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Abstract. We investigate a variety of statistical properties associated with the
number of distinct degrees that exist in a typical network for various classes of
networks. For a single realization of a network with N nodes that is drawn from
an ensemble in which the number of nodes of degree k has an algebraic tail,
Ny ~ N/k” for k> 1, the number of distinct degrees grows as N1/”_ Such an
algebraic growth is also observed in scientific citation data. We also determine the
N dependence of statistical quantities associated with the sparse, large-k range of
the degree distribution, such as the location of the first hole (where N = 0), the
last doublet (two consecutive occupied degrees), triplet, dimer (N = 2), trimer,
ete.
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1. Introduction

A complete microscopic representation of a macroscopic system is usually unavailable and
often unnecessary, especially if the system is evolving or it is taken from an ensemble and
the goal is to understand the typical features of the ensemble. Thus instead of determining
a huge number of parameters (such as the 10%* coordinates and momenta of atoms), it
often suffices to know a few useful macroscopic quantities (like the total number of atoms
and the total energy) to understand the bulk properties of a macroscopic system.

In the realm of networks, one usually starts with an ensemble of large networks that
are generated according to a specified and not completely deterministic algorithm. In
analogy with other bulk systems, we are typically interested in macroscopic-like network
characteristics, such as the total number of links, the total number of triangles, the total
number of clusters (maximal connected components), etc [1]. Two of the most useful
macroscopic characteristics are the cluster-size distribution and the degree distribution.

The degree of a node (the number of links attached to the node) is perhaps the
simplest local network characteristic. It has been now been extensively studied, with an
emphasis on networks with broadly distributed degrees [2]. Here we analyze the number
of distinct degrees Dy that exists for a given network of size N. The number Dy varies
from realization to realization, but for the ensembles that we study Dy turns out to be
a self-averaging quantity, so that its mean value is the most important characteristic. We
focus on (Dy) which we generally write as Dy when no ambiguity is possible.

We also investigate the locations of the first hole (the smallest k& where N} equals
zero), the last doublet (the largest k value for which Ny > 0 and Nj,1 > 0), the last triplet,
the last dimer (the largest k value where NV, = 2), trimer, etc in the degree distribution
(figure 1).

The number of distinct degrees Dy exhibits interesting behavior for network ensembles
in which the degree distribution has an algebraic tail; hence we focus on such networks.
For concreteness, we consider networks that are grown by preferential attachment. The
best-known case is strictly linear preferential attachment [3]-[8], in which a new node
attaches to a pre-existing node of degree k with rate A, = k. To illustrate the quantities
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Figure 1. A network of 16 nodes, with node degrees indicated. In this example,
N, ={7,4,1,0,2,1,0, 1}. The number of distinct degrees D1 = 6, the last doublet
occurs at k = 5, the last dimer also at k = 5, the first hole at kK = 4, and kp.x = 8.

studied here, we plot the degree distribution for a realization of such a network of N = 107
nodes (figure 2). For small k, every degree is represented, that is, Ny > 0. As k increases,
eventually a point is reached where Ny, first equals zero; this defines the first ‘hole’ in the
degree distribution. Holes become progressively more common for larger k£ and eventually
the distribution becomes sparse. Figure 2 also indicates the position of the last doublet,
the largest k for which Ny > 0 for two consecutive k values, while the last dimer is defined
as the largest k value for which N, = 2. One can analogously define the last triplet and last
trimer, etc. As k continues to increase, the degree distribution is non-zero at progressively
more isolated k values and eventually the distribution terminates when the largest network
degree K.y is reached.
One of our principal results is that

Dy ~T(1—1/v)(RN)"" (1)
for networks whose degree distribution has the algebraic tail
N, ~ NRk™ when k> 1, (2)

where R is a constant of the order of 1.

The behavior of Dy parallels that of Heap’s law of linguistics [9, 10], in which the
number of distinct words in a large corpus of N words grows sub-linearly with /N. Recent
work [11]-[13] has related the N dependence in Heap’s law to the dependence of word
frequency versus rank in this same corpus—Zipf’s law [14]. Because of the simplicity and
explicitness of scale-free network models, we can quantify the statistical properties of Dy
more precisely than in word-frequency statistics. It is also worth noting that the number of
distinct degrees in a particular realization of a network is reminiscent of the ‘graphicality’
of a network. Namely, given a set of disconnected nodes, each with a specified degree, one
can ask which degree sequences allow all the nodes to be connected into a single component
without multiple links between the same nodes [15]-[17]. The number of distinct degrees
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Figure 2. The number of nodes of degree k > 10 for a single network realization
of N =107 nodes that is grown by strictly linear preferential attachment. The
largest degree is kpax = 6693, Dy = 465, the last doublet occurs at k = 782, the
last dimer at k = 641, the last triplet at k = 518, the last trimer at £ = 500, and
the first hole at k = 201 (arrows).

provides complementary information about which degree sequences are actually realized
in a complex network.

2. Distinct degrees

Consider networks whose degree distribution has the asymptotic power-law form of
equation (2). We deal only with sparse networks, for which v > 2. A network with such a
degree distribution can be easily constructed by the redirection algorithm [18], in which
a new node either attaches to a randomly selected ‘target’ node with probability 1 — r
or to the ancestor of the target with probability r. This algorithm generates a scale-free
network whose growth rule is precisely shifted linear preferential attachment, with the
attachment rate to a node of degree k, Ay = k + A, and with A = 1/r — 2. This growth
rule leads to a degree distribution that has the form (2) with exponent v =1+ 1/r. We
use this redirection algorithm for our simulations and interchangeably refer to the growth
mechanism as either shifted linear preferential attachment or redirection.

To determine the number of distinct degrees that appear in a typical realization of a
large network, first notice that for & in the range k < K = (NR)'/”, N, > 1. In this dense
regime of the degree distribution (figure 2), all degrees with k < K are present. This range
therefore gives a contribution of (NR)'” to Dy. In the complementary sparse range of
k > K, we estimate the number of distinct degrees, by integrating the degree distribution
for £ > K. Adding the contributions from the dense and sparse regimes gives

14

D = K,  K=(NR)". (3)

v—1
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Figure 3. The average number of distinct degrees Dy versus N for networks
that are grown by redirection with redirection probability r. The upper curve (o)
corresponds to Ay =k — % or to redirection probability r = % Here the degree
distribution exponent is 5/2 and Dy = BN?/®, with B = (3/2)%/57~1/°1(3/5) =
1.393019.... The lower curve (A) corresponds to Ay =k or r = % Here Dy is
given by (5). Each data point represents an average over 10% realizations. The

dashed lines correspond to the theoretical prediction (1).

While the N-dependence is correct, Dy ~ N'%, the amplitude is wrong. A better estimate
can be obtained by assuming that the probability distribution for the number of nodes
of each degree k is the Poisson distribution with average value Nj given by (2). Then
P, = Prob[(# nodes of degree k) > 1] = 1 — exp(—Ny). Using this property leads to a
more accurate estimate (this same approach was developed in [13])

Dy =) [1—e™]. (4)

k>1

Replacing the sum by an integral, we ultimately obtain (1). For strictly linear preferential
attachment, R = 4 and v = 3, so that

Dy =BN'Y? B =2 (%) =2.149528. .. (5)

In contrast, the naive estimate (3) for the amplitude is Bpaive = 3 x 274/% = 2.381101.. .,
which exceeds the more accurate value by ~11%.

Generally Dy /D3¢ =T'(2 — 1/v), so for the admissible range of 2 < v < oo, this
ratio monotonically increases from %\/_ ~ 0.886 227 to 1. As shown in figure 3, simulation
results are in excellent agreement with our theoretical predictions. A more detailed
asymptotic analysis (employing methods developed in [19]) indicates that the average
number of distinct degrees admits the expansion, Dy = BN'Y/3+C +- - for strictly linear
preferential attachment. This allows us to extract a precise estimate of B from the data
that is in excellent agreement with equation (5).

The general behavior outlined above for the number of distinct degrees and related
quantities is also observed in the citation network of the Physical Review. Because this
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Figure 4. The maximum degree (number of citations) and the number of distinct
degrees for the Physical Review citation network during the period 1893-2003.
Also shown are the locations of the last dimer and the first hole. The dashed lines
are the power-law fits with respective exponents 0.849, 0.627, 0.474, and 0.430.
The data are measured at 20 equally-spaced network sizes as discussed in the
text.

journal has grown roughly exponentially with time [20, 21}, it is not appropriate to use
publication date as a proxy for the network size. Since the citation data is presented as a
list of links, each in the form of citing paper — cited paper, it is more natural to use the
chronologically-ordered number of links as the proxy for network size. We use the Physical
Review citation data as of 2003, which contain L = 3,110, 866 total links (citations). The
maximum network degree (the highest-cited paper), the location of the last dimer, the
number of distinct degrees, and the location of the first hole dimer are measured when
the network size is Lm /20, with m = 1,2,...,20 (figure 4).

Naive power-law fits to the first three datasets in figure 4 give kyayx ~ L%, Dj ~
L9627 and (hy) ~ L%4™. Let us provisionally assume that the citation distribution has
a power-law dependence on L and, by implication, the same dependence on N.? Using
Emax ~ NY@=D and the dependences for the number of distinct degrees and location of
the last dimer given in equations (3) and (18), we infer the respective exponents for the
degree distribution exponent values of 2.18, 2.09, and 2.11. Thus these three properties
are internally consistent under the assumption the citation distribution has a power-law
form with exponent in the range 2.1-2.2.

Our simulation results indicate that the random quantity Dy is self-averaging. For
strictly linear preferential attachment, we find that the standard deviation grows as
V(D%) — (D)2 ~ NY6. Moreover, the probability distribution IT(Dy) of distinct degrees
fits the Gaussian

]_ 2 2
H(DN) = — o~ (DN—=(DnN))*/20 (6)

3 While a power-law gives a reasonable visual fit to the data, later and larger-scale analyses [20], [22]-[25] suggest
that the citation distribution has a log-normal or stretched exponential behavior, rather than a power-law form.
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Figure 5. Scaled distribution of distinct degrees f(z) for N up to 107, with 10%
network realizations for each N, for redirection probability % (corresponding to
strictly linear preferential attachment). The smooth curve is a Gaussian fit to the
data. Visually identical data occurs for other redirection probabilities.

extremely well (figure 5). In appropriately scaled coordinates, this form universally
holds for any redirection probability (equivalently different A values in the attachment
rate Ay = k + X). Moreover, the scaled distributions f(z) = v2mr0?2II(Dy), with z =
VvV ((D%) — (Dn)?)/202, are virtually identical for different A values.

3. The first hole

We now study properties of the degree distribution in the sparse regime, where not
every degree is represented. First consider the location of the first ‘hole’ in the degree
distribution—the smallest degree value for which Ny, = 0. We define h; as the degree
value of the first hole, hy as the degree of the second hole, etc.

To determine the location of the first hole, it is useful to use the probability P(h)
that there are no holes in the degree distribution within the range [1, h]. This coincides
with the probability that there is at least one node of degree k for every k between 1
and h. Again under the assumption that the number of nodes of degree k is given by an
independent Poisson distribution for each £, this probability is given by

P(hy= ] [t—e™] (7)

We estimate the location of the first hole from the criterion P(hy) = 3; however, any
constant between 0 and 1 could equally well be chosen in this condition. Taking the
logarithm of (7) and using In [1 —e "] &~ —e™™ (which is justifiable since e™™ < 1
when k£ < hy), gives the following for the average location (h;) of the first hole:

(h1)
/ dke ™™ =1n2. (8)
1
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Using equation (2) in (8) we find

yNR\ Y vNR
hy) ~ Hreo—
() <lnH) ’ [In(vNR)]+

Since H appears inside the logarithm, one can ignore the logarithmic factor in H itself,
thereby giving the simpler and still asymptotically exact formula

)~ (1Y (90

It is worth noting that the naive calculation that leads to (3) for the number of distinct
degrees ignores the possibility that holes exist in the range k < (NR)'". According to
equation (9b), however, the first hole appears earlier than (NR)'” in the N — oo limit.
For a terrestrial-scale network with, say N = 10° nodes, the location of the first hole will
be roughly three times smaller than that predicted by the naive estimate (3).

(9a)

4. Last doublet and last dimer

Somewhere in the tail of the degree distribution lie the last doublet, the largest two
consecutive k values for which Ny > 0, and the last dimer, the largest k value for which
Ny, = 2 (figure 2). Starting with degree 1, the degree distribution first consists of a long
string of consecutive ‘occupied’ degrees 1 < k < hy, followed by a second string in the
degree range hy < k < ho, etc. As the degree increases, these strings become progressively
shorter and above a certain threshold all remaining strings are singlets. For a large network,
the last string that is not a singlet will almost certainly be a doublet (with probability
approaching 1 as N — oo0). We now determine the average position of this last doublet.
The probability to have a doublet at (k,k + 1) is N? when k> K = (NR)'". To
estimate the position of the last doublet (J,d + 1) we employ the extremal criterion

Y N~ (10)
k>8
that there should be of the order of one doublet in the degree range (6,00). Using
N ~ NREk™", we obtain
(8) = C(RN)Y =12 (11a)

with C' a constant, for the average position of the last doublet. Notice that the position of
the last doublet also coincides, up to a prefactor of the order of 1, to the position of the
last dimer. A more precise approach to determine the average location of the last doublet
gives the amplitude as

2% — 2
C = (2v —1)~Y/@-1p (2Z - 1) . (11b)

To establish (11b), we use the independent Poisson approximation to write, for the
probability F'(§) to have no doublets in the degree range k > §,

Fo) =] [1 —(1- e—Nk)Q} . (12)
k>4

doi:10.1088/1742-5468,/2013 /06 /P06002 8
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This expression is the straightforward generalization of equation (7) to the case of dimers.
Since the average number of nodes with degrees in the range k > ¢ is small, the product
on the right-hand side of (12) simplifies to exp[— [5° dk N7Z]. Computing the integral gives

B R2N2 1/(2v-1)
F = exp|[—(0y/6)* 1, do = (21/ — 1) : (13)
The probability density ® = dF'/d¢ for the last doublet is then
w—1 [\ .
00) = 22 (3) ew [~ ™). (14)

from which the average position of the last doublet is given by

() = /OO 46 60 (5) = /OO ds[1 — F(5)]. (15a)

Substituting (13) into (15a) leads to

(6)=T (;Z — i) 8, (15b)

which reproduces (11). Similarly, the mean-square position of the last doublet is

(6%) = /Ooo 45 620(5) — 2/000 451 — F(5)], (16)

from which the variance is

(6%) — ()2 = {r (;Z = i’) 1 (;Z = m 52. (17)

For strictly linear preferential attachment network growth, the above results reduce to

(8) = AN?/5, A= (¥)1°T(1) =1.469158...
I'(3/5) (18)
2=V (s V=Y — 1048182, ...
Following the same line of reasoning, the position of the last triplet, (7 — 1, 7,7+ 1),
is given by

(1) ~ N1/, (19)

For strictly linear preferential attachment, this result gives the dependence (1) ~ N3/%.
Our simulation data are consistent with the predictions (18)-(19) (figure 6).

5. Discussion

For any broadly distributed integer-valued variable, the underlying distribution exhibits
intriguing features that stem from the combined influences of discreteness and finiteness.
Such a distribution is smooth in a dense regime, where every integer value of the variable
has a non-zero probability of occurrence. In the complementary sparse regime, a variety
of statistical anomalies arise that quantify the extent of the sparseness (figure 2).
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Figure 6. The location of the last hole and the last doublet as a function of
N for 10* realizations of networks that are grown by strictly linear preferential
attachment. The dashed curve is the prediction (9a), while the straight dashed
line is the prediction from equation (18).

For the degree distribution of complex networks that generically have power-law tails,
Ny ~ N/k”, our main results are as follows. (i) The number of distinct degrees in a
network of N nodes scales as N'/. This generic behavior is also observed in the citation
network of the Physical Review. (ii) The distribution in the number of distinct degrees
is very well fitted by a universal Gaussian function. (iii) There is a rich set of behaviors
for basic characteristics of the sparse regime, such as the positions of holes (zeros) in the
distribution, as well as the locations of doublets, triplets, etc, and the locations of dimers,
trimers, etc. All of these quantities can be determined by simple probabilistic reasoning.

Our analysis tacitly assumed that the number of nodes of different degrees, N; and N;
for ¢ # j, are uncorrelated, and that the N;s are Poisson distributed random quantities.
While these assumptions are questionable in the sparse regime, predictions that are
based on these assumptions are in excellent agreement with results from simulations of
preferential attachment networks. While we believe that our predictions are asymptotically
exact, a more rigorous analysis is needed to justify them and explain their validity (or
at least their impressive accuracy). A challenging extension of this work is to probe the
fluctuations in the total number of distinct degrees. The mechanism for the observed
Gaussian shape of the distribution of distinct degrees is not at all evident. In fact, for
networks that grow by redirection, with redirection becoming more certain as the degree
of the ancestor node increases, the total number of distinct degrees is not even a self-
averaging quantity [26].

Our methods apply equally well to other heavy-tailed integer-valued distributions,
such as the cluster-size distribution in classical percolation [27] and in protein interaction
and regulatory networks [28]. The latter models often exhibit an infinite-order percolation
transition, in which the cluster-size distribution has an algebraic tail in the entire non-
percolating phase [29]-[36]. Our approach leads to new results for the total number of
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distinct cluster types Cl, for the position of the first hole (the minimal size that is not
present), etc.

For concreteness, consider networks that are built by adding nodes one at a time with
each new node connecting to k randomly chosen existing nodes with probability py [35,
36]. While the set of probabilities py, k = 0,1,2,..., with >, pr = 1, fully defines the
network ensemble, only the first two moments, (k) = >, - kp and A = (k?) — (k)?, matter
in determining large-scale properties. In the non-percolating phase, (k) < % and A < Z—i,
we use the decay exponent for the cluster-size distribution that was determined in [36] to
obtain

1-V1-4A
31 —4A’

At the percolation transition, (k) < % and A = 7, the tail of the cluster-size

distribution contains universal (independent of (k) and A) algebraic and logarithmic
factors, namely ¢, ~ 2(1 — 2(k))"2s73(Ins) 2 for s > 1. A straightforward generalization
of our previous analysis shows that the total number of distinct cluster types grows as

As a final note, this work has focused broadly on properties associated with the
support of discrete distribution. The averages of these properties over a large ensemble
of networks have systematic dependences on the number of nodes N in the network;
however, the behavior in each network realization may not be monotonic. Thus while
kmax is clearly a non-decreasing function of N, the number of distinct degrees and the
locations of quantities like the first hole or the last doublet can both increase or decrease
with N. This intriguing aspect of the problem may provide a more detailed understanding
of how a complex network actually grows.

Cy ~ N°, )

=
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