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We analyze record-breaking events in time series of continuous random variables that are subsequently

discretized by rounding to integer multiples of a discretization scale �> 0. Rounding leads to ties of an

existing record, thereby reducing the number of new records. For an infinite number of random variables

that are drawn from distributions with a finite upper limit, the number of discrete records is finite, while

for distributions with a thinner than exponential upper tail, fewer discrete records arise compared to

continuous variables. In the latter case, the record sequence becomes highly regular at long times.
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The statistics of record-breaking events have been
widely studied in many contexts, including sports [1],
evolutionary biology [2], the theory of spin glasses [3],
and the possible role of global warming in the occurrence
of record-breaking temperatures [4–9]. Records are de-
fined as the entries in a time series of measurements that
exceed all previous values. While the record statistics of
independent, identically distributed (iid) random variables
(RVs) that are drawn from continuous distributions are well
understood [10,11], the understanding of records drawn
from time-dependent distributions [12–14] and from series
of correlated RVs [15,16] is still developing.

Here we address discreteness effects on record statistics.
Conventionally, records are recorded from variables that
are drawn from a continuous distribution. However, in
all practical applications, technical limitations cause ob-
servations to be discrete, even if the underlying distribution
is continuous. In sports or meteorology, distance, time,
temperature, or precipitation measurements are always
rounded to a certain accuracy [1,6,7], resulting in an ef-
fective discrete distribution of RVs. Thus, ties of existing
records can arise, which alters the probability for a record
to occur in any given observation (Fig. 1).

For RVs that are explicitly drawn from discrete distri-
butions, the effect of ties strongly affects the number of
records [17–21]. For related � records and geometric re-
cords, where a new record arises only if the current obser-
vation exceeds the current record by a fixed constant �
[21,22] or by a fixed fraction [23], intriguing statistical
properties of records were found for the three universality
classes of extreme value statistics (EVS) [24]. However,
the consequences of measuring rounded record values that
are drawn from continuous underlying distributions ap-
pears not to have been studied previously.

We consider a set of RVs, X1; . . .XN , and focus on the
probability, Pn � ProbðXn > X1; . . . ; Xn�1Þ, that the nth
variable in this series is a record. We denote Pn as the
record rate and Rn ¼ P

n
k¼1 Pk as the record number. For

continuous iid RVs, the universal result is Pn ¼ 1
n (see, e.g.,

Refs. [10,11]). Thus, for n � 1, Rn � lnnþ �, with � �
0:577 . . . the Euler constant. We assume that the RVs Xi are
discretized in units of a minimal scale �. That is, each Xi

gets rounded to a value of X�
i ¼ k�. We may consider

(i) rounding down, with k ¼ bXi=�c and bXc the floor
function, which gives the largest integer smaller than X,
or (ii) rounding to the nearest lattice point, with k ¼
bXi=�þ �=2c. Because asymptotic results do not depend
on the rounding protocol, we will discuss only rounding
down. We define the strong record rate

P�
n � ProbðX�

n > X�
1 ; . . . ; X

�
n�1Þ; (1)

in which ties caused by the discretization are not counted
as new records. Thus, not only Xn, but also the rounded
value X�

n has to be larger than all previous RVs for a new
record to occur (Fig. 1).
General theory, asymptotic results.—For iid RVs Xi

drawn from a distribution with probability density fðxÞ
and cumulative distribution FðxÞ ¼ R

x dyfðyÞ, the record
rate is obtained from Pn ¼ R

dxfðxÞFn�1ðxÞ [11]. For any
continuous density fðxÞ, this integral gives the universal
behavior mentioned above, Pn ¼ 1

n . However, if the mea-

surement Xi is rounded down to X�
i , the integral for Pn

breaks into the sum
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FIG. 1 (color online). Effect of rounding down records with
discretization unit �. Inverted triangles indicate records, with
those that survive after rounding shown solid. The dashed line
shows the evolution of the rounded record value.
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P�
n ¼ X

k

�Z ðkþ1Þ�

k�
dxfðxÞ

�
Fn�1ðk�Þ;

¼ X
k

½Fððkþ 1Þ�ÞÞ� Fðk�Þ�Fn�1ðk�Þ: (2)

This gives the strong record rate from continuous RVs
that are rounded down to the closest integer multiple of
�. We emphasize that in the practically more relevant case
where record values are rounded either up or down to the
closest integer multiple of �, the record rate has the same
statistical properties as those from only rounding down.We
now give asymptotic results for P�

n for the three basic
classes of EVS [24]: Weibull (distributions with a finite
upper limit), Gumbel (unbounded upper tail decaying
faster than any power law), and Fréchet (power-law upper
tail). Our asymptotic approximations for the discrete
record rate P�

n for these classes of EVS agree well with
numerical results.

Weibull class: For illustration, we start with the uniform
distribution: fðxÞ ¼ 1 for x 2 ½0; 1� and 0 otherwise. For
discretization scale � ¼ 1

L , with integer-valued L > 1,

Eq. (2) reduces to

P�
n ¼ Xð1=�Þ�1

k¼1

�ðk�Þn�1 ¼ �nHð1=�Þ�1;n�1; (3)

where Hm;n is the mth harmonic number of power n. At
some point in the time series of RVs, a record with a
rounded value 1�� occurs; this is necessarily the last
record. For a fine discretization scale, � � 1, the sum in
(3) can be replaced by an integral to give P�

n � 1
n ð1��Þn.

Thus, for any �> 0, P�
n no longer decays as 1

n , but instead

approaches zero exponentially with n: rounding strongly
depresses the asymptotic record rate for the uniform
distribution.

A more general example of the Weibull EVS class is
fðxÞ ¼ �ð1� xÞ��1, with � > 0 and x 2 ½0; 1�. By ex-
panding Eq. (2) to second order for � � 1, we find

P�
n �

Z ð1=�Þ�1

1
dk½ð1�k�Þ�

�ð1�ðkþ1Þ�Þ���½1�ð1�k�Þ��n�1;

�
8><
>:

1
n

�
1�n�����

2 �

�
2� 1

�

�
n1=�

�
; n���1;

1
n expð�n��Þ; n���1:

(4)

Since the underlying distribution has a bounded support,
the total number of records is again finite. The results in (4)
reproduce those found for the uniform distribution.

Gumbel class: As a basic example, we treat the expo-
nential distribution fðxÞ ¼ e�x. For n � 1, we replace the
sum in Eq. (2) by an integral and find

P�
n � X1

k¼1

e�k�ð1� e�k�Þn � 1

n�
ð1� e��Þ (5)

for arbitrary � � 0, in agreement with findings for the
geometric distribution in Ref. [18] and with our simula-

tions (Fig. 2). For � � 1, (5) reduces to P�
n � 1

n ð1� �
2Þ,

while for � � 1, P�
n � 1

n� . In contrast to the Weibull

class, P�
n asymptotically decays as 1

n for arbitrary �.

For the Gaussian distribution fðxÞ ¼ 1ffiffiffiffiffi
2�

p e�x2=2, with

unit standard deviation, we find that as n ! 1

P�
n � 1

2

Z
dx

�
erfc

�
k�ffiffiffi
2

p
�
� erfc

�ðkþ 1Þ�ffiffiffi
2

p
��

FðxÞn�1;

� 1

�

Z
dx

1ffiffiffiffiffiffiffi
2�

p 1

x
e�x2FðxÞn�1: (6)

For n ! 1, we evaluate this integral by the Laplace
method by expanding the integrand about x	 ¼
lnðn2=2�Þ, where x	 is the mean value of the nth record.
After some calculation, we obtain

P�
n � 1

n�

2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln

�
n2

2�

�s 3
5�1

: (7)

Thus the record rate decays slightly faster than 1
n (Fig. 2).

Correspondingly, R�
n / ��1ðlnnÞ1=2, which diverges

weakly as n ! 1.
Fréchet class: A representative for this class is the Pareto

distribution fðxÞ ¼ �x���1, with x > 1 and �> 0. Using
again Eq. (2), the asymptotic record rate P�

n is

P�
n � 1

n

�
1��

2
��

�
2þ 1

�

�
n�1=�

�
: (8)

In contrast to the two previous classes, the effect of the
rounding is negligible, as P�

n ! Pn for n ! 1 and arbi-
trary � (Fig. 2).

FIG. 2 (color online). Scaled record rate nP�
n for n ¼ 1000 for

the Gaussian, exponential, and Pareto (with � ¼ 1:2) distribu-
tions. Without rounding, Pn ¼ 1

n . Simulations (symbols) are

averaged over 106 time series and over 975 
 n 
 1025 to
smooth the data. Analytical predictions (curves) are shown for
comparison. For the origin of the peaks for the Gaussian and
exponential distributions, see the text following Eq. (14).
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Small-� regime.—We now focus on the effects of round-
ing when the discretization scale is small (� � 1) for fixed
n. Here we find a useful analogy between the effect of a
linear drift in RVs [13] and the effect of rounding, and we
adapt methods developed for the former problem to help
elucidate rounding effects. For small � the general expres-
sion (2) for P�

n simplifies to

P�
n ¼ X

k

�Z ðkþ1Þ�

k�
dxfðxÞ

�
Fn�1ðk�Þ;

¼
Z

dxfðxÞFn�1ðbxc�Þ;

� 1

n
� n

Z
dxðx� bxc�Þf2ðxÞFn�2ðxÞ: (9)

Here bxc� is defined as the largest integer multiple of� that
is smaller than x. Thus, in the second line, k� ¼ bxc� for
k� 
 x < ðkþ 1Þ�, which obviates writing the sum. In
the last step, we expand to first order in the quantity
x� bxc� and employ the crude assumption that, on aver-

age, x� bxc� � �
2 to give

P�
n � 1

n

�
1��

2
n2In

�
; (10)

where In �
R
dxf2ðxÞFn�2ðxÞ. The approximation under-

lying (10) is valid if n2�In � 1. The quantity In appears
in record statistics that arise from continuous RVs with a
linear drift [13], whose behavior is known for a wide range
of distributions. In the following we use the results from
Ref. [13] to determine P�

n in the small-� regime.
Weibull and Fréchet classes: For the distribution fðxÞ ¼

�ð1� xÞ��1 introduced above, the approximation given by
Eq. (10) is useful for � > 1 and we find, for n�� � 1,

P�
n � 1

n

�
1���

2
�

�
2� 1

�

�
n1=�

�
; (11)

which, for n�� � 1 and � > 1, agrees with the result
derived from our general approach in Eq. (4). Similarly,
for the Pareto distribution we recover Eq. (8).

Gumbel class: For the exponential distribution, we find

P�
n � 1

n ð1� �
2Þ, which agrees with the small-� behavior of

Eq. (5). For the Gaussian distribution, the small-� approxi-
mation allows us to obtain a new expression for the record

rate when
ffiffiffiffiffiffiffi
lnn

p � ��1,

P�
n � 1

n

2
41� 2�

ffiffiffiffi
�

p
e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
n2

8�

�s 3
5: (12)

The regime
ffiffiffiffiffiffiffi
lnn

p � ��1 is not accessible through the
general approach and this range is particularly important
for applications, such as in climatology [7]. For n � 1 and
� � 1, Eq. (12) reproduces the numerical simulation val-
ues for P�

n very accurately (Fig. 3).
Large-� regime.—For Gumbel-class distributions that

decay at least exponentially fast near the upper limit, we

can provide an alternative description for the record num-
ber R�

n . For these distributions, it is known that the average
spacings between the record events do not increase in time
for large n [11]. Therefore, we may choose a sufficiently
large value of � that almost all records are suppressed
because of ties. It then follows that all discrete values k�
(with k � 0) will eventually be record values and R�

n is just
the sum over the probabilities that a record has already
occurred for a certain value k�. The corresponding prob-
abilities �nðkÞ for record value k� are given by �nðkÞ �
1� Fðk�Þn�1, which leads to

R�
n � X

k¼0

�nðkÞ � 1þ X1
k¼1

½1� Fðk�Þn�1�: (13)

For elementary Gumbel distributions, interesting proper-
ties emerge from �nðkÞ. For a small n and large k�, it is
obvious that �nðkÞ � 0. Conversely, for large n and
arbitrary k� eventually �nðkÞ � 1, since Fðk�Þ< 1 for
finite k�.
We now estimate the regime where �nðkÞ switches

between 0 and 1; this condition also determines the point
where the mean record number switches from k� 1 to k.
Since �nðkÞ will never be exactly 0 or 1, we seek the time
n, where �nðkÞ is either smaller than � (n ¼ n�) or larger
than 1� � (n ¼ nþ) for small � � 1. By elementary
means, we find

n� <
ln�

ln½Fðk�Þ� ; nþ >
�

� ln½Fðk�Þ� : (14)

Evidently, �nðkÞ switches between 0 and 1 when n is
between n� and nþ, where n� and nþ are both proportional
to fln½ðFðk�Þ�g�1. For the exponential distribution, for
example, we find that n� ¼ �ek� and nþ ¼ lnð1=�Þek�,
so the kth record will occur at a time proportional to ek�,

FIG. 3 (color online). Simulations of P�
n for Gaussian RVs in

the regime
ffiffiffiffiffiffiffi
lnn

p � 1
� . Thin curves are 1

� ðPn � P�
n Þ for � ¼ 1

2 ,
1
4 , and

1
8 and n 2 ½0; 100�. For each �, 106 time series were

simulated. The thick dashed curve depicts the analytical predic-
tion Eq. (15). Inset shows the same analysis for � ¼ 1

8 with

n 2 ½1; 1000�.
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leading to a mean record number of R�
n � 1

� lnn. In the

large k� regime, records occur in an ordered fashion and
are well separated from each other. The ðkþ 1Þst record
occurs at time eðkþ1Þ�, which for� � 1, is much later than
the time of the kth record. Thus, the mean record number
undergoes a step-like periodicity when plotted against
en. For the Gaussian distribution, the same approach

now predicts that �nðkÞ switches for n � ffiffiffiffiffiffiffi
2�

p
k�ek

2�2=2

(Fig. 4). For large k� and large n, the mean record number
becomes

R�
n � X

k¼0

�nðkÞ � 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

�
n2

2�

�s
; (15)

which was already obtained with the general approach
above and confirms the validity of the form for R�

n given
in Eq. (13). The step periodicity in R�

n is the source of the
observed peaks (Fig. 2) in the record rate P�

n as a function
of � for exponential and Gaussian distributions.

Conclusions.—We determined how rounding down con-
tinuous random variables affects the statistics of records.
Our results directly apply to the practical situation where
continuous variables are rounded either up or down to the
closest integer multiple of a fixed discretization scale �.

For distributions with bounded support, rounding leads
to an exponential decay of the record rate, P�

n , and an
asymptotically finite record number. In contrast, for
power-law distributions, the effect of rounding becomes
negligible for n ! 1 and P�

n ! 1
n independent of �. In the

intermediate Gumbel class, the behavior is more subtle.
For the exponential distribution, P�

n decays as 1
n with a

�-dependent prefactor, while for the general distribution

fðxÞ / expð�jxj�Þ with �> 1, the record rate decays as

n�1ðln nÞ1=��1.
For underlying distributions that decay at least exponen-

tially, the record sequence becomes ordered at long times,
in marked contrast to independent record events from
continuous iid RVs [10,11]. While correlations between
record events have been previously observed for RVs that
are drawn from drifting [14] or broadening [12] distribu-
tions, the effect of rounding is much stronger and renders
record events predictable on a time scale that grows ex-
ponentially (or faster) with record number.
To illustrate that rounding effects have an observatio-

nally significant influence on records, we analyzed 50
years of daily temperatures from 361 U.S. weather stations
[25] along the lines of Ref. [7]. The measurements were
reported in integer units of� ¼ 1 �F and we considered all
361� 365 time series for the individual calendar days with
an average standard deviation of � � 8:9�F. Only 75% of
the weak upper (ties allowed) and 78% of the weak lower
records were also strong records (no ties), in good agree-
ment with the value of 79% predicted by our analytical
result in Eq. (12). In this example the effect of ties on the
record rate has a similar magnitude as that of the small
warming trend in the data (cf. Refs. [5–7]). Thus, rounding
effects should be carefully accounted for if one wishes to
use record statistics to detect secular trends in data, such as
global warming.
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