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a b s t r a c t

We construct a tractable model to describe the rate at which a knotted polymer is ejected from a

spherical capsid via a small pore. Knots are too large to fit through the pore and must reptate to the end

of the polymer for ejection to occur. The reptation of knots is described by symmetric exclusion on the

line, with the internal capsid pressure represented by an additional biased particle that drives knots to

the end of the chain. We compute the exact ejection speed for a finite number of knots L and find that it

scales as 1=L. We establish a mapping to the solvable zero-range process. We also construct a continuum

theory for many knots that matches the exact discrete theory for large L.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The two basic steps in bacterial infection are the initial
injection of the viral DNA into a bacteriophage capsid (Riemer
and Bloomfield, 1978; Kindt et al., 2001; Purohit et al., 2003) and
then the ejection of the DNA into a host cell (Inamdar et al., 2006;
Castelnovo and Evilevitch, 2007). The processes underlying these
two steps are both phenomenologically rich and incompletely
understood. In packaging DNA into a capsid, both the strong
repulsion from the bending of the DNA and the stress caused by
the capsid being smaller than the persistence length have to be
overcome. The pressure associated with this capsid packaging can
be in the range of tens of atmospheres (Smith et al., 2001; Gelbart
and Knobler, 2009). These forces that repel the polymer during
packaging are overcome by a specifically designed motor protein
(Inamdar et al., 2006).

The complementary ejection of the DNA into the host cell
through small pores in the capsid is driven by the osmotic
pressure exerted by the capsid and the internal stresses that have
been built up in the highly confined DNA polymer chain (Inamdar
et al., 2006; Gelbart and Knobler, 2009). Because of its central
importance in the life cycle of viruses, DNA ejection from a capsid
has been intensively studied (Inamdar et al., 2006). Most
theoretical treatments have investigated the role of microscopic
mechanisms that arise naturally from the combined effects of
osmotic pressure and bending energy.

Recent experiments and simulations suggest that viral DNA
may become knotted (i.e., a closed chain with a knot that cannot
be smoothly deformed into a circle) as it is being tightly packed in
the capsid (Arsuaga et al., 2002, 2005). These knots are apparently
large enough to prevent the DNA from being completely ejected
from the capsid (Mangenot et al., 2005). If this steric hindrance is
fully operative, then knots would have to unravel for complete
ejection. Because the driving forces are pushing the chain out of
the capsid, the only way for complete ejection to occur is for the
knot to reptate along the chain and ultimately unravel when the
end of the chain is reached. This mechanism and its role on
polymer ejection has recently been explored by numerical
simulation of a bead-spring model of a flexible polymer together
with a coupling to a background solvent (Matthews et al., 2009).
This study provides detailed, but nevertheless still qualitative
results for the time dependence of the fraction of the chain that
remains within the capsid as well as the dependence of the
ejection time on the number and type of knots on the polymer.

In this work, we propose a coarse-grained model to capture the
role of knots on the ejection process (Fig. 1). In this model, the
reptation of knots is described by the symmetric exclusion process
(Harris, 1965; Liggett, 1985; Schütz, 2000), while the point at the
interface between in the interior and exterior of the capsid
undergoes a biased motion and also satisfies the exclusion
constraint. We may view this biased particle as a ‘‘shepherd’’
that pushes the knots (‘‘sheep’’) to the end of the chain where they
can unravel. Once all the knots have unraveled, the polymer can
be completely ejected.

In the next section, we present the details of this shepherding
model. In Section 3, we treat the ejection of a polymer chain with
a small number of knots. For this discrete system, we write and
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solve the master equations that describe the position of the knots
along the chain. This solution gives the exact result that the
velocity of a strongly biased shepherd equals 1=L, where L is
the number of knots. An unexpected and simplifying feature of the
strongly biased limit is that the velocity and diffusion coefficient
of the shepherd do not depend on microscopic rates. We also
establish a mapping to the solvable zero range process (Evans and
Hanney, 2005), and we use this mapping to obtain further exact
results for the diffusion of the shepherd. Finally, we investigate a
semi-infinite system with a finite density of knots (Section 4).
Here we apply a continuum approach to solve for the knot density
profile, from which the displacement of the shepherd grows asffiffiffiffiffi

At
p

, with a calculable amplitude A.

2. Model

To present our model, it is convenient to employ a reference
frame that is fixed along the length of the polymer. The chain can
be divided into a portion that has been ejected from the capsid
and the portion that remains in the interior. The basic feature of
our modeling is that ejection may be hindered by the existence of
knots along the portion of the polymer that is still inside the
capsid. We assume that these knots are sufficiently large that they
cannot pass through the pore in the capsid (Matthews et al.,
2009). Because of this restriction, some other relaxation mechan-
ism is needed to allow for complete ejection of a polymer.

One such mechanism is provided by the possibility that knots
are not static but move along the polymer chain by reptation
(Matthews et al., 2009). When a knot reptates to the free end of
the polymer, it disappears because the entanglement of the knot is
released. If the chain contains multiple knots, then we assume
that they cannot pass through each other; instead they must
individually reptate to the end of the chain and unravel in
sequence.

Our main focus is the position of the point that separates the
ejected portion of the polymer from the portion inside. We model
the position of this dividing point by an effective particle
(a ‘‘shepherd’’) that undergoes biased diffusion along the chain,
with rates a and g4a to the left and right, respectively. The bias of
the shepherd corresponds to the polymer being pushed out of the
capsid by osmotic pressure and the release of bending energy.
The shepherd therefore rectifies the diffusive motion of the knots
so that the polymer will be ejected. When the shepherd reaches
the right end of the polymer, the ejection is complete. In the spirit
of minimalism, we assume that this bias is constant throughout
the ejection process; in reality the bias will decrease with time as
the ejection of the polymer relaxes the stresses that drives the
ejection.

We assume that the chain initially contains a specified number
of knots that are randomly interspersed along the chain. The
ejected portion is necessarily free of knots, while the comple-
mentary portion of the chain remains knotted (except
possibly near the very end of the ejection process). In the spirit

of a coarse-grained model, we ignore the topology of the knots
and replace them by localized defects. Each defect can move
equally likely in both directions along the chain due to thermal
noise, and hence the reptation of the knot is modeled as a
symmetric random walk. Different type of knots could be
described by different diffusion coefficients; however, we restrict
our discussion to a single type of knot, where all knots have the
same hopping rates. In addition to the random motion of the
knots, there is also an exclusion constraint because knots cannot
pass through each other or pass by the shepherd (corresponding
to the disallowed event of a knot passing through the capsid pore).
The knots can be viewed as a flock of diffusing and mutually
repelling excitations that are pushed to the end of the interval by
an advancing shepherd. When each knot reaches the right end of
the chain it simply disappears, corresponding to an absorbing
boundary condition. When the shepherd reaches the end of the
chain (Fig. 1), the polymer has been completely ejected.

Because of its bias, the shepherd rectifies the diffusive motion
of the knots. This rectification of thermal noise underlies many
microscopic biological processes, such as the motion of motor
proteins (Howard, 2001), and the chaperon assisted translocation
of polymers across a membrane (D’Orsogna et al., 2007). In our
model of polymer ejection, the rectification is mediated by the
exclusion constraint of the knots, leading to an exclusion process
in which a single particle is subject to a bias that acts indirectly on
all other particles. A two-sided version of this model with a biased
particle caged in between unbiased particles has been studied
previously (Burlatsky et al., 1992, 1996; Landim et al., 1998);
this model mimics, e.g., the field-driven motion of a charged
particle that is immersed in a lattice gas of neutral particles. It is
worth mentioning that various embellishments of idealized
exclusion processes have helped to understand a variety of
biological processes and have raised new theoretical questions
about the exclusion process itself (Reichenbach et al., 2006;
Stukalin and Kolomeisky, 2006; Dong et al., 2007; Antal et al.,
2007).

3. Discrete formulation

We first study the case of a small number of knots by writing
the discrete master equations that describe the probability
distribution for their positions. These master equations turn out
to be soluble, from which we can extract the speed of the
shepherd in the steady state.

3.1. Single knot

To determine the ejection speed of a polymer that contains a
single knot, note that before the shepherd first reaches the knot,
its speed is simply v0 ¼ g� a (Fig. 2, left). Subsequently, the knot
and the shepherd stay close to each other because of the bias of
the shepherd toward the knot. As a result, the speed of their
mutual advance is less than v0. To obtain this speed, we define
PðnÞ as the probability that the number of empty sites between the
shepherd and the first knot is n. We call this number of vacancies
between the two particles as the ‘‘gap’’. For gap size nZ0, n can
increase to nþ 1 with rate 1þ a, either by the knot hopping one
step to the right or the shepherd hopping one step to the left with
rate one and with rate a, respectively. Similarly, for nZ1, the gap
size n decreases to n� 1 with rate 1þ g. When n ¼ 0, the gap size
can only increase with rate 1þ a.

Because the shepherd is driven toward the knot for g4a, the
distance distribution between these two entities reaches a steady
state. In this state, the two transition rates ð1þ aÞPðnÞ and ð1þ
gÞPðnþ 1Þ are equal and give the recursion, for nZ0, ð1þ aÞPðnÞ ¼

1

N210

α 1

3

γ

Fig. 1. Schematic illustration of the shepherding process. The motion of the

shepherd (.) is biased to the right, while the knots (K) are represented as

localized particles that hop symmetrically on the integer interval ½0;N�. Upon

reaching the end of the chain, the knot has unraveled; this event is represented as

an absorbing boundary at N.
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ð1þ gÞPðnþ 1Þ for nZ0, with solution

PðnÞ ¼
g� a
gþ 1

1þ a
1þ g

� �n

: ð1Þ

Here the overall amplitude is determined by the normalization
condition

P
nZ0 PðnÞ ¼ 1.

Since the shepherd can always hop to the left (with rate a), but
it can hop to the right only if its right neighbor is empty
(probability 1� P0) , the speed of the shepherd for the case of one
knot is

V1 ¼ gð1� P0Þ � a ¼ g1þ a
1þ g

� a: ð2Þ

In the limit of an infinitely biased shepherd (g-1), Eq. (2)
reduces to V1 ¼ 1.

3.2. Several knots

For L knots their configuration may be specified by the set of
separations n � ðn1;n2; . . . ;nLÞ, where ni is the number of
vacancies to the left of the i th knot. The stationary probability
PðnÞ for a configuration specified by n satisfies the equation

dPðnÞ

dt
¼ �ðaþ gþ 2LÞPðnÞ þ gPðn1 þ 1Þ þ aPðn1 � 1Þ

þ
XL�1

k¼1

½Pðnk � 1;nkþ1 þ 1Þ þ Pðnk þ 1;nkþ1 � 1Þ� þ PðnL � 1Þ

þPðnL þ 1Þ ¼ 0: ð3Þ

The scalar arguments of P on the right-hand side indicate only the
components of the separation vector that have been changed from
those in n. Eq. (3) is valid for configurations in which the
separations between consecutive knots are all at least one (nkZ1
for every k). For configurations where some nk ¼ 0 (i.e., zero
separation between adjacent knots), the relevant separations
cannot decrease. In such cases and independently for each k, the
following terms are missing (i.e., they should be subtracted) from
the right-hand side of (3)

�ð1þ gÞPðnÞ þ aPðn1 � 1Þ þ Pðn1 � 1;n2 þ 1Þ for k ¼ 1;

�2PðnÞ þ Pðnk�1 þ 1;nk � 1Þ þ Pðnk � 1;nkþ1 þ 1Þ for 2rkrL� 1;

�2PðnÞ þ PðnL�1 þ 1;nL � 1Þ þ PðnL � 1Þ for k ¼ L: ð4Þ

(Here we formally allow nk to take the value �1 for convenience.)
By solving the system of equations (3) and (4) for a small number
of knots, a simple pattern emerges that suggests that the exact
solution factorizes and individual gaps are distributed according

to exponential distributions

PðnÞ ¼
YL

k¼1

ð1� zkÞz
nk

k : ð5Þ

(The prefactor in (5) assures that normalization is obeyed:P
PðnÞ ¼ 1.) Substituting ansatz (5) into the bulk and boundary

equations, Eqs. (3) and (4), we obtain

aþ gþ 4 ¼ gz1 þ
aþ z2

z1
þ

zL�1 þ 1

zL
þ zL

þ
XL�1

k¼2

zk�1 � 2zk þ zkþ1

zk
; ð6Þ

as well as

z1ð1þ gÞ ¼ aþ z2 for k ¼ 1;

2zk ¼ zk�1 þ zkþ1 for 2rkrL� 1;

2zL ¼ zL�1 þ 1 for k ¼ L: ð7Þ

When the conditions (6) and (7) are both satisfied the solution is
stationary. Eq. (7) represents a linear recursion with the unique
solution

zk ¼
aLþ 1þ ðg� aÞðk� 1Þ

gLþ 1
: ð8Þ

This form for zk also satisfies the bulk equation (6), which can be
verified by substitution.

The speed of the shepherd can be calculated in the same way
as in the case of a single knot. The shepherd can always jump to
the left, but it can jump to right only if its right neighbor is empty,
that is VL ¼ gProbðn1Z1Þ � a. The probability that the first gap
has size of at least one is

Probðn1Z1Þ ¼ ð1� z1Þ
X1
n1¼1

zn1

1 ¼ z1: ð9Þ

Hence the speed of the shepherd is

VL ¼
g� a
gLþ 1

: ð10Þ

Eq. (5) shows that the probability distribution for the gap size
‘k ¼ 1þ nk between the ðk� 1Þst and k th knots is ð1� zkÞz

‘k�1
k and

therefore the average distance is

/‘kS ¼
X
‘kZ1

‘kð1� zkÞz
‘k�1
k ¼

1

1� zk
¼
gLþ 1

g� a
1

L� kþ 1
: ð11Þ

Since gaps are independent, the average total size (i.e.,
the average distance between the shepherd and the L th knot)
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Fig. 2. (Left) Time dependence of the positions of the shepherd (lower) and a single knot (upper), when the shepherd hopping rates to the right and left are g ¼ 1:1 and

a ¼ 1, respectively. (Right) Time dependence of the positions of the shepherd (lower) and 10 knots (upper) on a chain of length 1000, when the shepherd hopping rates to

the right and left are g ¼ 2 and a ¼ 1, respectively.
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is

/‘S ¼
XL

k¼1

/‘kS ¼
gLþ 1

g� a HL; ð12Þ

where HL ¼
P

1rjrL j�1 are harmonic numbers. Using the asymp-
totic HLClnL when Lb1 we see that the average gap size scales
according to

/‘SC
g

g� a
LlnL ð13Þ

when the number of knots is large. Similarly, we use the
independence of gaps to compute the variance of the total size

/‘2S�/‘S2
¼
XL

k¼1

½/‘2
kS�/‘kS

2
� ¼

XL

k¼1

zk

ð1� zkÞ
2
; ð14Þ

which simplifies [upon using (8)] to

/‘2S�/‘S2
¼

gLþ 1

g� a

� �2

Hð2ÞL �
gLþ 1

g� a HL; ð15Þ

where Hð2ÞL ¼
P

1rjrL j�2. For large number of knots Hð2ÞL -p2=6
and therefore asymptotically

/‘2S�/‘S2 ¼
p2

6

g
g� a

� �2

L2 þOðLlnLÞ: ð16Þ

Hence the relative fluctuations of the total size diminish, albeit
slowly as the inverse logarithm of the total number of knots:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/‘2S�/‘S2

q
/‘S

�
1

lnL
: ð17Þ

In the special case of an infinitely biased shepherd (g ¼ 1), the
shepherd is always adjacent to the first knot, so that n1 ¼ 0 and
the stationary probability (5), (8) becomes

PðnÞ ¼
YL

k¼2

k� 1

L

� �‘k

: ð18Þ

In this limit, the speed of the shepherd reduces to VL ¼ 1=L and
other characteristics of the system similarly simplify.

A useful feature of our model is that it can be mapped onto the
zero range process (ZRP) (Evans and Hanney, 2005), on a chain of L

sites with open boundaries. In this mapping, each knot corre-
sponds to a site in the ZRP, and the number nk of empty sites to the
left of each knot corresponds to the number of particles that
occupy site k in the ZRP. The particles in the ZRP multiply occupy
each site, and only the top particle can hop at a rate that is
independent of the occupancy of the target site. For example,
knot k hopping to the right corresponds to a particle in the ZRP
hopping from site kþ 1 to k. The top particle in this corresponding
ZRP can hop: (i) both to the left and to the right at rate 1 from each
bulk site; (ii) out of site k ¼ 1 at rate g and into k ¼ 1 at rate a,
and (iii) either in or out of site k ¼ L at rate 1. The relevant feature
of this mapping is that the negative of the current entering the
ZRP from the left exactly corresponds to the speed of the
shepherd.

Our shepherd model is a special case of the general ZRP that
was solved by Levine et al. (2005), and Eqs. (5), (8), and (10) are
special cases of their solution. In addition to its average speed, we
are also interested in the diffusion coefficient of the shepherd. Due
to the equivalence of the models, the negative of the time
integrated current �JðtÞ of the ZRP corresponds to the position
xðtÞ ¼ �JðtÞ of the shepherd in our model. We can use results
of Harris et al. (2005) for the fluctuations of the time-integrated
current. From this work, the large time asymptotic of the
Laplace transform of the position of the shepherd is given
explicitly by (the large-L limit of the expression below was
obtained previously in Bodineau and Derrida, 2004; van Wijland

and R�acz, 2005)

x̂ðlÞ � lim
t-1

1

t
log/e�lxðtÞS ¼

ð1� elÞðae�l � gÞ
1þ gL

: ð19Þ

From this equation, the speed of the shepherd (10) can be
obtained as VL ¼ @lx̂jl¼0, while the diffusion coefficient is

DL ¼
1

2

@2x̂

@l2

����
l¼0

¼
aþ g

2ð1þ gLÞ
: ð20Þ

Again, the result is particularly neat, DL ¼ ð2LÞ�1, in the limit of an
infinitely biased shepherd.

3.3. Ejection time

What is the average ejection time of a polymer with a finite
density of knots? For concreteness, consider a polymer of length
N, with a shepherd at site 0, and L equidistant knots initially at
xi ¼ iN=ðLþ 1Þ, i ¼ 1; . . . ; L. If the knot density r1 ¼ L=N is
sufficiently low (roughly if r15g� a), the biased shepherd
reaches each knot close to the knot’s initial position. The shepherd
advances with the localized flock of k already-collected knots with
asymptotic speed Vk ¼ ðg� aÞ=ðgkþ 1Þ, see Eq. (10), until the flock
reaches the ðkþ 1Þst knot. Consequently, the time for the
shepherd to reach the end of the polymer is

t ¼
N

Lþ 1

XL

k¼0

1

Vk
¼

N

2

gLþ 2

g� a : ð21Þ

Simulation results for this time are plotted in Fig. 3 for a polymer
of length N ¼ 100 as a function of the number of knots when the
bias of the shepherd is weak (a ¼ 1; g ¼ 2). Our result (21) gives an
excellent fit to the data even for this short polymer.

For a finite density of knots r1 ¼ L=N, we also obtain the
asymptotic position of the shepherd from (21) as

xC
2ðg� aÞ
gr1

t�!2t=r1; a-0: ð22Þ

Notice the lack of dependence on the hopping rate g of the
shepherd in the asymmetric limit of a-0.

When a real virus is ejected from the capsid, the pressure
should decrease during this process (Gelbart and Knobler, 2009).
This effect can be modeled as a decreasing bias g for the shepherd.
Since the bias is so enormous in the capsid (Gelbart and Knobler,
2009), even the decreased bias can be considered as large bias in
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Fig. 3. Average ejection time for a polymer of length 100 as a function of the

number of equidistant knots L. The hopping rates of the shepherd are a ¼ 1, g ¼ 2.

The line is the function 100 � ð1þ LÞ as given by Eq. (21).
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our model. This argument is supported by the fairly uniform rate
of virus ejection in simulations of Matthews et al. (2009). The
ejection time (21) for large bias becomes t ¼ NL=2, that is
independent of the rates a and g. Knowing this ejection time
experimentally would give us an estimate for the hopping rates of
the knots (which we used to rescale time with). Unfortunately, we
do not know of such experiments.

4. Finite density of knots

When the number of knots is large, it is more convenient to
study the knot density profile by a continuum theory. While a
finite knot density is perhaps not of direct relevance to the
polymer ejection problem, this limiting situation leads to an
appealing exclusion process that can be solved in a simple way by
applying a scaling approach to account for the effective moving
boundary condition caused by the motion of the shepherd (Crank,
1987).

Let rðx; tÞ denote the continuum knot density at position x and
time t, and let x�ðtÞ denote the position of the shepherd (Fig. 4).
Initially the shepherd is at x� ¼ 0 and it hops to the right with rate
1 whenever its right neighbor is vacant. In the continuum limit,
the knot density rðx; tÞ satisfies the diffusion equation

@r
@t
¼
@2r
@x2

: ð23Þ

The diffusion coefficient D ¼ 1 since the hopping rate of each knot
equals 1 and the exclusion plays no role in the overall density
when the hopping is symmetric (Schütz, 2000).

As the shepherd advances, knots accumulate in front of it and
the knot density increases monotonically from a value r1 as
x-1 to the value 1 at x�. The shepherd advances only when the
adjacent site is empty. In the continuum limit, the analog of this
advancement rule is

dx�
dt
¼ �

@r
@x

����
x¼x�

: ð24Þ

That is, the probability that there is a gap in front of the shepherd
equals the local knot density gradient. Thus we must solve the
diffusion equation (23) in the region x�ðtÞoxo1 subject to the
initial condition rðx40;0Þ ¼ r1 and the boundary condition
rðx�; t40Þ ¼ 1.

This type of moving boundary-value, or Stefan, problem
(Crank, 1987; Langer, 1987) can be solved by a scaling approach.
Let us assume that the density profile approaches the scaling form

rðx; tÞ ¼ f ðxÞ where x ¼
x

x�
� 1: ð25Þ

Using this scaling form, the derivatives of the density are

@r
@t
¼ �

_x�
x�
ð1þ xÞf 0;

@r
@x
¼

1

x�
f 0;

@2r
@x2
¼

1

x2
�

f 00:

Using these, the diffusion equation (23) can be written in the
separated form

_x�x� ¼ �
f 00ðxÞ

ð1þ xÞf 0ðxÞ
;

where A is a separation constant. Eq. (24) for the motion of the
boundary gives

x� _x� ¼ �f 0ð0Þ; ð26Þ

which both fixes the separation constant A ¼ �f 0ð0Þ and implies
that the boundary point advances in time as

x� ¼ 2At: ð27Þ

In scaled coordinates the differential equation for the density
profile now becomes f 00ðxÞ ¼ �Að1þ xÞf 0ðxÞ. Integrating this
equation, subject to the boundary condition rðx�; t40Þ ¼ 1 (or
f ð0Þ ¼ 1), yields

f ðxÞ ¼ 1� A

Z x

0
dZ e�AðZþZ2=2Þ: ð28Þ

To eliminate the unknown constant A ¼ �f 0ð0Þ, we use the fact
that f ð1Þ ¼ r1 to obtain the relation

r1 ¼ 1� A

Z 1
0

dZ e�AðZþZ2=2Þ ¼ 1� pA=2eA=2 erfcðA=2Þ:

that (implicitly) determines A as a function of r1; here erfc is the
complementary error function (Abramowitz and Stegun, 1972).
Using the asymptotic forms of the error function, we can extract
the limiting behaviors of the separation constant A, from which
the position of shepherd is given by

x�Ct �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=r1

p
; r1k0;

2p�1=2ð1� r1Þ; r1m1:

(
ð29Þ

Notice that the limiting expression for r1-0 reproduces Eq. (22)
that we obtained from the exact discrete solution.

5. Summary

We modeled the ejection of a knotted flexible polymer from a
capsid in terms of a hybrid dynamical model that consists of a
single asymmetric exclusion process (representing the boundary
point on the polymer between the interior and exterior of the
capsid) that interacts with a gas of symmetric exclusion processes
(the knots). In the absence of any external forces, the knots reptate
symmetrically along the chain. The effect of the osmotic pressure
is modeled as the single asymmetric exclusion process that
shepherds the knots to the opposite end of the chain where their
entanglement is released. Once all the knots have unraveled, the
polymer can be ejected.

The ejection speed VL can be solved exactly for the Lþ 1-
particle system that consists of the shepherd and L knots and the
result is remarkably simple for a strongly biased shepherd:
VL ¼ 1=L. The underlying exclusion process can also be solved
for a finite density of knots by a continuum description. Here the
amount of the chain that is ejected at time t is not proportional to
t, but rather to

ffiffi
t
p

. This behavior matches that of the discrete
solution in the limit of a strongly biased shepherd. In all of our
theoretical modeling, we use constant bias throughout the entire
ejection process. We argue that the motion remains in the strong-
bias regime throughout the ejection process due to the extremely
large initial pressure in the capsid. As long as the system remains
in this strong-bias limit, the motion of the shepherd and the knots
are not influenced by the decrease in the ejection force and it is
appropriate to treat the bias as constant.

1

�∞

�

xx∗ (t)

Fig. 4. Sketch of the knot density as a function of position along the chain in the

continuum limit.
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One final point is that we have assumed that all knots are
identical. It may be worthwhile to extend our model to the
physically more realistic case where knots are non-identical, so
that their diffusivities are random variables.
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