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Abstract. We investigate the effect of cooperative interactions on the
asymmetric exclusion process, which causes the particle velocity to be an
increasing function of the density. Within a hydrodynamic theory, initial
density upsteps and downsteps can evolve into: (a) shock waves, (b) continuous
compression or rarefaction waves, or (c) a mixture of shocks and continuous
waves. These unusual phenomena arise because of an inflection point in the
current versus density relation. This anomaly leads to a group velocity that can
be either an increasing or a decreasing function of the density on either side of
the inflection point, a property that underlies these localized wave singularities.
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1. Introduction

The asymmetric exclusion process (ASEP) [1]–[5] represents an idealized description of
transport in crowded one-dimensional systems, such as traffic [6]–[8], ionic conductors [9],
and RNA transcription [10]. In the ASEP, each site is either vacant or occupied by a single
particle that can hop at a fixed rate to a vacant right neighbor [1]–[4]. Although simply
defined, this model has rich transport properties: for example, density heterogeneities can
evolve into rarefaction or shock waves [4], while an open system, with input at one end
and output at the other, exhibits a variety of phases as a function of the input/output
rates [11]–[13].

A fundamental property of the ASEP is the relation J(ρ) = ρ(1 − ρ) between the
current J and density ρ. Because each site is occupied by at most one particle, the
average particle velocity v = J/ρ is a decreasing function of the density. In this work, we
investigate a cooperative exclusion (CE) model in which the velocity can increase with
density. This cooperativity leads to unexpected features in the evolution of initial density
heterogeneities. Such cooperativity occurs, for example, when ants emit pheromones that
help guide fellow ants along a trail [14]. Another example is that of multiple buses that
follow a fixed route. The leading bus picks up more passengers, so the next bus moves
faster, which causes clustering of buses during peak travel times [15]. At the microscopic
level, molecular motors can work together to pull a load that is too large for a single
motor [16]. Cooperativity was even proposed as a basis for organic superconductors [17].

The notion of cooperative interactions that counterbalance the fundamental excluded-
volume interaction is implicit in [7], as well as in [18, 19]. These latter publications
investigated an exclusion model with a somewhat less stringent excluded-volume
constraint than in ASEP. This weaker exclusion gives rise to an effective cooperativity
and thereby to complex density profiles similar to what we find. As we shall argue, the
existence of these complex profiles does not depend on detailed microscopic rules, but is
rather a consequence of the underlying cooperative interactions between particles. When
sufficiently strong, these interactions lead to an inflection point in the current–density
curve; this feature is the minimum requirement for the complex density-profile dynamics.
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Figure 1. Cooperative exclusion. A ‘pushed’ particle (red)—one whose left
neighbor is occupied—can hop to a vacant right neighbor with rate 1, while
an isolated particle (blue) hops to a vacancy with rate λ.

Figure 2. Steady-state current as a function of density in cooperative exclusion
(CE). Data are based on 102 realizations with L = 103 up to t = 104. The solid
curves are given by equation (2). Arrows indicate the locations of the inflection
points.

2. The cooperative exclusion model

In the CE model, a particle can hop to its vacant right neighbor at a rate r that depends
on the occupancy of the previous site (figure 1):

r =

{
1 previous site occupied,

λ previous site vacant,

with 0 ≤ λ ≤ 1. When λ = 1, the standard ASEP is recovered, while λ = 0 corresponds
to facilitated asymmetric exclusion [20], in which the left neighbor of a particle must
be occupied for the particle to hop to a vacancy on the right. We pictorially view
this restriction as a particle requiring a “push” from its left neighbor to hop. This
facilitation causes an unexpected discontinuity in a rarefaction wave in the ASEP [21].
More strikingly, we will show that cooperativity leads to shock and rarefaction waves that
can be continuous, discontinuous, or a mixture of the two.

These unusual features arise in CE when 0 < λ < 1
2
, where an inflection point in J(ρ)

occurs at ρ = ρI (figure 2). For ρ < ρI, cooperativity dominates, and J grows superlinearly
in ρ. At higher densities, excluded-volume interactions dominate, so J grows sublinearly
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Figure 3. Left: hopping of a pushed (red) particle where the number of vacancy
pairs is (a) preserved or (b) decreases. Right: hopping of an isolated (blue)
particle where the number of vacancy pairs is (c) preserved or (b) increases.

and ultimately decreases to zero. Correspondingly, the group velocity changes from an
increasing to a decreasing function of density ρ as ρ passes through ρI.

A configuration of N particles on a ring of length L is specified by the occupation
numbers {n1, . . . , nL}, subject to particle conservation:

∑
i ni = N ; here ni equals 1 if i is

occupied and equals 0 otherwise. A crucial feature of CE is that the probability for any
steady-state configuration is a decreasing function of the number k of adjacent vacancies:
k ≡ ∑L

i=1(1 − ni)(1 − ni+1), with nL+1 = n1. To understand how the configurational
probabilities depend on k, we observe that the hopping of a pushed particle (whose left
neighbor is occupied) either preserves or decreases the number of adjacent vacancies k
(left side of figure 3). Conversely, the hopping of an isolated particle either preserves or
increases k (right side of figure 3). Since pushed particle hopping events occur at a higher
rate, configurations with fewer adjacent vacancies are statistically more probable.

We now exploit the work of Antal and Schütz [7] who investigated a dual model in
which next-nearest neighbor cooperative interactions pull a particle ahead, in distinction
to the pushing of particles from behind in CE. By the mapping particles ↔ holes, the CE
and the Antal–Schütz models give the same probability distribution Pk for a configuration
with k adjacent vacancies [7]:

Pk =
λk

Z(λ)
, (1)

where Z(λ) is a normalization constant. Since λ < 1, configurations with fewer adjacent
vacancies are more probable. Following [7], the steady-state current is

J = (1 − ρ)

[
1 +

√
1 − 4(1 − λ)ρ(1 − ρ) − 1

2(1 − λ)ρ

]
(2)

in the L → ∞ limit. The salient feature is that J has an inflection point at a density ρI

for λ < 1
2

(figure 2). We henceforth restrict our analysis to this domain and determine
the unusual consequences of this inflection point on the dynamics of initial density steps.

3. Density-profile dynamics

In a hydrodynamic description, the particle satisfies the continuity equation ρt + Jx = 0.
By the chain rule, we rewrite the second term as Jρ ρx, from which the group velocity
u = Jρ. Here the subscripts t, x, ρ denote partial differentiation. The crucial feature is
the inflection point in J(ρ), so the group velocity can be either increasing or decreasing
in ρ. We now employ the steady-state current (2) to determine the evolution of an initial
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Figure 4. Phase diagram of the CE model for an initial density step (ρ−, ρ+),
with ρI the inflection point in J(ρ). A typical density profile ρ(z) is sketched
for each of the six regions: (R/IS) rarefaction/inverted shock, (R) continuous
rarefaction, (S) shock, (C/S) compression/shock, (C) continuous compression,
(IS) inverted shock.

density heterogeneity on length and time scales large compared to microscopic scales for
the step initial condition

ρ(x, t = 0) =

{
ρ− x ≤ 0,

ρ+ x > 0.
(3)

As sketched in figure 4, the difference of the group velocities to the right and left of
the step determines whether a continuous, discontinuous, or a composite density profile
emerges.

It is worth noting that similar results for density profiles were obtained for an
asymmetric exclusion process with another form of cooperative interaction [18, 19]. In
that work, the same qualitative phase diagram as in figure 4 was obtained, despite the
rather different natures of the microscopic interactions in their model. This similarity in
long-time behavior arises because our main results apply for any asymmetric exclusion
process with sufficiently strong cooperative interactions, as indicated by an inflection point
in J(ρ).

3.1. Shock/inverted shock

A propagating shock wave arises whenever the group velocity on the left exceeds that on
the right, u(ρ−) > u(ρ+). Qualitatively, the faster moving particles catch up to slower
particles on the right and pile up in a shock wave, just as freely moving cars suddenly slow
down upon approaching a traffic jam. In the conventional ASEP, all upsteps evolve into
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Figure 5. Left: evolution of an upstep for λ = 1
8 : (C) continuous compression

wave for ρ− = 1
8 , ρ+ = 3

8 ; (C/S) composite compression/shock for ρ− = 1
8 ,

ρ+ = 6
10 ; (S) shock for ρ− = 1

8 , ρ+ = 9
10 . Right: evolution of a downstep

for λ = 1
8 : (R) continuous rarefaction for ρ− = 1, ρ+ = 6

10 ; (R/IS) composite
rarefaction/inverted shock for ρ− = 1, ρ+ = 3

8 ; (IS) inverted shock for ρ− = 0.325,
ρ+ = 1

8 . The dashed line is the locus Jρ = z and the solid black curves are analytic
predictions. Simulations are based on 103 realizations up to t = 4 × 103.

a shock (S) wave. For the CE, in contrast, only upsteps where both initial densities are
above the inflection point, ρI < ρ− < ρ+, evolve into shocks (figure 5). Here, exclusion is
sufficiently strong that the group velocity is a decreasing function of density. Strikingly,
a propagating shock wave also emerges from a downstep in CE when the initial densities
are both below the inflection point, ρI > ρ− > ρ+. In this regime, Jρρ = uρ > 0; that is,
cooperativity is sufficiently strong that particles in the high-density region on the left have
a greater group velocity and therefore pile up at the interface. We term this singularity
an inverted shock (IS) (figure 5).

For both shocks and inverted shocks, the density is given by the traveling wave profile
ρ = ρ(x−ct). We obtain the shock speed c by equating the net flux into a large region that
includes the shock, J(ρ+)−J(ρ−), with the change in the number of particles, c(ρ+−ρ−),
in this region [22] to obtain the standard expression c = [J(ρ+) − J(ρ−)][ρ+ − ρ−]; this
holds for both conventional and inverted shocks.

3.2. Continuous rarefaction/compression

A density step gradually smooths out when the group velocity to the left is less than that
on the right, u(ρ−) < u(ρ+). Here the faster particles on the right leave open space for the
slower particles, which is similar to the case of a cluster of stopped cars that slowly spreads
out after a stoplight turns green. In ASEP, a downstep always evolves to a continuous
rarefaction (R) wave. This continuous rarefaction also occurs in CE when both initial
densities are above the inflection point, ρ− > ρ+ > ρI. At these high densities, exclusion
dominates, as in the ASEP, which causes the group velocity to decrease with density.

In striking contrast to the ASEP case, an upstep can continuously smooth out in CE
when the initial densities are below the inflection point, ρ− < ρ+ < ρI. In this regime,
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cooperativity is sufficiently strong that particles in the high-density region on the right
move faster than those on the left. Thus instead of a shock wave, a continuous compression
(C) wave develops (figure 5). We determine the density profile by assuming that it is a
function of the scaled variable z = x/t. Substituting ρ(x, t) = ρ(z) into the continuity
equation gives −zρz + Jρ ρz = 0. Thus the profile consists either of constant-density
segments (ρz = 0) or else z = Jρ. Matching these solutions gives [5, 21]

ρ(z) =

⎧⎪⎨
⎪⎩

ρ− z < z−,

I(z) z− ≤ z ≤ z+,

ρ+ z > z+,

(4)

where I(z) is the inverse function of z = Jρ. For a continuous profile, the cutoffs z− and
z+ are determined by matching the interior solution I(z) with the asymptotic solutions:
I(z±) = ρ± or equivalently, z± = Jρ(ρ±).

3.3. Composite rarefaction/compression and shock

In CE, a continuous rarefaction or compression wave can coexist with a shock wave. This
phenomenon occurs when the group velocity on the left is initially less than that on the
right but also with the constraint that the initial densities lie on either side of the inflection
point. Consequently one side of the step is in the exclusion-dominated regime and the
other is in the cooperativity-dominated regime, or vice versa. In particular, a composite
rarefaction/inverted shock (R/IS) wave emerges from a downstep when ρ− > ρI > ρ+, so
u(ρ−) < u(ρ+). As in the case of the continuous rarefaction wave, the downstep begins to
smooth out from the rear. Consequently, cooperative interactions become more important
as the density at the leading edge of this rarefaction decreases. Eventually this leading
density reaches the point where the particle speed matches that at the bottom of the
downstep and the rarefaction front terminates in an inverted shock.

Correspondingly, an upstep can evolve to a compression wave with a leading shock
when the densities satisfy ρ− < ρI < ρ+ and u(ρ−) < u(ρ+). In this case, the leading
particles initially race ahead, leaving behind a profile where the density increases with x.
However, this increase cannot be continuous because eventually a point is reached where
the speed at the front of this continuous wave matches that of the top of the upstep.
After this point, a pile-up occurs and a shock wave forms. We call this profile a composite
compression/shock (C/S) wave (figure 5).

The functional forms of the composite rarefaction/inverted shock and composite
compression/shock profiles are still given by equation (4), but the criteria for determining
the cutoffs z± are now slightly more involved than for continuous profiles. The location of
the left cutoff, z−, is again determined by continuity, namely, I(z−) = ρ− or, alternatively,
z− = Jρ(ρ−). To determine the right cutoff z+, note that in a small spatial region that
includes the leading-edge discontinuity, the density profile is just that of a shock or inverted
shock wave. Thus the equation for the shock speed is

z+ =
J(q+) − J(ρ+)

q+ − ρ+
, (5)

where q+ ≡ I(z+) is the density just to the left of the discontinuity. (Note also that
z+ = Jρ(q+) by definition.) To justify (5), we use the conservation condition that the
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particle number in [z−, z+] equals the initial number plus the net flux into this region:∫ z+

z−
I(z) dz = −ρ−z− + ρ+z+ − J(ρ+) + J(ρ−). (6)

We recast this expression as (5), by making the variable change z = Jρ(ρ) and using
I(Jρ(ρ)) = ρ to write the integral as

∫ q+

ρ−
ρ Jρρ dρ; the integration can now be performed

by parts. The resulting expression readily simplifies to (5).
In summary, a diversity of wave singularities arise in asymmetric exclusion with

sufficiently strong cooperativity. The minimum requirement for these phenomena is an
inflection point in the current–density relation J(ρ). This inflection point leads to a
group velocity that is an increasing function of density for ρ < ρI, a dependence opposite
to that in the conventional ASEP. The resulting non-monotonic density dependence of the
velocity causes an initial density upstep or downstep to evolve to: shock/inverted shocks,
continuous rarefaction/compression waves, or a composite profile with both continuous
and discontinuous elements.
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