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Abstract. We introduce and solve analytically a model for the development of
disparate social classes in a competitive population. Individuals advance their
fitness by competing against those in lower classes, and in parallel, individuals
decline due to inactivity. We find a phase transition from a homogeneous,
single-class society to a hierarchical, multi-class society. In the former case, the
population is uniformly poor. In the latter case, a finite-fraction condensate that
consists of a static lower class remains. The rest of the population consists of an
upwardly mobile middle class, on top of which lies a tiny upper class in the form
of a thin boundary layer.
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There are many connections between social dynamics and physical processes. For
example, in urban dynamics [1], migration-driven population development has analogies
with coarsening [2]. Rumour propagation and formation of social networks are closely
related to percolation [3]. An appealing route for modelling social phenomena is
to identify individuals in a society as particles in a physical system, i.e., an agent-
based description [4, 5]. This interdisciplinary approach has helped identify underlying
mechanisms for fundamental social phenomena and has led to quantitative predictions [6]–
[10].

In this spirit, we seek to understand the formation of the social hierarchies that
are ubiquitously observed in animal populations [11, 12] and in human societies [13].
We introduce a minimalist agent-based model in which competition is the underlying
mechanism for social differentiation. Using concepts and methods from statistical and
non-linear physics, such as scaling and asymptotic analysis, we find a rich phenomenology
for social diversity. As a function of the competition rate, the population undergoes a
phase transition from a homogeneous, single-class society to a hierarchical, multi-class
society. In the latter phase, the lower class remains destitute and static and has the
character of a condensate, while the middle class is dynamic and has a continuous upward
mobility.

Our work is based on an earlier model of Bonabeau [14], in which each individual
is endowed with a fitness-like variable that evolves by two opposing processes. The first
is competition: when two agents interact, one individual becomes more fit (gains status)
and the other becomes less fit, with the initially fitter individual being more likely to
win. Counterbalancing this competition, the winning probability for the fitter agent
decreases as the time from the last competition increases. This model was found to
exhibit a transition to a heterogeneous society as the relative influence of competition is
increased [14, 15].

In our model, we account for the interplay between advancement by competition and
decline by inactivity via a single parameter. Each agent is endowed with an integer fitness
value k ≥ 0 that can change due to two processes: (i) advancement by competition and
(ii) decline by inactivity. In the competition step, when two agents interact, their fitnesses
change according to

(k, j) → (k + 1, j), (1)

for k ≥ j. When two equally fit agents compete, both advance2. Without loss of generality,
the rate of this process is set to one. We also consider the mean-field limit where any pair
of agents is equally likely to interact. The rationale behind this ‘rich get richer’ dynamics
is obvious: fitter individuals are better suited for, and hence benefit from, competition.
When decline occurs, individual fitness decreases as

k → k − 1 (2)

with a rate r. This process reflects the natural tendency for social status to decrease in
the absence of interactions. The lower limit for the fitness is k = 0; once an individual
reaches zero fitness, there is no further decline. The model is characterized by a single
parameter, the rate of decline r.

2 The behaviour when only one agent advances is essentially the same.
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Let fk(t) be the fraction of agents with fitness k at time t. This distribution obeys
the non-linear master equation

dfk

dt
= r(fk+1 − fk) + fk−1Fk−1 − fkFk (3)

for k > 0, and df0/dt = rf1 − f 2
0 for k = 0. The quantity Fk =

∑k
j=0 fj is the cumulative

distribution. We take the initial condition to be fk(0) = δk,0. In equation (3), the first
two terms account for decline, while the last two terms account for advancement [16].

To understand the behaviour of this system, we focus on the cumulative distribution
Fk, from which the individual densities are fk = Fk−Fk−1. From the master equation (3),
the cumulative distribution satisfies

dFk

dt
= r(Fk+1 − Fk) + Fk(Fk−1 − Fk), (4)

for k ≥ 0. The boundary condition is F−1 = 0 so dF0/dt = r(F1 − F0) − F 2
0 , and the

initial condition is Fk(0) = 1.
Homogeneous versus hierarchical societies. Our social diversity model undergoes a

phase transition from a homogeneous to a hierarchical society. This transition follows
from the continuum limit of the master equation (4) for the cumulative distribution

∂F

∂t
= (r − F )

∂F

∂k
. (5)

For finite fitness, the cumulative distribution approaches a steady state in the long-time
limit. Then either F = r or ∂F/∂k = 0. Invoking the bound F ≤ 1, we conclude that
either F = r or 1. Therefore, L, the fraction of the population with finite fitness exhibits
a phase transition

L =

{
r r < 1;

1 r ≥ 1.
(6)

When competition is weak, the entire population has a finite fitness, while for strong
competition, only a fraction L < 1 of the population has a finite fitness.

We shall see that the quantity L is the size of the lower class, while the complementary
fraction 1−L is the size of the middle class, whose fitness increases indefinitely. Thus for
r ≥ 1, the society is homogeneous and consists of a single lower class. However for r < 1,
there is a hierarchical society that contains a distinct lower class, and a distinct a middle
class. When r = 0, the lower class disappears entirely.

Middle class dynamics. The picture presented above is confirmed by analysing the
dynamics of the middle class. Applying dimensional analysis to the governing equation (4)
suggests that the characteristic fitness of the middle class increases linearly with time,
k ∼ t. Thus, we posit the scaling form

Fk � Φ(k/t) (7)

with the boundary condition Φ(∞) = 1. Substituting equation (7) into (5), the scaling
function satisfies x dΦ/dx = (Φ − r) dΦ/dx where x = k/t. The solution is either
Φ(x) = r + x or dΦ/dx = 0. As a result (figure 1)

Φ(x) =

{
r + x x < 1 − r;

1 x ≥ 1 − r.
(8)
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Figure 1. The middle class. The scaled cumulative distribution Φ(x) versus x
for r = 1/2 at t = 250 (dotted), 1000 (dashed), 4000 (dot–dashed). The solid
line is the theoretical prediction (8). The inset shows the qualitative behaviour
for r = 0 (dashed), r ≈ 1/2 (solid) and r ≈ 1 (dotted).

Remarkably, the scaling function for the cumulative distribution is piecewise linear and
thus non-analytic. The analysis above implicitly assumes continuity of the scaling function
and indeed, the cumulative distribution is expected to be continuous.

The scaling function (8) has a number of basic implications. First, the quantity
Φ(0) = r is the fraction of the population that belongs to the lower class, confirming the
prediction of equation (6). This behaviour is reminiscent of a physical condensate, where
a finite fraction of the population occupies the zero-fitness (in scaled units) ground state.
In this sense, the entire lower class is destitute. When only competition occurs (r = 0),
the society consists of a continuously improving middle class.

We can alternatively write the fitness distribution in the scaling form fk � t−1φ(k/t).
The corresponding scaling function is φ(x) = dΦ/dx = rδ(x) + 1 for x ≤ 1 − r and
φ(x) = 0 otherwise. The middle class thus has a constant fitness distribution

fk � t−1, (9)

for k < kupper = (1−r)t. The lot of the middle class is constantly improving, as the fitness
extends over a growing range and the average fitness increases linearly with time.

Numerical integration of the master equation confirms these predictions (figures 1
and 2). We used a fourth-order Adams–Bashforth method [17] with accuracy to 10−10

in the distribution Fk. Our numerical data were obtained by integrating Fk for 0 ≤ k <
20 000.

Lower class dynamics. The fitness of the lower class is finite; in other words, the
fitness distribution is in a steady state. This distribution can be determined by setting
the time derivative in the rate equation to zero. Writing Fk = L(1 − Gk), so that the
deviation Gk vanishes at large k, equation (4) gives

r
Gk+1 − Gk

Gk − Gk−1
= L(1 − Gk). (10)

The fitness distributions are fundamentally different in the two phases. In the
homogeneous society phase (r ≥ 1 and L = 1), the deviation Gk decays rapidly at large
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Figure 2. The lower, middle and upper classes. The fitness distribution fk versus
k for r = 1/2 at t = 4000 (solid line), showing the lower (k � 60), middle and
upper (k � 2000) classes. Also shown for reference is the plateau fk = 1/t (dashed
line). The distribution varies as 1/k2 in the lower class up to the diffusive scale
klower ∼ (2rt)1/2. The distribution is constant in the middle class up to a ballistic
scale kupper = (1− r)t, beyond which there is an upper class that has a Gaussian
decay.

fitness. Replacing the right-hand side of equation (10) by 1 for large k, the solution is
simply Gk ∼ r−k. Therefore

fk ∼ r−k. (11)

The fitness distribution decays exponentially, so the lower class is confined to a small range
of fitness values. The characteristic fitness 1/ ln r diverges as the transition is approached.
The society is homogeneous with a single class, the lower class, that does not evolve with
time.

In the hierarchical society phase (where r < 1 and L = r), the fitness distribution is
universal, as the recursion relation (10) becomes independent of r, (Gk+1 − Gk)/(Gk −
Gk−1) = 1−Gk. This shows that Fk/r is a universal, r-independent distribution (figure 3).
We start by treating k as a continuous variable, because the fitness range becomes large
as r ↓ 1. We thus expand the differences in equation (10) to second order. Since
G′′ 
 G′, where the prime denotes differentiation with respect to k, we find G′′+GG′ = 0.
Integrating once and invoking G → 0 as k → ∞ gives G′ + 1

2
G2 = 0. Asymptotically,

G � 2k−1, and using fk = Fk − Fk−1, we find

fk � 2r k−2. (12)

The lower class has a power-law fitness distribution with mean fitness that diverges
logarithmically in the upper limit. While the lower class is still static, it is not as destitute
as in the homogeneous society phase.

The transition between the lower and middle class occurs when 2r/k2 ≈ 1/t, i.e.,
where the power-law distribution (12) matches the uniform distribution (9). Consequently,
the lower class is confined to a diffusive boundary layer of thickness

klower ∼ (2rt)1/2. (13)
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Figure 3. The lower class. The cumulative distribution, normalized by the rate
r, Fk/r is plotted versus k. Shown are simulation results for r = 1/4 (circles),
r = 1/2 (squares), r = 3/4 (diamonds) at time t = 104.

Beyond this diffusive scale lies the middle class whose constant density (9) extends over
the range klower < k < kupper. In the hierarchical society phase, the fitness distribution
consists of the stationary component (12) that defines the lower class and the evolving
component (7) that defines the middle class. The extent of the stationary region grows
indefinitely with time.

We thus conclude that the lower class is always static, being in a steady state,
independent of the rate of decline r. In a homogeneous society, the lower class has an
exponentially decaying fitness distribution that lies within a narrow fitness range. In a
hierarchical society, the lower class fitness distribution decays algebraically and its range
grows diffusively with time.

Upper class dynamics. The upper class is defined by the subpopulation whose fitness
lies beyond kupper = (1 − r)t. We probe the tail of this fitness distribution by again
considering the deviation Gk, defined by Fk = 1 − Gk. It obeys the Fokker–Planck
equation

∂Gk

∂t
+ v

∂Gk

∂k
= D

∂2Gk

∂k2
(14)

with upward drift velocity v = (1 − r) and diffusion coefficient D = (1 + r)/2. The
boundary condition G(k = vt) ∝ t−1 is set by matching the density at the top of the middle
class with that at the bottom of the upper class. Consequently, the fitness distribution,
f = −∂G/∂k, follows the scaling form (figure 4)

fk(t) � t−1ψ

(
k − vt√

Dt

)

. (15)

The scaling function has the Gaussian tail ψ(z) ∼ exp(−z2/2), as z → ∞, characteristic of
a convection–diffusion equation. The upper class is thus confined to a diffusive boundary
layer that grows as

√
Dt. From equation (15), the upper class contains a fraction ∝1/

√
t

of the total population.
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Figure 4. The upper class. Shown is the normalized tail of the fitness distribution:
tfk versus z2, with the scaling variable z = (k − vt)/

√
Dt, for r = 1/2 at times

t = 4000 (circles) and t = 8000 (squares).

For completeness, we note that for the special case of r = 0, the rate equation
dFk/dt = Fk(Fk−1 − Fk) admits an exact solution. We make the transformation

Fk =
Pk−1

Pk
, (16)

with the initial condition Pk(0) = 1 and the boundary condition P−1 = P0 = 1.
Remarkably, this transformation reduces the non-linear rate equations to the set of linear
equations dPk/dt = Pk−1 for k ≥ 1. Solving these recursively, we obtain Pk =

∑k
j=0 tj/j!.

Therefore,

Fk(t) =
1 + t + (1/2!)t2 · · ·+ (1/k!)tk

1 + t + (1/2!)t2 · · ·+ (1/(k + 1)!)tk+1
. (17)

It is possible to show that this exact solution adheres to the scaling form (7) with Φ(x)
as in (8). Asymptotic analysis yields the exact shape of Fk in the boundary layer,

1 − Fk �
√

2/πt exp[−(k − t)2/2t]/erfc[(k − t)/
√

2t].
In summary, we introduced a minimal model of social diversity in which the two

driving mechanisms are advancement by competition and decline by inactivity. An
idealized but plausible social structure emerges: either a homogeneous society with a single
lower class or a hierarchical society with multiple classes. The lower class is always static,
while the middle class and the tiny upper classes are upwardly mobile. In a hierarchical
society, the lower and the upper classes are confined to boundary layers that are much
smaller than the dominant scale that characterizes the fitness of the middle class. It is
striking that a deceptively simple master equation exhibits such a rich structure, with a
stationary component, followed by two transient components, as well as a non-analytic
scaling function for the asymptotic fitness distribution.

There are numerous interesting questions suggested by this work. For example, what
is the time history of an individual? How rigid is the social hierarchy and how does it
depend on the population size? What happens if each individual is also endowed with
an intrinsic fitness? Last, does non-trivial spatial organization emerge when agents move
locally in space?
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