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We investigate an idealized model for the size reduction and smoothing of a polygonal rock due to repeated
chipping at corners. Each chip is sufficiently small so that only a single corner and a fraction of its two adjacent
sides are cut from the object in a single chipping event. After many chips have been cut away, the resulting
shape of the rock is generally anisotropic, with facet lengths and corner angles distributed over a broad range.
Although a well-defined shape is quickly reached for each realization, there are large fluctuations between
realizations.
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I. INTRODUCTION AND MODEL

This work was inspired by a recent experiment of Durian
et al. �1� in which they were interested in the ultimate shape
of eroding rocks. To investigate this issue quantitatively, they
studied the collisional erosion of square clay particles due to
their repeated impact with the walls of a horizontally rotating
plane enclosure. In each such collision, chips break off from
the particle so that it gradually becomes rounder and
smoother. One might naively expect the asymptotic particle
shape to be a circle, as protruding corners are more exposed
and thus likelier to get rounded off by this grinding process.

A striking result from this experiment is that the
asymptotic shape of the eroding rock is not a circle �1�. To
describe this unexpected shape evolution, Durian et al. also
introduced a simple “cutting” model in which the material
exterior to a random chord on the object, whose length is
proportional to the square root of the remaining area, is re-
moved in each cutting event. This step is repeated many
times until asymptotic behavior is reached. Numerical simu-
lations reproduced various aspects of the experimental obser-
vations and confirmed that the asymptotic shape of the par-
ticle is not circular �1�.

In this work, we investigate an idealized and analytically
tractable version of this cutting model. A sequence of chip-

ping events in our model is schematically illustrated in Fig. 1
and four representative realizations are shown in Fig. 2. The
rock is initially assumed to be square. In each chipping
event, a piece of the rock is broken off at a corner. The
deflection angles of the two newly created corners sum to the
deflection angle of the original corner but are otherwise ar-
bitrary. The sides z1 and z2 of a chip are smaller than the
respective sides L1 and L2 of the corner itself �lower right in
Fig. 1�, so that only a single corner and a finite fraction of its
two adjacent sides are removed in each chipping event. As
the rock is chipped away, a nontrivial shape is generated that
is the focus of our interest.

A convenient geometrical representation for the evolution
of corner deflection angles is to view the initial angle as a
line segment of length � /2 �Fig. 3�. Each chipping event
then corresponds to picking one segment at random and cut-
ting it into two arbitrary size pieces. This connection to bi-
nary fragmentation allows us to make use of well-known
results for this latter problem �2� to help understand geo-
metrical features of the object as its size is reduced by chip-
ping.

The constraint that the chip breaks off only a single corner
and a portion of its two adjacent sides ensures that final
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FIG. 1. Schematic illustration of the cutting model after one,
two, three, and eight events. A chip breaks from a randomly se-
lected corner with the sum of the new deflection angles �1 and �2

equal to the deflection angle � of the previous corner. The geometry
of a single chipping event is shown at the lower right.
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FIG. 2. �Color online� Equivalence between angle evolution in
chipping and fragmentation of a line segment.
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particle size is strictly positive; that is, the initial particle is
not eroded to nothingness. This fact can be appreciated by
examining Fig. 2. By the definition of the model, a short
segment on each of the sides of the initial square must re-
main part of the perimeter of the eroding particle in the long
time limit. This fact ensures that a particle of nonzero size
remains in the long-time limit. Each of these four segments
may be arbitrarily small and two such segments on adjacent
sides of the initial square may be arbitrarily close to each
other. In the exceptional case where short segments occur in
pairs at opposite diagonals of the initial square, the area can
be arbitrarily small, but with vanishing probability of the size
being zero.

In the next section, we investigate the evolution of the
distribution of facet angles by a master equation approach
when each chipping event bisects the corner angle. We show
that the resulting angle distribution has a Poisson form in the
variable ln t, where t is the current number of corners. In Sec.
III, we study the evolution of the angle distribution, as well
as the actual shape of the object, for the general situation
where a chip divides a corner angle � into two arbitrary
angles �1 and �2, with �=�1+�2. For this process, we find �i�
the asymptotic shape of an eroding particle is not round and
�ii� after many chipping events, the particle is characterized
by large sample-to-sample fluctuations. In Sec. IV, we inves-
tigate some natural extensions to more physical cutting rules
and conclude that our main qualitative results are robust with
respect to these generalizations. We close with a brief discus-
sion in Sec. V.

II. ANGLE BISECTION

A. Master equation solution

We first treat the special case in which a corner angle is
always bisected in each chipping event. As a result of re-
peated chipping events a nontrivial distribution of corner
angles develops. Starting with the four right-angle corners of
an initial square, after one chipping event, two angles of
magnitude � /4 are created, while three right-angle corners
remain. After a second event, either two more � /4 angles are
created by chipping a right angle �this occurs with probabil-
ity 3 /5�, or one � /4 angle is replaced by two new � /8
angles �this occurs with probability 2 /5�.

To determine the angle distribution, it is convenient to
introduce the integer variable k�−ln2�2� /��. The initial
angle � /2 then corresponds to k=0, and each angle halving
corresponds to k increasing by 1. We refer to a corner with
deflection angle corresponding to k as a k corner. Let nk�t� be

the average number of k corners. Starting with a square, the
initial condition is nk�t=0�=4�k,0 and the number of corners
at time t is simply t+4. Then the change in nk�t� after one
chipping event obeys the master equation

nk�t + 1� − nk�t� =
2

t + 4
nk−1�t� −

1

t + 4
nk�t� . �1�

The first term on the right side accounts for the gain of k
corners due to the chipping of one of the �k−1� corners at
time t. The probability of this event is nk−1 / �t+4�, and each
such event increases the number of k corners by 2. Con-
versely, the second term accounts for the loss of k corners
when one such corner is chipped.

The system of master equations is recursive, and they can
be solved one by one. Since n−1�0, the average number of
the 0 corners �right-angle corners� satisfies the closed equa-
tion

n0�t + 1� =
t + 3

t + 4
n0�t� . �2�

Iterating this equation, the solution is

n0�t� =
12

t + 3
. �3�

The average number of 1 corners satisfies

n1�t + 1� =
t + 3

t + 4
n1�t� +

2

t + 4

12

t + 3
, �4�

with solution �subject to the initial condition n1�0�=0�

n1�t� =
24

t + 3 �
3�j�t+2

1

j
. �5�

With the solution for n1, the average number of 2 corners
satisfies

n2�t + 1� =
t + 3

t + 4
n2�t� +

2

t + 4

24

t + 3 �
3�j�t+2

1

j
, �6�

whose solution is

n1�t� =
48

t + 3 �
3�i�j�t+2

1

ij
. �7�

While these exact expressions for nk become progres-
sively unwieldy as k increases, the asymptotic behavior fol-
lows easily by noticing that in the t→� limit the master
equation �1� turns into the differential equation

dnk

dt
= −

nk

t
+

2

t
nk−1. �8�

These equations can also be solved straightforwardly in a
sequential manner. Using the fact that n0�12/ t and rewrit-
ing Eq. �8� as

d�tnk�
dt

=
2�tnk−1�

t
, �9�

we then obtain the solution

2θ

π/2
2

θ1

θ θ1

π/2

FIG. 3. Four typical realizations of the cutting model for an
initial unit square �dashed� after 100 corners �circles�.
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nk�t� =
12

t

�2 ln t�k

k!
. �10�

Thus the logarithm of the angle is a Poisson distribution with
�k	=2 ln t, corresponding to ��	�e−t.

While the final result for nk is quite simple, we emphasize
that Eq. �10� refers to the number of k corners averaged over
all possible realizations of the cutting model. However, the
actual number of k corners in a given realization, defined as
Nk, may differ substantially for nk��Nk	. In the appendix,
we investigate some of the simplest features of the Nk that
illustrate their strongly fluctuating nature.

B. Simulation results

We simulated the probabilistic rules underlying the recur-
sion formula Eq. �1� to obtain the distribution Nk for each
realization. This numerical approach has the advantages of
simplicity and efficiency, but with the obvious disadvantage
that the actual shape of the particle is not accessible by this
approach.

The data show that the distribution of the logarithm of the
angle �actually k=−ln�2� /��� is close to a Poisson form in k,
as predicted by Eq. �10�. To compare the data with this ana-
lytic expression, however, we need to properly normalize the
latter. Summing Eq. �10� over all k, one obtains �knk=12t for

the total number of corners, whereas the exact result is t+4.
To correct for this discrepancy, we therefore divide the ex-
pression in �10� by 12 to compare with the data in Fig. 4. The
data are in reasonable agreement with the properly normal-
ized analytic distribution, but it appears that one would have
to simulate the chipping process for an astronomical number
of corners to obtain good agreement between the data and
the asymptotic expression.

Another important property of the angle distribution is the
large difference between the average angle ��	 and the most
probable angle �MP. Because the distributions in Fig. 4 are
plotted against −ln �, it is clear that ��	 is much larger than
�MP, which is located at the peak of the distribution as shown
in Fig. 5.

Finally, because the natural variable is ln � the actual
angle distribution is very broadly distributed. Consequently,
the asymptotic shape of a particle as a result of this cutting
process will not be circular. A related feature is that simula-
tion results from different realizations are visually quite dif-
ferent, as might be anticipated by the random multiplicative
process that underlies the chipping process. We will discuss
this feature in more detail in the next section.

III. ARBITRARY CHIPPING ANGLES

A. The angle distribution

We now study the general situation where a chipping
event creates two unequal angles. To determine the resulting
angle distribution, we make use of the geometric connection
between chipping and binary fragmentation. As illustrated in
Fig. 3, a corner angle � that becomes two corners of angles
�1 and �2 �with �1+�2=��, corresponds to the length-
conserving cutting of a segment of length � into two pieces
of lengths �1 and �2. The angle distribution in chipping then
corresponds to the length distribution in the equivalent frag-
mentation process.

The length distribution may be solved using the tech-
niques from the theory of fragmentation �2�. For conve-
nience, consider the scaled segment length x�2� /�. Start-
ing with a segment of scaled length x=1, the master equation
for the length distribution is
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FIG. 4. �Color online� Normalized distributions of corner angles
Nk /�kNk versus k for five realizations of 104 corners �a� and 107

corners �b�. The heavy dashed curve is the properly normalized
asymptotic expression from Eq. �10�.
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FIG. 5. �Color online� Average and most probable angles for a
single realization of the cutting process as a function of the number
of corners.
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�c�x,t�
�t

= − c�x,t�

0

x

F�y,x − y�dy + 2

x

1

c�y,t�F�x,y − x�dy .

�11�

Here c�x , t� is the concentration of fragments of length x at
time t and F�x ,y� is the rate at which a fragment of size
x+y is cut in two pieces of sizes x and y. The first term on
the right accounts for the loss of fragments of size x due to
their fragmentation. The total rate of these events is
�0

xF�y ,x−y�dy. The second term on the right accounts for the
creation of a fragment of size y due to the breakup of a larger
segment of size y.

In many fragmentation processes �2,3�, the breakup rate
F�x ,y� is a homogeneous function of the form F�x ,y�
= �x+y�	−1. That is, the breakup rate of a cluster of size
x+y depends only on its size and not on the size of the two
daughter fragments. To make a direct connection with cut-
ting, we require 	=0 so that the total breaking rate of a
fragment is independent of its size. In this case, the master
equation becomes

�c�x,t�
�t

= − c�x,t� + 2

x

1

c�y,t�
dy

y
. �12�

This master equation represents the generalization of Eq. �9�
to continuum angles.

For the initial condition corresponding to a square,
c�x , t=0�=4��x−1�, the distribution of unscaled fragment
sizes at any later time is given by �2�

c��,t� =
8

�
� 2t

ln��/2��
e−tI1��8t ln��/2��� +

8

�
e−t�
� −

�

2
� ,

�13�

where I1 is a modified Bessel function of order 1. The second
term on the right-hand side corresponds to the probability
that there have been no fragmentation events up to time t,
while the first term on the right gives the scaling part of the
fragment size distribution.

From the variable combination in this first term, we find
that the characteristic angle has the time dependence ��e−t.
Furthermore, from the asymptotic form of the Bessel func-
tion �4�, the distribution of the logarithmic angle has a
stretched exponential tail

c�x,t� � e�−t ln �,

with −ln � being the natural variable of the system. As in the
case of symmetric chipping �angle bisection�, the general
chipping process leads to a broad distribution of angles. This
result again suggests that the asymptotic shape of the particle
is not circular.

B. Shape evolution

Area and perimeter distributions. Two fundamental char-
acteristics of an object’s shape are its area and its perimeter.
Starting with a unit-area square, the resulting area and pe-
rimeter distributions become smooth, sharply peaked about
their average values, and visually independent of the number

of corners N when N�20 �Fig. 6�. The support of the area
distribution is �0, 1�, with a peak near 0.67. Similarly, the
support of the perimeter distribution is �2�2,4� and the peak
occurs at approximately 3.3. An amusing unexplained feature
is that a careful examination of the data reveals that the first
derivatives of both distributions are actually discontinuous—
the area distribution at area equal to 1/2 and perimeter dis-
tribution at scaled perimeter pscaled��p− pmin� / �pmax− pmin�
also at pscaled=1/2.

Asymmetry and fluctuations. After a particle has approxi-
mately 50 corners, a given realization is visually close to its
asymptotic shape. As illustrated in Fig. 2, large fluctuations
between different realizations arise, so that the shape of a
single realization has little connection to the average shape.

Each individual interface typically consists of a few
longer facets that are punctuated by regions with many short
facets, with a consequent large change in the local tangent.
To illustrate this punctuated interface, we show the facet
length distribution for 105 realizations with N=10, 40, and
80 corners �Fig. 7�. The spike at L=1 corresponds to the
initial unit-length facets that remain unchipped. The tail for
L
1 corresponds to an initial cut that is sufficiently close to
the main diagonal of the initial square so that the facet length
can be greater than 1—in fact, the maximal facet length is
�2. This large-L tail is distinct from the rest of the distribu-
tion when the number of corners is small. As the number of
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FIG. 6. The distribution of �a� area and �b� perimeter after 50
corners for 107 realizations.
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FIG. 7. �Color online� Probability distribution of facet lengths
P�L� versus L for 105 realizations of 10, 40, and 80 corners. The
steeper curve corresponds to larger N.
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corners increases, the number of short facets correspondingly
increases, and there is a huge buildup of the small-length tail
of the facet length distribution.

Finally, we study how the asymmetry of the particle
evolves during the cutting process. The proper measure of
asymmetry is through the moment of inertia tensor of an
object. For the cutting model, this leads to a cumbersome
calculation when the number of corners is large. We there-
fore adopt a simpler approach that should reveal the same
type of information as the inertia tensor. After an initial
square has been reduced to an object with a specified number
of corners N, we determine the x- and y-coordinates of each
corner about the center of the initial square and then compute
the mean-square displacements of the x and y coordinates of
all the corners

X2�N� =
1

N
�
i=1

N

xi
2, Y2�N� =

1

N
�
i=1

N

yi
2

in each realization. For each realization we then define the
larger and the smaller of these two mean-square displace-
ments

R+
2�N� = max�X2�N�,Y2�N��

R−
2�N� = min�X2�N�,Y2�N�� ,

and then average these maximal and minimal mean-square
radii over many realizations. Finally, we quantify the asym-
metry by the dimensionless ratio

��N� � ��R+
2�N�	/��R−

2�N�	 .

Thus, for example, a rhombus in which the two corners in
the x direction are a unit distance from the origin while the
other two corners are a distance 1+�, �= �1+��. As a func-
tion of 1 /N, the data for ��n� are quite linear for N between
10 and 1280. Extrapolating the data of Fig. 8 to 1/N→0, we
infer the value of ��N→���1.548, with a subjective uncer-
tainty of 0.001.

IV. EXTENSIONS OF THE MODEL

An unrealistic feature of our cutting model is that each
corner has the same probability of being chipped. As a con-

sequence, corners tend to congregate, as seen in Fig. 6. In the
equivalent fragmentation process, equiprobable corner chip-
ping corresponds to an overall breakup rate for a given seg-
ment that is independent of its length. This length-
independent breakup rate in fragmentation demarcates the
boundary between scaling solutions, when the breakup rate
grows with segment length, and “shattering” solutions �2,3�,
when the breakup rate decreases with segment length. The
shattering solution is characterized by a finite fraction of the
system being transformed into a dust of zero-length particles
that contain a finite fraction of the initial length. This singu-
larity is parallel to the gelation transition in irreversible ag-
gregation.

Thus a natural question is whether different behavior
arises in the physically more realistic situation in which
larger protrusions are likelier to be chipped. In the language
of the equivalent fragmentation process, we should study
break-up rates with a positive homogeneity index—namely,
larger fragments are more likely to break. To study the role
of a positive homogeneity index, we considered the extreme
situation in which only the most susceptible corner breaks in
a chipping event. We thus investigated the following three
extremal dynamics rules: �1� chip the corner furthest away
from the origin, �2� chip one of the corners on the longest
facet, �3� chip the corner with the largest deflection angle.

Each of these chipping rules focuses on some aspect of
the most prominent nonsmooth regions of the object. Quali-
tatively, we find that these three rules all lead to a noncircular
asymptotic shape of the object. The reason for this noncircu-
larity ultimately stems from the strong role played by the
first few chipping events. The size of each chip can, in prin-
ciple, range from zero to its maximum attainable size �see
Fig. 1�. If one of these early chips is close to its maximal
size, this chip leaves an imprint on the object that persists in
the long-time limit. This property is different than that of
curvature-driven interface evolution, in which the amount by
which a curved region of the interface moves is strictly pro-
portional to the local curvature �5�.

Another natural concern about the applicability of the cut-
ting model is the restriction to breaking only a single corner
and portions of its adjacent sides in a single chipping event.
Indeed this rule ensures that the final size of the particle
remains nonzero as mentioned in the Introduction. To test the
robustness of the cutting model results to the possibility that
more than one corner can be chipped away, we studied the
situation in which a chip could encompass two corners, as
illustrated in Fig. 9. Specifically, we pick a corner at random;
with probability p2, the chip includes both this corner and its
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FIG. 8. Asymmetry ratio ��N����R+
2�N�	 /��R−

2�N�	 versus
1/N. Each data point is based on 106 realizations, with N
=10,20, . . . ,1280.
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FIG. 9. Geometry of a two-corner chipping event.
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nearest neighbor. With this rule, the restriction that a small
segment of the initial square must remain as part of the
boundary of the eroding particle no longer applies. Thus it is
not obvious a priori that the size of the object will remain
nonzero in the long-time limit. Nevertheless, this more gen-
erous two-corner chipping rule still leads to a nonzero par-
ticle size, as long as the probability for single-corner chips is
nonzero. Initially, the area decreases rapidly as the number of
cuts increases. However, As the number of corners becomes
appreciable, later cuts remove only a tiny fraction of the
particle so that the area eventually saturates to a nonzero
value �Fig. 10�.

V. DISCUSSION

We studied the geometric properties of an idealized model
for the erosion of a two-dimensional rock by repeated chip-
ping of small pieces. A chipping event is defined by cutting a
small piece from the rock in which a single corner and part
of its two adjacent sides are removed. In our model, each
corner has the same probability of being chipped. A two
basic outcome of this cutting model is that there is shape
asymmetry in the long-time limit. Thus the asymptotic out-
come after many chipping events is not a circle, as was ini-
tially observed in the experiments and the simulations of
Durian et al. �1�. Another important feature is that there are
large shape fluctuations between realizations so that the out-
come of a single event is not representative of the average
behavior.

We determined the evolution of the distribution of angles
from its governing master equation. For the case of angle
bisection in each chipping event, we found a broad and as-
ymptotically Poissonian distribution of angles in the variable
in ln t, where t is the number of chipping events. This behav-
ior appears to be idiosyncratic to the case of angle bisection.
In the more realistic case where a chipping event divides an
initial angle into two arbitrary angles �with conservation of
the total angle�, the angle distribution has a different behav-
ior that is immediately obtained by the exact correspondence
between the distribution of angles in the cutting model and
the distribution of fragments sizes in the binary fragmenta-
tion of a line segment �2,3�.

Finally, it is worth mentioning that because of large
sample-to-sample size and shape fluctuations after a given
number of chipping events, the cutting model does not give a
unique limiting shape. This behavior is in contrast to the
class of interface models where the asymptotic shape of a
single realization of interface converges to a unique limiting
shape. Two famous such examples are the strictly convex
interface between the origin and �x
0,y
0� �6� and the
interface that is generated by the partition of the integers �7�.
It may be worthwhile to explore variants of the cutting
model that lead to a unique limiting shape to take advantage
of the highly developed analysis methods available for this
type of interface evolution process. It should also be of in-
terest to extend our study to the more realistic case of three
dimensions, where there is also a highly developed math-
ematical literature on limiting shapes �8�.
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APPENDIX: FLUCTUATIONS IN nk

In this appendix we investigate the statistical properties of
the distribution of k corners in greater detail. We show that
the actual value of the number of k corners in a given real-
ization Nk is generally quite different than the average num-
ber of k corners nk. This lack of self-averaging can be seen
by studying the probability distribution of the random quan-
tities Nk�t� across all realization. While the full calculation is
a tedious endeavor, it is fairly simple to obtain the number of
right-angle corners N0�t�. The master equation for N0 is sim-
pler than that for all the other Nk with k
0, because N0 can
never increase in a single chipping event.

Starting with a square that has four right-angle corners,
the number of such corners is a deterministic quantity when
t=0 and t=1,

N0�0� = 4, N0�1� = 3,

while for t
1 the number of right-angle corners is a random
quantity. Let

� j�t� � Prob�N0�t� = j� ,

and let us compute � j�t� for t
1.
We begin with �3�t�. To have three right-angle corners,

each chipping event must not act on any of these corners.
Consequently, the probability to have three right-angle cor-
ners satisfies the recurrence

�3�t + 1� =
t + 1

t + 4
�3�t� . �A1�

Solving this recurrence subject to the initial condition
�3�1�=1 we obtain
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FIG. 10. Average area of a unit square after N cuts versus 1/N
on a double logarithmic scale when the probability of two-corner
chipping p2=0.9.
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�3�t� =
24

�t + 1��t + 2��t + 3�
. �A2�

By similar reasoning, the recurrence for the probability to
have two right-angle corners is

�2�t + 1� =
t + 2

t + 4
�2�t� +

3

t + 4
�3�t� , �A3�

whose solution is

�2�t� =
36�t − 1�

�t + 1��t + 2��t + 3�
. �A4�

The probability to have a single right-angle corner satisfies
the recurrence

�1�t + 1� =
t + 3

t + 4
�1�t� +

2

t + 4
�2�t� , �A5�

from which

�1�t� =
12�t − 1��t − 2�

�t + 1��t + 2��t + 3�
. �A6�

Finally the probability that there are no right-angle corners
can be found by solving the appropriate recurrence formula

�0�t + 1� = �0�t� +
1

t + 4
�1�t� , �A7�

or from the normalization �0+�1+�2+�3=1. In either
case, we obtain

�0�t� =
�t − 1��t − 2��t − 3�
�t + 1��t + 2��t + 3�

. �A8�

As a useful consistency check one can compute

n0 = �N0	 = � j� j

and recover the result n0= 12
t+3 given in Eq. �3�.
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