki j ;(Di1D j )/ ln(1/N). Moreover, we can replace the tot
island density byAF inside the logarithm. This is obviou
whenm,1, since in this case the island density indeed
proaches a steady-state valueN`;AF. For m>1, the island
density grows according toN;AF(ln t)m/2. However, the
time-dependent factor is clearly subdominant as it is at m
logarithmic in the flux, (lntmax)

m/25@ ln(1/F)#m/2. Hence for
arbitrary mobility exponent m, the form Ki j ;(Di
1D j )/ ln(1/F) provide an asymptotically correct descriptio
for the reaction rate.

Therefore in two dimensions we can continue to use
mean-field Smoluchowski equations, with the modificati
of the reactive term by the factor 1/ln(1/F). Upon rescaling
the densities byck→ckAF ln(1/F), and the time variable by
t→tAF21 ln(1/F), we formally map Smoluchowski equa
tions for epitaxial growth in two dimensions onto the mea
field equations~2! with F51 and the reaction rates given b
Eq. ~1!.

We therefore conclude that we can apply the mean-fi
results to two-dimensional substrates upon making the
renormalization

F→F ln~1/F !. ~B2!

This renormalization does not alter the basic predictions
the Smoluchowski approach; for example, all exponents
main the same. However, this renormalization does a
some logarithmic factors, e.g., Eq.~29! for the maximum
island density is replaced by

Nmax;F1/2@ ln~1/F !# (m11)/2. ~B3!
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