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We present evidence for a deep connection between the zero-temperature coarsening of both the two-

dimensional time-dependent Ginzburg-Landau equation and the kinetic Ising model with critical con-

tinuum percolation. In addition to reaching the ground state, the time-dependent Ginzburg-Landau

equation and kinetic Ising model can fall into a variety of topologically distinct metastable stripe states.

The probability to reach a stripe state that winds a times horizontally and b times vertically on a square

lattice with periodic boundary conditions equals the corresponding exactly solved critical percolation

crossing probability P a;b for a spanning path with winding numbers a and b.
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When a ferromagnet with nonconserved spin flip dy-
namics is quenched from above the critical temperature to
zero temperature, a beautiful coarsening domain mosaic
emerges [1–3] (Fig. 1). For finite systems, this coarsening
ends when the typical domain length reaches the linear
dimension of the system. What is the resulting final state?
A naive expectation is that the ground state is ultimately
reached because each microscopic spin update either de-
creases or maintains the energy of the system. However,
this lowest-energy state is not necessarily the final out-
come. There exist a plethora of metastable states, such as
straight stripes in two dimensions [4–6] and more bizarre
gyroid or ‘‘plumber’s nightmare’’ states in three dimen-
sions [7], which are infinitely long lived at zero tempera-
ture. Once the system falls into such a state, the only escape
route is via energy-raising spin-flips. Since such events do
not occur at zero temperature, there is no escape to the
ground state.

In the intermediate-time regime, where the typical
domain size substantially exceeds the lattice spacing but
is much smaller than the system size, the domain mosaic
visually resembles the cluster geometry of continuum per-
colation [8]. This correspondence has sparked recent work
on possible connections between these seemingly disparate
models [8,9]. In two dimensions, continuum percolation is
critical when the concentrations of both phases are equal
[10]. This duality explains why the ground state corre-
sponding to the majority phase is always reached in coars-
ening in the thermodynamic limit for nonzero initial
magnetization [4]. In this case, the majority phase perco-
lates in all directions and inevitably engulfs the entire
system. The most interesting situation of quenching from
above the critical temperature corresponds to zero initial
magnetization, so that the system in the intermediate-time
regime is at the critical point of two-dimensional contin-
uum percolation.

The connection to critical percolation is extraordinarily
fruitful because it allows us to understand why the system
may fall into stripe states rather than ground states and it

also predicts the probabilities of various outcomes [8]. For
example, the probability to reach a state with vertical
stripes [11] equals the spanning probability P 0;1 to have

a path that spans the system in the vertical direction at the
percolation threshold (and no spanning paths in other
directions). The spanning probabilities P 0;1 and P 1;0 are

exactly known [12–14], and this led to the prediction that
the probability to reach a stripe state equals 0:3390 . . . for
the square with periodic boundary conditions, in agreement
with numerical simulations [8]. (For free boundary con-

ditions this probability is 1
2 �

ffiffi
3

p
2� ln2716 ¼ 0:3558 . . . .)

Here we argue that the connection to percolation is much
deeper and applies to a large family of positive-energy
metastable states, of which straight stripes are merely the
simplest members. This connection also applies to a broad
class of coarsening models with nonconserved order-
parameter dynamics, including the time-dependent
Ginzburg-Landau equation (TDGL) equation [1–3] and

FIG. 1. Snapshots of coarsening in the nearest-neighbor ki-
netic Ising model on a 1024� 1024 square lattice with periodic
boundary conditions at: (a, e) t ¼ 200, (b, f) 1000, (c, g) 5000,
and (d, h) 50 000 after a quench from T ¼ 1 to T ¼ 0. Top:
evolution to (1, 1) stripes (probability� 0:04); bottom: evolution
to (2, 1) stripes (probability � 0:000 15).
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the kinetic Ising model (KIM). We will apply the connec-
tion to percolation to determine the probabilities to reach
general stripe states that wind a times in one Cartesian
direction and b times in the orthogonal direction for both
the two-dimensional TDGL equation and the KIM with
periodic boundary conditions.

The TDGL equation for a coarse-grained magnetization
density mðrÞ evolves according to

@m

@t
¼ r2m� V 0ðmÞ; (1)

where VðmÞ ¼ 1
2 ð1�m2Þ2 is the classic double-well

potential with minima at m ¼ �1 to account for the equi-
librium magnetization of a ferromagnetic system. To in-
vestigate coarsening that is driven by this TDGL equation,
we discretize this equation and integrate it forward in time
by an explicit scheme and average results over many zero-
magnetization initial conditions.

To reveal the connection to percolation for the discrete
KIM, it is essential to extend this model to more distant
interactions. The Hamiltonian that we study is

H ¼ � 1

2

X
i;n

Jnsisiþn: (2)

For a given spin i, the sum is over the nth-nearest neighbors
of si, where nth-nearest neighbor is defined (for conve-
nience) by the Manhattan metric, in which the distance
between (0, 0) and (x, y) is jxj þ jyj. We endow this
Hamiltonian with single spin-flip dynamics [15].
Operationally, we use Glauber dynamics [16]; we pick a
spin at random and flip it if this event decreases the energy
of the system. If the energy is unchanged by this flip, the
event is accepted with probability 1

2 .

On the basis of universality [17], cooperative behavior
of a ferromagnet should not fundamentally depend on the
interactions as long as they decay rapidly with distance.
However, there are subtle but important interaction range
dependent effects that help expose the parallelism between
coarsening in the KIM and critical percolation. For the
KIM with second-neighbor ferromagnetic interactions of
any magnitude, one sees that the regular ½1; 1�1 staircase
shown in Fig. 2 becomes infinitely long lived. That is, there
is an energy cost to flip any spin on either side of this
staircase. The stability of this diagonal staircase causes a
stripe state that winds once around a periodic square (a
torus) in both the x and y directions to be infinitely long-
lived at zero temperature. Similarly, extending the interac-
tion range to third neighbors additionally causes ½2; 1�1
and ½1; 2�1 staircases to become infinitely long-lived and
thereby stabilize (2, 1) and (1, 2) stripe states [Fig. 1(h)].
As the interaction range becomes infinite [18], stripe states
with arbitrary integer winding numbers (a, b) are infinitely
long-lived in a square system.

To make the quantitative correspondence between coars-
ening and percolation, we need exact results for spanning

probabilities [12,19–25], particularly for the torus topol-
ogy [13,14]. As above, we label spanning clusters by their
horizontal and vertical winding numbers, a and b, respec-
tively. Unique classes of spanning clusters arise for each
pair of values a, b � 0 in which a and b are co-prime
(i.e., a and b have no common divisors). Stripes that are
characterized by (a, b) and by (� a, �b) are equivalent
and we therefore set a > 0.
Let P a;bðrÞ be the probability for a spanning cluster in

continuum percolation with winding numbers (a, b) on a
rectangle with periodic boundary conditions and with
aspect ratio r � Ly=Lx. Here Lx and Ly are the linear

dimensions of the system in the x and y directions. For
Lx, Ly ! 1, this spanning probability is known to be

[13,14]

P a;bðrÞ ¼
Za;bð6; rÞ � 2Za;bð83 ; rÞ þZa;bð23 ; rÞ

2½�ðe�2�rÞ�2 ; (3)

where �ðqÞ ¼ q1=24
Q

k�1ð1� qkÞ is the Dedekind � func-
tion [26] and Za;bðG; rÞ is the infinite sum

Za;bðG; rÞ ¼
ffiffiffiffi
G

r

s X1
j¼�1

exp

�
��G

�
a2

r
þ b2r

�
j2
�
: (4)

We tacitly assume that r � 1; for r < 1, the spanning
probabilities can be extracted from the obvious duality
relation P a;bðrÞ ¼ P b;að1rÞ.
We study the simplest crossing probabilities for a

square L� L system: (i) P0 ¼ P 0;1 þ P 1;0 ¼ 2P 0;1,

the probability for a vertical or horizontal stripe,
(ii) P1 ¼ P 1;1 þ P 1;�1 ¼ 2P 1;1, the probability for a

stripe in the (1, 1) or (1, �1) directions, and (iii) for
n � 2, we define Pn ¼ 4P n;1, the probability for a stripe

in the 4 distinct (� n, 1) and (� 1, n) directions. The
series in Eq. (4) converges rapidly in j and we also make
use of the series representation of the Dedekind� function,

½�ð�12Þ��2 ¼ ��1ð1þ 2�12 þ 5�24 þ 10�36 þ � � �Þ;

with � � e��=6, to give

(a) (b)

FIG. 2 (color online). (a) ½1; 1�1 staircase interface. With
nearest-neighbor interactions (dashed square) interfacial spins
can flip freely, but are stable with longer-range interactions.
(b) ½2; 1�1 staircase. Interfacial spins can flip freely with
Manhattan metric first- and second-neighbor interactions, but
are stable with longer-range interactions.
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P0 ¼
ffiffiffi
8

3

s
�3ð1� �12 � �24 þ 4�32 þ � � �Þ

P1 ¼
ffiffiffi
8

3

s
�7ð1þ 2�12 þ 2�24 þ 4�36 þ � � �Þ

Pn ¼
ffiffiffiffiffiffi
32

3

s
�4n2þ3ð1þ 2�12 þ 5�24 þ 10�36 þ � � �Þ;

(5)

where the last line holds for all n � 2. These stripe
probabilities are given to four-digit accuracy in Table I.
Our numerical data for the first three probabilities
(Fig. 3), which are accessible by simulations, have been
obtained by a cluster multilabeling method [27]. The ex-
tremely good agreement between theory and the simulation
results for both the TDGL equation and the KIM provides
strong evidence that there is indeed an intimate connection
between percolation crossing probabilities and two-
dimensional coarsening.

A second natural set of interesting cases are diagonal
stripes with tilt angle �45	 on an L� nL rectangle with
periodic boundary conditions. Following the same calcula-
tional steps as those given previously for the square system,

the series representation for the corresponding probability
�n is given by

�n ¼
ffiffiffiffiffiffi
8

3n

s
�7n½1þ 2�12n þ 2�24n þ � � ��; (6)

where again � � e��=6. From this expression, we numeri-
cally obtain the values shown in Table II (to 4-digit accu-
racy). Our simulation data for�n for n ¼ 2 and n ¼ 3 are
consistent with the predictions of Table II. For n � 4, �n

is so small that is not practical to accurately measure it by
simulations.
An intriguing feature of arbitrary (a, b) stripe states for

the discrete Ising model is the intricate nature of the stair-
case interface between stripes when a and b are both large.
The boundaries between the stripe states discussed thus
far are either perfect straight lines (vertical and horizontal
stripes) or a regular staircase that is inclined at 45	 [see
Fig. 2(a)]. Stability with respect to single spin-flip dynam-
ics imposes severe restrictions on the form of these stair-
cases. For example, a stripe with winding numbers (1,1)
could hypothetically arise from a regular staircase that
consists of alternating vertical and horizontal steps of
length 2. However, such a staircase is unstable because
the energy is decreased by flipping the corner spins. This
length constraint holds generally: adjacent vertical and
horizontal segments in any stable staircase cannot both
be longer than 1. Thus the only stable interface for (1,1)
stripes is the regular staircase that we define as 11. This
staircase consists of the periodic sequence of building
blocks 1 � ½1; 1�, in which [1,1] denotes a unit-length
horizontal segment followed by a unit-length vertical
segment.
Continuing this line of reasoning, the only stable stair-

case in the (1, n) direction is n1, where n ¼ ½1; n�.
Similarly, ð12Þ1 is the stable staircase in the (2,3) direction,
ð112Þ1 is the stable staircase in the (3,4) direction, ð122Þ1
is the stable staircase in the (3,5) direction, etc. The num-
ber of staircases going in the same direction is infinite. For
instance, the ð1122Þ1 staircase goes in the (2,3) direction,
yet it is unstable. This instability indicates that there is
another general rule to build allowed staircase interfaces
[28]: only minimal representations are stable. Analysis of
stable staircases reveals an intriguing connection with the
Farey sequences and the Stern-Brocot tree [29]. To illus-
trate it, we recall that for two neighbors in some Farey
sequence, e.g., for 1

2 and
1
3 , their sum is defined via the rule

1
2 
 1

3 ¼ 1þ1
2þ3 ¼ 2

5 , and this is taken as an indication that

ð23Þ1 is the stable staircase in the (2,5) direction.

TABLE I. The probabilities Pn for (n, 1) stripes on a square
lattice for small n.

n 0 1 2 3 4

Pn 0.3388 0.04196 1:567� 10�4 4:438� 10�9 1:906� 10�15

TABLE II. �n for diagonal stripes on a L� nL rectangle.

n 1 2 3 4

�n 0.04196 7:567� 10�4 1:582� 10�5 3:506� 10�7
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FIG. 3 (color online). (a) The stripe probabilities P0, P1, and
P2 versus 1

L for the KIM with nearest-neighbor (circle) and

second-neighbor interactions (diamond), and for the TDGL
equation (upward triangle). Arrows indicate exact values from
Table I. For the KIM, data are based on 3:2� 106 realizations for
L � 128 and 3:2� 105 realizations for L ¼ 256. For the TDGL
equation, data are based on 106 realizations for L � 128 and
5� 105 realizations for L ¼ 256.
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The existence of an infinite variety of spanning paths in
the KIM with infinite-range interactions also has intriguing
implications for the model with short-range interactions.
Consider first the classic case of nearest-neighbor interac-
tions. A useful diagnostic to detect metastable stripes with
winding numbers a, b � 1 is to monitor the survival
probability SðtÞ, defined as the probability that there still
exist flippable spins in the system at time t (the term
flippable means that when such a spin is flipped, the energy
of the system either decreases or remains constant). If
there is a single coarsening time � that scales as L2, then
one naturally expects that SðtÞ should asymptotically

decay as e�t=�.
The actual behavior is markedly different (Fig. 4), with

the evolution of SðtÞ governed by two time scales [4].

The expected behavior, where SðtÞ � e�t=�, holds until
SðtÞ � 0:05. At this point, the remaining configurations
predominantly have a (1, 1) stripe topology (top line of
Fig. 1). As indicated in Fig. 2(a) many of the spins along
the interface that separates two diagonal stripes are in zero-
energy environments and can flip with no energy cost. The
fluctuations of these freely flippable spins lead to bulk
diffusive motion for the interface. When two such diffusing
interfaces meet, energy-lowering spin flips occur that ulti-
mately lead the system to the ground state. The decay of
SðtÞ in this asymptotic regime is again exponential in time,
but now with characteristic decay time that scales as L3 [4].

For the KIM with (weaker) second-neighbor ferromag-
netic interactions, the vertical and horizontal stripe states,
as well as the 11 staircase, are all stable at zero tempera-
ture in a square system. Thus at long times, any remaining
metastable states are stripes with still higher winding
numbers. This feature is reflected in the time dependence
of SðtÞ. The decay of SðtÞ in the second-neighbor KIM
is qualitatively similar to that of the nearest-neighbor
model, but the break in the decay now occurs when
SðtÞ � 10�4 (Fig. 4). The long-lived states that remain
beyond this break are predominantly those with winding
numbers (2, 1) and (1, 2) that ultimately relax to the ground

state by interface diffusion. Such stripe states occur with
probability 1:567� 10�4 (Table I), consistent with the
location in the break in the time dependence SðtÞ. While
these types of tilted stripe states are ephemeral when the
interaction range is finite (albeit with a lifetime that grows
as L3), they become permanent when the interaction range
becomes long-ranged.
To summarize, we have presented evidence for a close

connection between zero-temperature coarsening of two-
dimensional ferromagnets with arbitrary-range but decay-
ing interactions and critical percolation. This connection
appears to transcend specific models, as our findings apply
equally well to the time-dependent Ginzburg-Landau
equation and to discrete kinetic Ising models. The proba-
bilities for either system to evolve to a state that contains
stripe paths with specified winding numbers apparently
coincides with the exactly-known spanning probabilities
in two-dimensional critical percolation. This equivalence
suggests that the domain geometry of the kinetic ferromag-
nets coincides with that of continuum percolation at the
critical point.
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