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Abstract

We study an opinion dynamics model in which agents reach compromise via pairwise interactions. When the opinions
of two agents are sufficiently close, they both acquire the average of their initial opinions; otherwise, they do not interact.
Generically, the system reaches a steady state with a finite number of isolated, non-interacting opinion clusters (“parties”).
As the initial opinion range increases, the number of such parties undergoes a periodic sequence of bifurcations. Both major
and minor parties emerge, and these are organized in alternating pattern. This behavior is illuminated by considering discrete
opinion states.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In a society, people typically have a wide range of opinions. However, individual opinions on a particular issue
are not static, but rather evolve due to the influences of acquaintances or other external factors. In principle, opinions
could evolve ad infinitum, consensus could emerge, or a population could reach a state that consists of a finite set
of distinct opinion clusters, or “parties”.

It is natural to discuss this process within the framework of interacting particle systems[1,2]. A classic example
is the voter model where agents, who possess two possible opinions, adopt the state of a randomly selected neighbor
[2–4]. Individual opinions evolve until consensus is eventually reached, and the probability that a given opinion
ultimately wins is equal to the initial fraction of agents with that opinion[4]. Several other Ising-type opinion
models, incorporating more realistic features, have been proposed recently[5–10].

In this paper, we study the compromise model, a simple model for the evolution of opinions in a heterogeneous
population[11,12]. To account for the diversity of the population, the opinion is either a real-valued variable or a
discrete variable with many states (a few other models with continuous opinion states were studied previously, see
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e.g.[13]) [14,15]. To mimic the natural human tendency for reaching a fair compromise, in an interaction between
two agents, both acquire the average of their initial opinions. Last, to incorporate self confidence or conviction in
one’s own opinion, interactions between agents whose opinion difference is larger than some threshold are forbidden.

Monte Carlo simulations of the compromise model have shown that either consensus or diversity can arise,
depending on system parameters[11,12]. Here, we investigate the compromise model using numerical integration
of the governing rate equations for continuum opinions and analytical solutions for discrete opinions. Numerical
integration is more efficient than direct numerical simulation and provides better resolution of the time-dependent
and steady state behaviors.

We find that the compromise model exhibits a rich behavior. In the long-time limit, the system condenses into a
finite set of equally spaced opinion clusters (parties), with the population in adjacent clusters alternating between
two values that differ by four orders of magnitude. As the initial range of opinions grows, the number of parties
increases via a periodic sequence of bifurcations. The corresponding period governs the basic features of the
emergent structure, namely, the size of the major clusters, and their separation. Near bifurcation points, the size of
minor clusters vanishes algebraically, and we provide a heuristic explanation for this behavior.

Underlying the compromise model is a stochastic averaging process. Closely related averaging processes naturally
arise in diverse systems, including one-dimensional inelastic collisions[16,17], dynamics of headways in traffic
flows [18,19], mass transport[20], force fluctuations in bead packs[21], wealth exchange processes[22,23], and
the Hammersley process[24,25]. While our findings are discussed in the framework of opinion dynamics, they may
very well be relevant in these different contexts.

In Section 2, we describe the numerical integration of the rate equations for the opinion probability density and
the resulting bifurcations. InSection 3, we examine systems with a finite numberN of discrete and equally spaced
opinions. WhenN is relatively small, these systems can be treated analytically, thereby illuminating the behavior
in the continuum case. Generally, consensus is reached for small enoughN, while a state with several distinct
non-interacting clusters is reached for largeN. We conclude inSection 4.

2. The continuum version

In the continuum version of the compromise model, each agent is initially assigned an opinionx from some
specified distribution. Randomly selected pairs of agents undergo sequential interactions. Such interactions are
restricted to agents whose opinion difference lies below a threshold that is set to unity without loss of generality.
When agents with opinionsx1 andx2 interact, both acquire the average opinion:

(x1, x2) → (1
2(x1 + x2),

1
2(x1 + x2)), |x2 − x1| < 1, (1)

while if |x2 − x1| > 1, no interaction occurs. This model is essentially identical to that of Refs.[11,12].
Let us denote byP(x, t)dx the fraction of agents that have opinions in the range [x, x + dx] at time t. The

distributionP(x, t) evolves according to the rate equation:

∂

∂t
P(x, t) =

∫ ∫
|x1−x2|<1

dx1 dx2P(x1, t)P(x2, t)

[
δ

(
x− x1 + x2

2

)
− δ(x− x1)

]
. (2)

The quadratic integrand reflects the binary nature of the interaction and the gain and loss terms reflect the process(1).
This basic dynamical rule conserves the total mass and the mean opinion. That is,M0 andM1, the first two moments
of the opinion distribution are conserved, whereMk(t) ≡

∫
dx xkP(x, t) is thekth moment of the distribution. We

restrict our attention to flat initial distributionsP0(x) ≡ P(x,0) = 1 for x ∈ [−∆,∆]. Our goal is to determine the
nature of the final stateP∞(x) ≡ P(x,∞).
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Fig. 1. Evolution of the opinion distribution for∆ = 4.3, where four major clusters ultimately arise (seeFig. 2). Shown isP(x, t) versusx for
timest = 0.5 (bottom), 3, 6, and 9 (top).

When all agents interact, namely, when∆ < 1/2, the rate equations are integrable[16,17]. In particular, the
second moment obeyṡM2 +M0M2/2 = M2

1, where the overdot denotes time derivative. UsingM1 = 0, we find
that the second moment vanishes exponentially in time:

M2(t) = M2(0)e−M0t/2 (3)

with M0 = 2∆. Thus all agents approach the center opinion and the system eventually reaches the consensus:

P∞(x) = M0δ(x). (4)

The distributionP(x, t) approaches the localized state(4) in a self-similar fashion,P(x, t) � (2M0/πw)(1+ z2)−2

with variancew = M
1/2
2 /M0 and scaling variablez = x/w [17].

For larger values of∆, the opinion distribution does not condense into a single cluster, but rather the distribution
evolves into “patches” that are separated by a distance larger than 1. This behavior results from an instability that
propagates from the boundary toward the center (Fig. 1). Once each patch is isolated, it then separately evolves
into a delta function as in the∆ < 1/2 case. The final distribution consists of a series of non-interacting clusters at
locationsxi with massesmi:

P∞(x) =
p∑
i=1

miδ(x− xi) (5)

with
∑
mi = M0 = 2∆ and

∑
mixi = M1 = 0 to satisfy the conservation laws.

Our goal is to understand basic characteristics of the final state. How many clusters arise? Where are they located
(in opinion space)? What are their masses? As we shall see, the answers to these questions depend in a surprisingly
complex manner on the single control parameter, the initial opinion range∆.

2.1. Cluster locations

To determine how the final state depends on∆, we numerically integrated the rateequation (2)by discretizingx
into 400∆ equally spaced states. The range 0< ∆ < 10 was investigated using a fine mesh (0.0025 increments).
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Fig. 2. Location of final state clusters versus the initial opinion range∆. The three types of clusters, defined in the text, are noted. The vertical
arrows indicate the location of the first three bifurcations.

The rate equations were integrated using a fourth order Adams–Bashforth method[26] up to a sufficiently long
time that the probability distribution separated into non-interacting patches. Then, the two conservation laws were
invoked to determine the ultimate mass and location of each patch. The accuracy was 10−9 in P(x, t).

The cluster locations exhibit a striking regularity, as seen in plottingxi versus∆ (Fig. 2). There are three types
of clusters: major clusters (massM > 1), minor clusters (massm < 10−2), and a central cluster located exactly at
x = 0. The number of clusters grows via a series of bifurcations. When∆ < 1/2, the final state is a single peak
located at the origin, and this situation persists as long as∆ < 1. When∆ exceeds 1, two new clusters are born at
the extreme edges,x ≈ ±∆. As∆ increases, further bifurcations of three basic types occur:

1. Nucleation of a symmetric pair of clusters:∅ → {−x, x} with x = 1.
2. Annihilation of a central cluster and simultaneous nucleation of a symmetric pair of clusters:{0} → {−x, x}

with x ≈ 0.75.
3. Nucleation of a central cluster:∅ → {0}.

The bifurcations always occur in a periodic order: 1,2,3,1,2,3, . . . . Numerically, the first four generations of
bifurcations are located at

(∆1,∆2,∆3) =




(1.000,1.871,2.248),

(3.289,4.079,4.455),

(5.496,6.259,6.638),

(7.676,8.431,8.810).

Successive bifurcation points of the same type are all separated by the same distance:∆i(n+ 1)−∆i(n) → const.
Also, the distance between different types of bifurcations within the same generation eventually becomes constant.
Thus the bifurcation diagram, with all its intricate features, repeats in a periodic manner:

x(∆) = x(∆+ L) (6)

with periodL ≈ 2.155. The period was estimated by extrapolating the differences in the locations of the first
few transitions to∞. The period characterizes universality in the bifurcation diagram, resembling the Feigenbaum
number in the logistic map[27].



194 E. Ben-Naim et al. / Physica D 183 (2003) 190–204

Fig. 3. The masses of the final clusters versus their location for the cases of∆ ≈ 7.8 and∆+L ≈ 10. The clusters in the two systems coincide,
except that the larger system has four more clusters. The scale of the inter-cluster separations and the masses of the major clusters are indicated.

In type-1(2) bifurcations, branches of minor (major) clusters nucleate near the origin, and these persist for all
larger∆. As each branch evolves, notice that it exhibits a large curvature change or a kink due to the effect of a
subsequent bifurcation. For|x| � 2, the branch growth is practically linear with a slope commensurate with the
opinion range:|dx/d∆| → 1.

The periodic behavior further implies that the separation between clusters becomes constant. Moreover, when a
system of size∆ is compared with a system of size∆ + L, cluster locations in the smaller system coincide with
the larger one, as shown inFig. 3. The larger system, however, contains two additional pairs of major and minor
clusters. Thus, the periodL governs the overall number of clusters and the separation between them. For∆ � 1
there are 4∆/L clusters, with neighboring clusters separated (approximately) by distanceL/2.

2.2. Cluster masses

An even richer picture emerges when the cluster masses are considered. First, the cluster masses vary periodically
in the initial opinion range, that is,m(∆) = m(∆ + L), as seen inFig. 4. Second, clusters are organized in an

Fig. 4. Cluster mass versus opinion range. The central clusters (periodic variation) and the major cluster are shown on a linear scale (top), while
minor and central clusters are shown on a logarithmic scale (bottom).
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alternating major–minor pattern (seeFigs. 2 and 3). For large∆, each cluster mass approaches a constant value. The
major clusters, which contain nearly the entire mass in the system, saturate at a value equal to the period,M → L.
The masses of the minor clusters approach a much smaller level:m → 3 × 10−4 (seeFig. 4). This minute mass
implies that a sufficiently large population is needed for minor clusters to exist.

The central cluster is special. Its mass never becomes constant but instead varies in a periodic manner with∆

(Fig. 4). A central cluster nucleates with an infinitesimal mass at a type-3 bifurcation, grows slowly for a while, then
it undergoes an explosive growth until its mass becomes of order unity. Finally, its mass grows linearly with∆. At
some threshold, the central cluster splits into two major clusters via a type-2 bifurcation (Fig. 4). This birth-and-death
pattern repeats ad infinitum.

The minor clusters exhibit two subtle features. First, the mass of the most extreme cluster saturates to a massm′

that is approximately one order of magnitude greater than all other minor clusters. Second, the mass of the minor
clusters varies non-monotonically with∆ and there is a small range of∆, where the mass of a newly born minor
cluster suddenly drops (Fig. 4) before the mass saturates to a constant value. We are unable to resolve whether there
is a finite gap or just a singular point where the mass vanishes.

At type-1 and type-3 bifurcations, new clusters form, and the mass of these nascent clusters vanishes algebraically
according to

m ∼ (∆−∆n)
αn (7)

as∆ → ∆n. The exponent depends only on the typen of the bifurcation point; numerically we findα1 ≈ 3 and
α3 ≈ 4 (Fig. 5). We now give a heuristic explanation for this behavior.

To understand the behavior near a type-1 bifurcation, consider the very first one at∆1 = 1. Let∆ = 1+ ε with
ε → 0. It is convenient to divide the total opinion range(−∆,∆) into a central subinterval(−1,1) and two boundary
subintervals:(1,1+ ε) and(−1− ε,−1). Letm(t) be the mass in a boundary subinterval. Initially,m(0) = ε. Such
mass is lost due to interaction with one half of the central subinterval. As a result,ṁ = −m, which gives

m(t) = εe−t . (8)

On the other hand, the mass of the central subinterval gets concentrated in a region near the origin whose spreadw(t)

decreases with time. At some momenttf the separation between masses in the central and boundary subintervals

Fig. 5. Critical behavior for the masses of the minor clusters at type-1 (top) and type-3 (bottom) bifurcations. The straight lines have slopes 3
and 4.
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exceeds unity. We anticipate that the mass in the boundary subinterval converges to its centerx = 1 + ε/2, and
hence, this critical separation occurs whenw(tf ) ∼ ε/2. Fort � tf , the interaction between the two subintervals
stops and the mass of the emerging minor cluster freezes atmf ∼ εe−tf .

The spreadw(t) can be estimated by noting that to zeroth order inε: (i) the central subinterval is not affected
by the boundary subintervals, and (ii) eventually, almost all agents are within the interaction range. Therefore, the
asymptotic behavior is the same as in the case∆ < 1/2, and the spread follows directly from the second moment
(3), w(t) ∼ M

1/2
2 ∼ e−t/2 since∆ = 1+ ε ∼= 1. Using the stopping criteria,w(tf ) ∼ e−tf /2 ∼ ε, the final minor

cluster mass ismf ∼ εe−tf ∼ ε3, leading toα1 = 3.
Consider now a type-3 bifurcation that occurs at some∆3. We write∆ = ∆3+ε and adapt our previous argument.

Let m(t) be the mass of the newly formed central cluster, and letM be the final mass of the two major clusters
surrounding it. We havėm = −mM, since the central cluster interacts with half of the massM on either sides.
Therefore:

m(t) ∼ e−Mt. (9)

In contrast toEq. (8)where the amplitude was of orderε, the amplitude inEq. (9) is of order unity. This arises
because the range of opinions that contributes to the ultimate central cluster is of the order of the interaction range.
Now the argument proceeds as before. The width of the large cluster varies as e−Mt/4. The condition for the central
cluster and its neighbors to decouple is e−Mtf /4 ∼ ε. At this point, we havemf ∼ e−Mtf ∼ ε4, resulting in the
exponentα3 = 4.

The heuristic argument we have presented is consistent with the extremely small mass of the minor clusters.
For large∆, the system is governed by the parameterε̃ ≡ (1/2)L − 1 ≈ 0.08, the excess between the adjacent
cluster separation and the interaction range. This parameter essentially plays the role ofε, the small distance from
a bifurcation point. The two extreme minor clusters evolve according to the mechanism that led to theε3 behavior
near a type-1 bifurcation. Thus, their mass can be estimatedm′ ∼ ε̃3 ≈ 5×10−4. On the other hand, minor clusters
in the bulk evolve according to the mechanism that led to theε4 behavior near a type-3 bifurcation. Accordingly,
their mass is estimated bym ∼ ε̃4 ≈ 4× 10−5, again a reasonable value.

3. The discrete version

Often, one faces a choice among a finite set of options, so it is natural to consider a discrete version of the
compromise model. While interesting on its own, the discrete model also enables us to illuminate many qualitative
aspects of the behavior in the continuum case. Discrete systems are governed by a finite set of nonlinear rate equations,
so explicit solutions are generally impossible. Nevertheless, we can gain considerable insight by investigating small
systems, using stability analysis and related tools from theory of ordinary differential equations[28].

In the discrete version, each agent can take on an opinion from a set ofN equally spaced values. To impose an
interaction threshold and also to ensure that the outcome of an interaction remains within the state space, two agents
interact as follows: (a) if the opinion difference is greater than 2, there is no interaction; (b) if the difference equals
2, the agents reach a fair compromise and each takes on the average opinion value; (c) if the opinion difference
equals 1, nothing happens.

We label the opinion states asi = 1,2, . . . , N, so schematically, in a compromise event(i− 1, i+ 1) → (i, i).
Denote byPi(t) the fraction of the population that has opinion statei at timet. For generalN the fractionsPi(t)
obey the rate equations:

Ṗi = 2Pi−1Pi+1 − Pi(Pi−2 + Pi+2). (10)
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This equation formally applies fori at least two spacings away from the boundaries (at 1 andN). SettingP−1 =
P0 = PN+1 = PN+2 ≡ 0 in Eq. (10), yields the governing equations near the boundaries:Ṗ1 = −P1P3, Ṗ2 =
2P1P3 − P2P4, ṖN = −PNPN−2, andṖN−1 = 2PNPN−2 − PN−1PN−3. Again, the fractionsPi(t) satisfy two
conservation laws:

N∑
i=1

Pi = 1,
N∑
i=1

iPi = A (11)

with 1 ≤ A ≤ N. The former (latter) reflects conservation of the total population (opinion). As a result, there are
N − 2 independent variables for anN-state system.

3.1. Typical behavior

Eq. (10)are nonlinear and therefore forN ≥ 4 they cannot be solved to obtain explicit formulae forPi(t).
However, the qualitative behavior can be still understood. For example,Eq. (10)admits only the simplest type of
attractors—fixed points—while limit cycles are impossible. We illustrate this by analyzing small values ofN to
highlight the new qualitative features that arise asN increases.

3.1.1. Isolated fixed points
ForN = 3, there is a single fixed point located at

(2− A,A− 1,0), when 1≤ A ≤ 2, (0,3− A,A− 2), when 2≤ A ≤ 3.

This point isstable. Asymptotically, it is approached exponentially fast in time; e.g. for 1< A < 2 one finds
P3 ∝ e−(2−A)t . An exception arises for the symmetric initial condition (A = 2) when the final central state(0,1,0)
is approached algebraically in time:P1 = P3 → t−1.

ForN = 4, there is also a single stable fixed point located at

(2− A,A− 1,0,0), when 1≤ A ≤ 2, (0,3− A,A− 2,0), when 2≤ A ≤ 3,

(0,0,4− A,A− 3), when 3≤ A ≤ 4.

Additionally, there is a fixed point((4 − A)/3,0,0, (A − 1)/3) that is always unstable. The stable fixed point is
approached exponentially in time.

3.1.2. Lines of fixed points
ForN = 5, some fixed points are no longer isolated but instead they formlines. Indeed,Eq. (10)admit fixed

points of the generic forms(P∗
1 , P

∗
2 ,0,0, P

∗
5 ) and(P∗

1 ,0,0, P
∗
4 , P

∗
5 ) that are stable when, respectively,P∗

1 > 3P∗
5

or P∗
5 > 3P∗

1 . Recalling the conservation laws(11), we can write these fixed points in the form:

(2− A+ 3P∗
5 , A− 1− 4P∗

5 ,0,0, P
∗
5 ), (P∗

1 ,0,0,5− A− 4P∗
1 , A− 4+ 3P∗

1 ) (12)

and obviously the fixed points form lines. The fixed points(12)from the first line are stable when 1+4P∗
5 < A < 2,

the fixed points(12) from the second line are stable when 4< A < 5− 4P∗
1 . There is also a stable isolated fixed

point located at

(0,3− A,A− 2,0,0), when 2< A ≤ 3, (0,0,4− A,A− 3,0), when 3≤ A < 4. (13)

For 2< A < 4, every initial condition is in the basin of attraction of the isolated fixed point(13). Therefore, we know
the fate of the system without explicitly solving the rate equations. This statement tacitly assumes that a trajectory
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does not approach a limit cycle or other complicated attractor; this will be justified later. In the complementary range
A ∈ (1,2) ∪ (3,4) the trajectories approach one of the stable fixed points in(12). For example, if 1< A < 2, the
final state is(2−A+3P∗

5 , A−1−4P∗
5 ,0,0, P

∗
5 ) for someP∗

5 ∈ (0, (A−1)/4). To determine which fixed point is
actually reached depends not only on the initial average opinionA =∑

iPi(0) but also on other details of the initial
condition and requires a complete solution. Qualitatively, for an initial state that is central in character (2< A < 4),
the final occupation fractions are concentrated in a single central cluster consisting of two adjacent sites. Conversely,
for an initial state that is biased toward one extreme, the final state consists of two extremal clusters.

The above elementary examples demonstrate a simple principle. The rate equations have multiple stable fixed
points. Each stable fixed point is a basin of attraction for some region in the space of initial conditions. The dynamics
determine which stable fixed point is eventually approached. In the continuous version, a similar situation occurs
where there are enormously many steady states of the form(5). Moreover, we see how depending on the initial
conditions, the system can reach a single central cluster or two off-center clusters.

In the remainder of this subsection, we consider symmetric situations,Pi = PN+1−i. For anN-state system,
we can choose 1,2, . . . , �N/2� independent states, where�N/2� is the smallest integer that is larger than or equal
to N/2. Conservation of population diminishes the number of independent variables by one, while the second
conservation law is redundant asA = (N + 1)/2 always.

3.1.3. Explicitly solvable case
ForN = 6, the rateequation (10)are exactly solvable and the solution neatly illustrates the features described

in the previous subsection. Using symmetry and normalization, we can treat the system in the two-dimensional
triangular domain defined by (Fig. 6):

T = {(P1, P2)|P1 ≥ 0, P2 ≥ 0, P1 + P2 ≤ 1}. (14)

There are two kinds of fixed points: an isolated fixed point(0,0)and a line of fixed points(P∗
1 , P

∗
2 )withP∗

1+P∗
2 = 1.

Linearizing near the isolated fixed point we find thatP = (P1, P2)
T satisfies

dP
dt

=MP with M =
(−1 0

2 −1

)
(15)

from which the origin is a degenerate stable node. Linearizing near a fixed point(P∗
1 , P

∗
2 ), we find that it is stable

iff P∗
1 > P∗

2 and unstable iffP∗
1 < P∗

2 . Thus the isolated fixed point has a finite-area basin of attraction, while every
point (P∗

1 , P
∗
2 ) with P∗

1 > P∗
2 has a basin of attraction that is a one-dimensional manifold (Fig. 6). In principle, a

two-dimensional system could have closed orbits. However, every closed orbit in a two-dimensional system must

Fig. 6. Schematic(P1, P2) phase plane for the symmetric 6-opinion system. Shown are the isolated fixed point (dot), the line of fixed points
(heavy line—dashed for unstable and solid for stable), and the separatrix (dotted) that demarcates the basins of attractions of these two sets.
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enclose fixed points[28]. Here, all fixed points lie on the boundary of the phase planeT, so closed orbits that encircle
a fixed point are impossible, thereby ruling out cycles.

The solution toEq. (10)for N = 6 with symmetric initial conditions is given inAppendix A. This solution gives
the following behavior in the phase spaceT (seeFig. 5). There is a separatrix(A.6) that joins(P1, P2) = (1/2,1/2)
with (

√
e/4,0). The part of the phase plane to the left of the separatrix is the basin of attraction of the isolated

fixed point, while the complementary region is the basin of attraction of the line of fixed points(P∗
1 , P

∗
2 ) with

P∗
1 > 1/2 > P∗

2 . These fixed points are approached exponentially in time. Finally, the separatrix itself is the basin
of attraction of the fixed point(1/2,1/2). In this borderline case the relaxation is algebraic rather than exponential:

P1 − 1
2 → t−1, P2 − 1

2 → −t−1, P3 → 2t−2. (16)

Both consensus and polarization are possible outcomes—which actually occurs depends on the initial condition.

3.1.4. LargeN
ForN ≥ 7, the systems are�N/2�−1 ≥ 3-dimensional, and already the trajectories of three-dimensional systems

may exhibit a vast range of behaviors including chaos[28,29]. In the present case, however, we find that there are
simply more and more fixed points, and they appear as isolated fixed points, lines, surfaces, and higher-dimensional
submanifolds.

ForN = 7, the system is three-dimensional, and the phase space is the simplex:

S = {(P1, P2, P3)|Pj ≥ 0, P1 + P2 + P3 ≤ 1}. (17)

For simplicity, we denote states by(P1, P2, P3, P4). The system admits the following fixed points:

1. A line of fixed points(P∗
1 , P

∗
2 ,0,0) corresponding to a polarized society.

2. A line of fixed points(P∗
1 ,0,0, P

∗
4 ) corresponding to a society with both centrists and extremists.

The second case includes the central consensus state(0,0,0,1) as a special case.
Linearizing around the fixed point(P∗

1 , P
∗
2 ,0,0) we find thatP = (P3, P4)

T satisfies

dP
dt

=MP, M =
(
−P∗

1 2P∗
2

0 −2P∗
2

)
, (18)

implying that(P∗
1 , P

∗
2 ,0,0) is a stable node (we tacitly assume thatP∗

1 , P
∗
2 > 0; whenP∗

1 = 2P∗
2 this node is

degenerate). Linearizing around the fixed point(P∗
1 ,0,0, P

∗
4 ) we find thatP = (P2, P3)

T satisfies

dP
dt

=MP, M =
(
−P∗

4 2P∗
1

2P∗
4 −P∗

1

)
, (19)

implying that(P∗
1 ,0,0, P

∗
4 ) is a saddle point. Therefore, the fixed points(P∗

1 ,0,0, P
∗
4 ) are unstable (again it is

assumed thatP∗
1 , P

∗
4 > 0). The two extreme fixed points(1/2,0,0,0) and(0,0,0,1) areneutrallystable in the

linear approximation. Therefore, one must go beyond the linear approximation to probe the stability of consensus.
Numerically, one typically finds that the system reaches consensus (e.g., starting from the uniform initial condition).
Therefore, consensus appears to be stable.

For largerN, we determined the final state numerically. To compare with the continuum case, we start with the
uniform initial condition. Generally, the final state consists of non-interacting clusters. Each cluster consists of a
pair of occupied sites and clusters are separated by at least two empty sites. We assign each cluster a massm equal
to the combined occupation of the two sites, and a positionx determined from a weighted average.

As a function ofN, the number of clusters grows via a series of transitions, rather than bifurcations (Fig. 7). The
main difference with the continuum case is that while minor clusters occasionally appear, they do not persist in the
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Fig. 7. The location of the final clusters in the discrete model as a function ofN, withN odd.

form of minor branches. Otherwise, there are many similarities. Transitions involving major and central clusters
are observed; in particular, there are type-2 ({0} → {−x, x}) and type-3 (∅ → {0}) transitions. These transitions
are arranged in a periodic structure 2, 3, 2, 3, and the transition diagram is approximately invariant under the
transformationN → N+N0 withN0 ∼= 12. Branches of major clusters carry almost equal masses, and remarkably,
despite the discreteness, these branches grow linearly withN.

3.2. General features

3.2.1. Volume contraction
The system of rate equations is dissipative, that is, volumes in phase space contract under the flow. Generally for

a system of differential equationṡPj = Fj, a volumeV(t) changes according to

dV

dt
=
∫
S

F · n dS =
∫
V

∇ · F dV, (20)

wheren is the outward normal on the bounding surfaceS(t) that enclosesV(t) and∇ · F =∑
j(∂Fj/∂Pj). For the

infinite discrete system(∂Fj/∂Pj) = −Pj−2 − Pj+2 and thus the contraction rate is twice the (conserved) total
population:−∑j(∂Fj/∂Pj) = 2

∑
k Pk. Hence volumes in phase space shrink exponentially in time. If we set the

total population equal to 1, we getV(t) = V(0)e−2t .
For finite systems, the contraction rate is generally not a constant but nevertheless volume still shrinks exponen-

tially in time according to the bounds:

V(0)e−2t ≤ V(t) ≤ V(0)e−t . (21)

For example, forN = 4 the contraction rate is
∑

k Pk = 1; therefore,V(t) = V(0)e−t . ForN = 5, the contraction
rate is 1+ P3; for N = 6, the contraction rate is 1+ P3 + P4, etc. This is consistent with the system evolving
toward fixed points. Nevertheless, cycles and strange attractors are possible in volume contracting systems, with
the celebrated Lorenz system being a prime example[29].

3.2.2. Lyapunov functions
We now demonstrate that our system has only fixed points (many of which are actually fixed submanifolds

in phase space) by constructing aLyapunov functionL ≡ L[P(t)], viz. a smooth function that decreases along
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trajectories. The existence of a Lyapunov function rules out cycles. Indeed, suppose that there is a periodic solution
with periodT , then the integral

∫ T
0 dt(dL/dt) over the period would be negative because the Lyapunov function is

decreasing. On the other hand, the integral must be equal to zero since the trajectory returns to the starting point.
This contradiction means that no periodic solutions can exist.

Consider, e.g., symmetric situations. ForN = 7:

L = P4 + 2P3 + 4P2 + 8P1 (22)

is a Lyapunov function; indeed, it satisfies

dL

dt
= −2P1P3 − 2P2P4, (23)

so the derivative is strictly negative inside the simplexS (it vanishes only on the two lines of fixed points on the
boundary ofS).

Generally, we can construct Lyapunov functions for allN. For instance, whenN is odd we writeN = 2M − 1
and verify that

L =
M∑
j=1

2M−jPj (24)

is a Lyapunov function as it satisfies

dL

dt
= −2PM−2PM −

M−3∑
j=1

2M−2−jPjPj+2. (25)

3.2.3. Negative diffusion instability
In the absence of boundaries, any uniform state is a trivial solution of the nonlinear set of the ordinary differential

equation (10). To check the stability of the uniform state,Pi = const., we treati ≡ x as a continuum variable.
Writing P(x, t) = 1+ φ(x, t) with φ(x, t) � 1, this perturbation evolves according to

φt + (φ + 7
6φxx + 1

2φ
2)xx = 0, (26)

where the subscripts denote partial differentiations (a Cahn–Hilliard equation with the energy functionΨ(φ) =
−(1/2)φ2 − (1/6)φ3 [30]). To lowest order, this is the diffusion equation with a negative diffusion coefficient.
Hence, the uniform state is unstable to the perturbationφ(x, t) = exp(ikx+ λt) whenk <

√
6/7. Therefore, minute

details of the initial conditions are magnified, ultimately resulting in isolated clusters. However, the nonlinear terms
in Eq. (26)eventually counter the instability. The continuum evolution equation captures the nonlinear evolution of
the original discrete system qualitatively but not quantitatively.

4. Discussion

The interplay between compromise and conviction leads to intriguing opinion dynamics. The system ultimately
reaches a static state that consists of a finite number of non-interacting opinion clusters, and the number of these
clusters increases via an infinite sequence of self-similar bifurcations as the opinion range increases. In the bulk of
the system, clusters are organized in a periodic lattice of alternating minor and major clusters. A central cluster may
or may not exist, and its size exhibits a complex periodic behavior.
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As a model of mathematical sociology, the compromise model is appealing in its simplicity, yet its behavior is
familiar in everyday experience. A political system may or may not contain a centrist party. Alternatively, it may
consist of two (or more) off-center parties. Furthermore, the existence of marginal parties halfway between two
major ones is also reasonable. Artificial features of the model, such as the identical separation between parties,
can be easily circumvented by introducing heterogeneities. For example, since different agents may have different
levels of conviction, it may be natural to have interaction thresholds that are specific to each individual.

As a dynamical system, the compromise model exhibits the simplest types of attractors, namely, fixed points that
are either sinks or saddles. In the discrete case, we constructed Lyapunov functions and also established that limit
cycles and strange attractors are impossible. This conclusion extends to the continuum case. The second moment
decreases monotonically with time and hence, it is a Lyapunov functional. Generally, each stable fixed point is the
basin of attraction of some region in the space of initial conditions. In other words, the rate equations map an initial
state into a final state. Given the large number of these states, it is not obvious how to characterize such a map. One
practical approach is to obtain statistical properties of the final state by averaging over all possible initial conditions.
In the discrete case, we find that starting from a random initial state ({Pi(0)} randomly chosen in theN-dimensional
hypercube) the distribution of cluster masses and the distribution of the separations between clusters in the final
state are independent of the system size, for large enough systems.

There are important questions concerning robustness of the bifurcation diagram with respect to variations in
the dynamical rules or in the initial conditions. The appearance of equally spaced clusters is crucially dependent
on the sharp cutoff in the interaction range. Introducing a small concentration of agents who may interact with
everybody eventually results in consensus, although multiple clusters can occur on intermediate time scales. The
behavior is less sensitive to the details of the averaging procedure. When the opinion difference between two agents
is merely reduced by a fixed factor, i.e., they reach partial compromise, an almost identical bifurcation diagram is
found.

The initial distribution plays an important role in determining the nature of the final state. We examined in detail
exponential initial distributions,P0(x) = exp(−|x|/x0) for |x| < ∆, with the decay constantx0 of order unity. Major
features including the minor–major pattern and the periodic structure of the bifurcation diagram are found for such
sharp exponential distributions. However, there are important differences with the flat case. The central cluster
always exists and it is major because of the large mass concentrated initially around the origin. New branches of
minor and major clusters are nucleated at the boundariesx = ±∆ rather than at the vicinity of the origin. Moreover,
each minor branch contains a clear gap. This example suggests that there is a number of classes of bifurcation
diagrams. A challenging problem is to find classification criteria for the initial conditions.

There are numerous possible generalizations of the compromise model. One is to increase the dimension of the
opinion space. Do the final opinions form a lattice? and if yes of what type? Yet another open question is the role of
spatial dimension. In the present work, we implemented the mean-field limit where any agents equally well interact
with any other agent. However, if agents are located at lattice sites with interactions only between nearest neighbors,
spatial correlations are expected to emerge[31,32]. We anticipate that for the discrete system in whichN ≥ Nc(d),
with Nc(d) depending on the spatial dimensiond, the system will freeze into a large number of non-interacting
opinion domains. The case of continuum opinions is unexplored, but we expect both slow dynamics and coarsening
of opinion patterns as the final state is approached.
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Appendix A. Solution to the rate equations for N= 6

The symmetricN = 6 system simplifies after replacement of the time variablet by

τ =
∫ t

0
dt′P3(t

′), (A.1)

as the rate equations reduce to the linear system:

P ′
1 = −P1, P ′

2 = 2P1 − P2, P ′
3 = P2 − P1,

where′ ≡ d/dτ. Solving these equations we obtain

P1(τ) = P1(0)e−τ, P2(τ) = [2P1(0)τ + P2(0)] e−τ, P3(τ) = 1− [2P1(0) τ + P1(0)+ P2(0)] e−τ .
(A.2)

Depending on the initial conditions,P3(τ) either remains positive or it reaches zero. In the former case,P3(τ) → 1
asτ → ∞ and asymptotically the isolated fixed point is reached. To determine the approach to the fixed point in
terms of original time variable we write

t =
∫ τ

0

dτ′

P3(τ′)
(A.3)

with P3 given by(A.2). Asymptotically, we find

τ = t − c +O(t e−t), c =
∫ ∞

0
dτ

[2P1(0)τ + P1(0)+ P2(0)] e−τ

1− [2P1(0)τ + P1(0)+ P2(0)] e−τ
.

Substituting this into(A.2), we arrive at

P1(t) = Π1 e−t +O(t e−2t), P2(t) = [2Π1t +Π2] e−t +O(t2 e−2t)

with Π1 = P1(0)ec, andΠ2 = [P2(0)− 2cP1(0)] ec.
In the complementary situation,P3(τ

∗) = 0 at someτ∗ and then it becomes negative. In the limitτ → τ∗ the
physical time diverges; seeEq. (A.3). Therefore, the rangeτ ≥ τ∗ is physically forbidden so that the system reaches
a fixed point(P∗

1 , P
∗
2 ), with

P∗
1 = P1(0)e−τ

∗
, P∗

2 = [2P1(0)τ
∗ + P2(0)] e−τ

∗
.

The approach to this fixed point is exponential in time.
The borderline between these two regimes occurs whenP3(τ) > 0 for all τ  = τ∗, i.e., the curveP3(τ) touches

theτ axis horizontally. Thus we requireboth

1 = [2P1(0)τ
∗ + P1(0)+ P2(0)] e−τ

∗
(A.4)

and

2P1(0) = 2P1(0)τ
∗ + P1(0)+ P2(0). (A.5)

The second relation givesτ∗ = [P1(0)− P2(0)]/[2P1(0)]. Substituting this into(A.4) yields the separatrix

P1(0)− P2(0)

2P1(0)
= ln 2P1(0). (A.6)
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