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We investigate the growth of a crystal that is built by depositing cubes inside a corner. The interface of

this crystal approaches a deterministic growing limiting shape in the long-time limit. Building on known

results for the corresponding two-dimensional system and accounting for basic three-dimensional

symmetries, we conjecture a governing equation for the evolution of the interface profile. We solve

this equation analytically and find excellent agreement with simulations of the growth process. We also

present a generalization to arbitrary spatial dimension.
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Growing interfaces constitute a venerable subject, but
the proper continuum framework to account for this growth
was developed not so long ago [1]. A detailed and beautiful
description of fluctuations of one-dimensional growing
interfaces has been proposed [2,3], culminating in a recent
solution of the KPZ equation [4]. For real applications,
two-dimensional growing interfaces are much more im-
portant, but their governing stochastic continuum equa-
tions [1] remain unsolved. Nevertheless, the analysis of
two-dimensional growing interfaces is not hopeless.
Indeed, although interface fluctuations have attracted the
most attention, they become less important as the interface
grows. The limiting shape—the average interface profile in
the long-time limit—is the more primal characteristic.

If growth begins from a flat substrate, the interface
advances at a constant average speed, so only fluctuations
matter. In numerous applications, however, the limiting
shapes are curved and are known only in rare cases. One
such example is the 2þ 1 dimensional Gates-Westcott
model for vicinal interfaces, which was solved by a free-
fermion mapping [5]. This growth process exhibits loga-
rithmic height correlations and therefore does not belong to
the strong-coupling KPZ universality class. Average inter-
face profiles are also known for certain anisotropic 2þ 1
dimensional growth models [6,7]. However, even for the
most basic isotropic growth models limiting shapes are not
known. For example, for the two-dimensional Eden-
Richardson model [8] the limiting shape is unknown,
although the statistics of its fluctuations are understood
(and belong to the KPZ universality class).

Here we investigate the limiting shape of a crystal that
grows inside a corner. This process can be defined in
arbitrary dimension and on any lattice (with an appropri-
ately defined ‘‘corner’’). We specifically consider a cubic
lattice, where the corner is the initially empty positive
octant. Starting at t ¼ 0, elemental cubes are deposited at
unit rate onto inner corners (Fig. 1). Initially, there is one
inner corner and thus one place where a cube can deposit.

After this first event, there are three available inner corners
that can accommodate the next cube. The interface shape
becomes smoother as it grows and ultimately approaches a
deterministic limiting shape.
The corner growth model admits a dual interpretation as

the melting of a three-dimensional cubic crystal by erosion
from the corner. There is also a magnetic interpretation in
which plus spins are initially assigned to each site inside
the corner and minus spins to exterior sites, with the spins
endowed with zero-temperature Glauber spin-flip dynam-
ics [9] in a weak negative magnetic field. This dynamics
allows only plus spins at inner corners to flip and thus is
isomorphic to the corner melting problem. The magnetic
interpretation naturally suggests considering the system in
zero magnetic field, which results in a growing interface
whose characteristic scale grows diffusively rather than
ballistically. Other modifications involve changing the ini-
tial condition; e.g., depositing the cubes onto a planar
substrate (the ‘‘hypercube stacking model’’ [10]) leads to

FIG. 1 (color online). Upper left: 3D crystal of volume 4. The
next elemental cube can be deposited at one of 6 inner corners.
Right: Crystal at t ¼ 140.
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a trivial limiting shape but is better-suited to studying
nontrivial height fluctuations.

In what follows, we use the language of deposition; most
importantly, we allow only deposition events and no evapo-
ration. Growth inside a two-dimensional corner is well
understood by mapping the corner growth process onto
the one-dimensional asymmetric exclusion process [11];
fluctuations in this limiting shape have also been computed
[12,13]. In three dimensions, the corner growth model can
be mapped into an infinite set of coupled exclusion pro-
cesses in the plane, also known as the ‘‘zigzag model’’
[14,15]. Unfortunately, no exact solutions are known for
such planar interacting particle processes.

Here we focus on the limiting shape in three (and higher)
dimensional corners. Our analysis relies heavily on in-
sights gleaned from the limiting two-dimensional corner
interface shape [11]. In two dimensions this limiting shape
yðx; tÞ evolves according to the equation of motion [16–18]

yt ¼ yx
yx � 1

; (1)

from which the interface profile was found to be [11]

ffiffiffi
x

p þ ffiffiffi
y

p ¼ ffiffi
t

p
: (2)

This parabolic shape (2) describes the nontrivial part of the
interface where 0 � x, y � t. Outside this region, the
original boundary is undisturbed.

Two properties severely constrain the form of possible
evolution equations for growth inside a three-dimensional
corner: (a) The governing equation for the interface
zðx; y; tÞ must reduce to the two-dimensional form (1) on
the boundaries x ¼ 0 or y ¼ 0; (b) The equation must be
invariant under the interchange of any coordinate pair.

Analogously to Eq. (1), we seek a three-dimensional
evolution equation of the form zt ¼ Fðzx; zyÞ that involves
only first derivatives (higher-order derivatives are asymp-
totically negligible). The simplest guess is the product zt ¼
½zx=ðzx � 1Þ�½zy=ðzy � 1Þ�. This equation reduces to (1) on
the boundaries x ¼ 0, where zx ¼ �1, and y ¼ 0, where
zy ¼ �1. The product ansatz is also invariant under

the exchange x $ y but not under the exchanges x $ z
or y $ z and therefore is wrong.

By extensive trial and error, we found that

zt ¼ zx
zx � 1

zy
zy � 1

�
1� 1

zx þ zy

�
(3)

satisfies the necessary coordinate interchange invariances.
These constraints severely limit the form of the evolution
equation. For example, if we seek a multiplicative correc-
tion factor to the product form in (3) as the Laurent seriesP1�1 �nðzx þ zyÞ�n, coordinate interchange invariance

gives �0 ¼ 1, �1 ¼ �1, while all other amplitudes vanish
[15]. Thus Eq. (3) is the only invariant choice among the
family of evolutionary equations parameterized by �n.

We also found one other elemental evolution equation of
the form zt ¼ Fðzx; zyÞ that satisfies coordinate inter-

change invariance; this form is unique if we again seek
corrections as a Laurent series representation. This second
solution is obtained by replacing the factor in the square
brackets in (3) with ½1þ ðzxzy � zx � zyÞ�1�. This equa-
tion, which can be rewritten more elegantly as

1

zt
¼ 1� 1

zx
� 1

zy
; (4)

and Eq. (3) are two functionally independent three-
dimensional evolution equations that satisfy coordinate
interchange invariance. We believe, but cannot prove,
that other elemental evolution equations do not exist.
Our conjecture is that (3) is the correct evolution equa-

tion. Evidence in favor of this statement also comes from
the excellent agreement with simulation data. For this
comparison, we solve Eq. (3) by the method of character-
istics. Starting from an empty corner, we find [15] that the
interface profile admits the following parametric represen-
tation (Fig. 2)

x

t
¼ Aðq; rÞ; y

t
¼ Bðq; rÞ; z

t
¼ Cðq; rÞ (5)

where

A ¼ 1

ðq� 1Þ2
r

r� 1

�
1� 1

qþ r

�
� q

q� 1

r

r� 1

1

ðqþ rÞ2 ;

B ¼ q

q� 1

1

ðr� 1Þ2
�
1� 1

qþ r

�
� q

q� 1

r

r� 1

1

ðqþ rÞ2 ;

C ¼ q

q� 1

r

r� 1

�
1� 1

qþ r

��
1þ 1

q� 1
þ 1

r� 1

�

� q

q� 1

r

r� 1

1

qþ r
;

with q ¼ zx, r ¼ zy and�1< q, r � 0. As a consistency

check, note that for r ¼ �1, we have x=t ¼ ðq� 1Þ�2,
y=t ¼ 0, and z=t ¼ q2ðq� 1Þ�2. Eliminating q, we get

FIG. 2 (color online). The interface (5).
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ffiffiffi
x

p þ ffiffiffi
z

p ¼ ffiffi
t

p
, thereby recovering Eq. (2) for the inter-

section of the interface (5) with the y ¼ 0 plane.
It seems impossible to eliminate the parameters (q, r)

from Eq. (5) and obtain a closed-form representation of the
interface in terms of x, y, z and t as in the two-dimensional
case. However, the intersections of the interface (5) with
certain planes admit simplified descriptions. For example,
for the plane x ¼ y, corresponding to q ¼ r, we obtain

x

t
¼ 1

2

z

t
� 3

4

�
z

t

�
2=3 þ 1

4
; (6)

which agrees well with simulations (Fig. 3).
Two additional tests suggest that the conjectured evolu-

tion equation (3) and its solution (5) describe corner growth
accurately. Consider first the advance of the interface along
the ray x ¼ y ¼ z. From (5), the position of this point is
given by [19]

x ¼ y ¼ z ¼ wt; w ¼ 1
8: (7)

Numerically, we measure w � 0:1261ð2Þ, which agrees
with our prediction w ¼ 0:125 to within 0.9%. As a second
test, we compute the total volume V beneath the growing
interface at time t. Since the linear dimension of the inter-
face grows linearly with time, V ¼ vt3. To determine the
amplitude v, we use the parametric solution (5) and change
from the physical variables (x, y) to the parametric coor-
dinates (q, r), from which the amplitude v reduces to the
integral

v ¼
Z 0

�1

Z 0

�1
dqdrCðq; rÞ @ðA; BÞ

@ðq; rÞ :

We compute the Jacobian @ðA;BÞ
@ðq;rÞ and the integral using

MATHEMATICA and find

v ¼ 3�2

211
¼ 0:014 457 . . . (8)

Numerically, we measure v � 0:014 72ð3Þ, which is within
1.8% of our prediction.
While Eq. (3) accurately describes the corner interface,

small discrepancies between our measurements of the co-
efficients w and v, and their predicted values (7) and (8)
persist. The alternative elemental evolution equation (4)
leads to the interface profileffiffiffi

x
p þ ffiffiffi

y
p þ ffiffiffi

z
p ¼ ffiffi

t
p

; (9)

which is the natural generalization of Eq. (2). The corre-
sponding values w ¼ 1

9 and v ¼ 1
90 that arise from this

profile substantially disagree with simulation results, sug-
gesting that (4) is wrong.
From the elemental equations (3) and (4), we can also

form two distinct one-parameter families of invariant equa-
tions [15]; an additive family

zt ¼ zx
zx � 1

zy
zy � 1

�
1� 1þ c

zx þ zy
� c

zxzy � zx � zy

�
; (10a)

and a multiplicative family

zt ¼
� 1� 1

zxþzy

ð1� 1
zx
Þð1� 1

zy
Þ
�
1þc

�
1� 1

zx
� 1

zy

�
c
; (10b)

where for both families the limit c ¼ 0 reduces to (3) and
the limit c ¼ �1 reduces to (4). For the multiplicative
class of evolution equations (10b), the choice c � 0:074
provides the best fit for the simulated value of v [20].
Similarly, for the additive class of equations, the optimal
mixing parameter is c � 0:079. However, a phenomenon
as minimalist as corner interface growth should be de-
scribed by a simple equation that does not contain an
anomalously small mixing parameter. This aesthetic con-
sideration, in conjunction with our numerical results, sug-
gest that Eq. (3) describes corner interface evolution.
The small discrepancies between our simulation results

and the predictions that follow from Eq. (3) (see the insets
to Fig. 3) suggest that the approach to the asymptotic state
is slow. A similarly slow convergence to asymptotic be-
havior occurs in various well-understood one-dimensional
growth models (see, e.g., Refs. [21,22]). For example,
for 1þ 1 dimensional corner growth, the intersection of
the interface with the (1,1) direction evolves according
to [3,12,13]

xðtÞ ¼ t

4
þ t1=3�; (11)

where � is a stationary random variable with h�i> 0. Thus
averaging over many realizations gives an effective veloc-

ity weff � 1
4 � t�2=3.
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FIG. 3 (color online). Scaling plot of the surface profile z=t
versus x=t along the diagonal x ¼ y at different times. Upper-left
inset: the difference � between the simulated values of the left
and right sides of (6). Lower-right inset: convergence of the
diagonal interface speed versus t�0:77.
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For growth inside a three-dimensional corner, we there-
fore anticipate that weff � 1

8 � t��, with a still-unknown

exponent �. Very extensive simulations for flat interfaces
in 2þ 1 dimensions indicate that � is close to 0.77
[23–25]. On the other hand, extrapolation from our simu-
lations for t & 20 000 suggests that � � 0:74. This differ-
ence in exponent estimates suggests that t ¼ 20 000 is still
outside the long-time regime for growth inside a three-
dimensional corner. This slow approach to asymptotic
behavior could be the source of the discrepancy between
our simulation results and the theoretical prediction (3) for
the interface profile.

Our argument for the form of the evolution equation can
be generalized to higher dimensions. Applying coordinate
interchange invariance and related symmetry considera-
tions, we conjecture that in d dimensions the height
hðx1; . . . ; xd�1; tÞ satisfies

ht ¼
Y

1�i1<...<ip�d�1

�
1� 1

hi1 þ . . .þ hip

�ð�1Þp
; (12)

where hi � @h
@xi

. These equations are again solvable using

the method of characteristics [15].
We emphasize that computing the limiting shape—the

primary characteristic of the interface—represents only a
first step to understanding its properties. One challenging
problem, given that interface fluctuations are unknown
even for flat interfaces, is to generalize Eq. (11) to account
for fluctuations of an interface that grows at a three-
dimensional corner. Also of interest are height-height cor-
relations at different locations and different times. In 1þ 1
dimensions, these correlations decay slowly along the
characteristic curves of the evolution equation [7,26].
Whether similar behavior occurs in 2þ 1 dimensional
corner growth is unknown.

Fluctuations of integral characteristics of the interface,
such as the crystal volume, may be more tractable and give
rise to new phenomena. Consider, for example, the total
number of sites of various fixed degrees (number of adja-
cent vertices). Sites of degree 3, in particular, can be
categorized as either inner or outer corners. The number
of inner corners grows as Nin ¼ dV

dt ¼ 3vt2, with v ¼
3�2=211 to leading order. One might anticipate the same
asymptotic growth for outer corners, but simulations in-
dicate that the latter grows slightly faster [15]:

Nout=Nin � 1:04: (13)

Note that in two dimensions Nin � Nout ¼ 1. For Ising
corner growth in three dimensions, Nin � Nout is also posi-

tive and grows with time as t1=2. This makes the behavior in
(13) quite puzzling.

The other major challenges are to generalize from strict
corner growth to Ising growth, where adsorption at inner
corners and desorption from outer corners occur with equal
rates, and to equilibrium interfaces, where the desorption

rate exceeds the adsorption rate. The corresponding equi-
librium shape has been determined both in two [27] and
three dimensions [28], and its shape fluctuations have also
been studied [29]. In analogy with the conjectured evolu-
tion equations (12) for corner growth, there may also exist
an exact generalization of equilibrium limiting shapes
[27,28] in higher dimensions.
We thank A. Borodin and H. Spohn for useful corre-

spondence. J. O. and S. R. gratefully acknowledge financial
support from NSF Grant No. DMR-0906504.

[1] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56,
889 (1986).

[2] T. Halpin-Healey and Y.-C. Zhang, Phys. Rep. 254, 215
(1995).

[3] T. Kriecherbauer and J. Krug, J. Phys. A 43, 403001
(2010).

[4] For a review, see I. Corwin, arXiv:1106.1596.
[5] M. Prähofer and H. Spohn, J. Stat. Phys. 88, 999

(1997).
[6] R. Rajesh and D. Dhar, Phys. Rev. Lett. 81, 1646

(1998).
[7] P. Ferrari and A. Borodin, arXiv:0804.3035.
[8] D. Richardson, Proc. Cambridge Philos. Soc. 74, 515

(1973); H. Kesten, Lecture Notes in Math (Springer,
Berlin, 1986), Vol. 1180, p. 125.

[9] R. J. Glauber, J. Math. Phys. (N.Y.) 4, 294 (1963).
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