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Abstract. We model the dynamics of social structure by a simple interacting particle system. The social
standing of an individual agent is represented by an integer-valued fitness that changes via two offsetting
processes. When two agents interact one advances: the fitter with probability p and the less fit with
probability 1 − p. The fitness of an agent may also decline with rate r. From a scaling analysis of the
underlying master equations for the fitness distribution of the population, we find four distinct social
structures as a function of the governing parameters p and r. These include: (i) a static lower-class society
where all agents have finite fitness; (ii) an upwardly-mobile middle-class society; (iii) a hierarchical society
where a finite fraction of the population belongs to a middle class and a complementary fraction to the
lower class; (iv) an egalitarian society where all agents are upwardly mobile and have nearly the same
fitness. We determine the basic features of the fitness distributions in these four phases.

PACS. 87.23.Ge Dynamics of social systems – 02.50.Ey Stochastic processes – 05.40.-a Fluctuation phe-
nomena, random processes, noise, and Brownian motion – 89.65.Ef Social organizations; anthropology

1 Introduction

The emergence of class structure in society is a ubiquitous
phenomenon in the biological and the social sciences [1–4].
Social hierarchies have been widely observed in animal
populations including insects [5], mammals [6–8], and pri-
mates [9], as well as human communities [10].

The possibility of quantitative modeling of social phe-
nomena using concepts and techniques borrowed from
the physical sciences is rapidly gaining appreciation.
Examples of such modeling include the wealth distribu-
tion [11,12], opinion dynamics [13–15], and rumor prop-
agation [16,17]. Such approaches typically draw analo-
gies between individual agents in the social system and
particles in a corresponding physical system and then
identify macroscopically observed phenomena with micro-
scopic agent-agent interactions [18–20].

In this spirit, we seek to tie the emergence of so-
cial structures to specific interactions between agents
within a general version of the recently-introduced
advancement-decline process [21], inspired by the
Bonabeau model [22,23]. In our model, the social stand-
ing of each agent is characterized by a single number, its

a e-mail: ebn@lanl.gov
b e-mail: fvazquez@buphy.bu.edu
c e-mail: redner@bu.edu

fitness. Agents increase their fitness by interacting with
other agents and also, their fitness may decline sponta-
neously. This simple model has only two parameters: the
probability that the fitter agent advances in an interaction
and the rate of decline.

We find that a rich variety of familiar social structures
emerges as a result of the competition between advance-
ment and decline. When decline dominates, the society
is static and the fitness distribution approaches a steady
state. When the decline rate is comparable to the advance-
ment rate, the society is dynamic and the characteristic
fitness of the population increases linearly with time. In
this case, there are several possibilities. When the less fit
agent benefits from social interactions, an egalitarian so-
ciety arises in which all agents advance at the same rate.
Consequently, inequalities among agents are small. On the
other hand, when the fitter agent tends to benefit in com-
petitions, agents advance at different rates and social in-
equalities increase with time. Depending on the relative
influence of advancement and decline, either the entire
population or only a fraction of it may be upwardly mo-
bile. In the latter case, the society consists of a static lower
class and an upwardly-mobile middle class.

In Section 2, we introduce the general advancement-
decline process and the governing master equations. The
overall class structure and the statistics of the mobile mid-
dle class are obtained using scaling analysis in Section 3.
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Fig. 1. The elemental processes of the advancement-decline
model. Top: the decline process. Bottom: the advancement pro-
cess, with either the fitter agent advancing (right) or the less
fit agent advancing (left).

The basic features of the egalitarian society are investi-
gated in Section 4, where the cumulative fitness distribu-
tion may be largely determined by linear traveling wave
analysis. In Section 5, the statistics of the lower class,
where the fitness distribution is steady, are determined.
We conclude in Section 6.

2 The advancement-decline model

We model a scenario in which the social status of an agent
benefits from increased social interactions, while solitude
or isolation have the opposite effect. Indeed, highly con-
nected individuals often have better access to information,
resources, and power, that are often gained as a result of
social interactions. Thus, in our model there are two com-
peting evolutionary processes that influence the fitness of
agents: (i) advancement via social interactions, and (ii) de-
cline due to the lack of interactions (Fig. 1). For simplicity,
social standing is represented by a single parameter, the
integer-valued fitness k ≥ 0.
(i) Advancement. Agents interact in pairs, and as a re-
sult of the interaction, only one advances. There are two
possibilities: either the fitter agent advances or the less fit
advances. We allow the fitter agent to advance with prob-
ability p and the less fit agent to advance with probability
1 − p. Thus, when two agents with fitness k and fitness j
interact (with k > j), the outcome is

(k, j) → (k + 1, j) with probability p,
(k, j) → (k, j + 1) with probability 1 − p.

For p = 1 the fitter agent always advances [21], while for
p = 0 the less fit agent always advances. The interaction
rules are defined so that one randomly-chosen agent ad-
vances when two equally-fit agents interact. Without loss
of generality, the interaction rate is set to 1/2. Also, we
consider the thermodynamic limit where the number of
agents is infinite.
(ii) Decline. In the decline step, the fitness of an individual
decreases according to

k → k − 1

with rate r. This process reflects a natural tendency for
fitness to decrease in the absence of social activity. We
impose the lower limit for fitness to be k = 0; once an
individual reaches zero fitness, there is no further decline.

Our goal is to understand how the fitness distribution
of a population evolves as a function of the two model
parameters, the advancement probability p and the decline
rate r. Let fk(t) be the fraction of agents with fitness k at
time t. In the mean-field limit, where any pair of agents
is equally likely to interact, the fitness distribution obeys
the master equation

dfk

dt
= r(fk+1 − fk) + p(fk−1Fk−1 − fkFk)

+ (1 − p)(fk−1Gk−1 − fkGk) +
1
2
(f2

k−1 − f2
k ). (1)

Here Fk =
∑k−1

j=0 fj and Gk =
∑∞

j=k+1 fj are the respec-
tive cumulative distributions of agents with fitness less
than k and fitness greater than k. The boundary condition
is f−1(t) = 0. The first pair of terms accounts for decline,
the second pair of terms describes interactions where the
stronger agent advances, and the third pair of terms ac-
counts for interactions where the weaker agent advances.
The last pair of terms describes interactions between two
equal agents and it reflects that when two such agents
interact, only one of them advances. The prefactor 1/2
arises because there are half as many ways to chose equal
agents as there are for different agents. We consider the
initial condition where all agents have the minimal fitness
fk(0) = δk,0.

It proves useful to rewrite the evolution equation in
a closed form that involves only the cumulative distribu-
tion. Summing the rate equations (1) and using the rela-
tions fk = Fk+1 − Fk and Gk = 1 − Fk+1, the cumulative
distribution Fk obeys

dFk

dt
= r(Fk+1 − Fk) + pFk−1(Fk−1 − Fk)

+ (1 − p)(1 − Fk)(Fk−1 − Fk) − 1
2
(Fk − Fk−1)2. (2)

The boundary conditions are F0 = 0, F∞ = 1, and the ini-
tial condition is Fk(0) = 1 for k ≥ 1. There is a one-to-one
correspondence between the four terms in equations (1)
and (2). The master equation for the cumulative distribu-
tion can be simplified by consolidating the advancement
terms

dFk

dt
= r(Fk+1 − Fk) + (1 − p)(Fk−1 − Fk)

+ (p− 1/2)
(
F 2

k−1 − F 2
k

)
. (3)

The mean fitness 〈k〉 =
∑

k kfk evolves according to

d〈k〉
dt

=
1
2
− r(1 − f0). (4)

This result can be derived directly by summing the mas-
ter equations (1) or even simpler, from the definition of
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the advancement-decline process. The first term accounts
for advancement, where interactions occur with rate 1/2
such that each interaction advances only one agent. The
second term stems from decline and reflects the fact that
all agents except for the least-fit ones decline with rate r.

We now discuss the basic social structures that emerge
from the solution to the master equation.

3 Emergence of social structures

3.1 Scaling solution

We determine the class structure of the population via a
simple scaling analysis of the master equation. Let us take
the continuum limit of the master equation by replacing
differences with derivatives, Fk+1 −Fk → ∂F/∂k. To first
order in this “spatial” derivative, we obtain the nonlinear
partial differential equation

∂F

∂t
= [p+ r − 1 − (2p− 1)F ]

∂F

∂k
. (5)

When the spatial derivative and the temporal derivative
balance, the typical fitness increases linearly with time,
k ∼ t. Therefore, we make the scaling ansatz

Fk(t) � Φ

(
k

t

)

. (6)

The boundary conditions are Φ(0) = 0 and Φ(∞) = 1.
Substituting this scaling form in equation (5), the

partial-differential equation reduces to the ordinary dif-
ferential equation

[(p+ r − 1 + x) − (2p− 1)Φ(x)]
dΦ

dx
= 0, (7)

where the prime denotes differentiation with respect to the
scaling variable x ≡ k/t. The solution is either dΦ/dx = 0,
i.e.,

Φ(x) = constant, (8)

or the linear function

Φ(x) =
p+ r − 1
2p− 1

+
x

2p− 1
. (9)

Using these two solutions and invoking (i) the bound-
ary conditions Φ(0) = 0 and Φ(∞) = 1, (ii) the bounds
0 < Φ(x) < 1, (iii) monotonicity of the cumulative distri-
bution, dΦ(x)/dx ≥ 0, and (iv) the assumption that the
scaling function changes continuously with p and r, we
can then deduce the four possible social structures of the
population.

3.1.1 Middle-class society

We first examine the conditions for the linear scaling func-
tion (9) to apply. First, the cumulative scaling function (6)
must be a monotonically increasing function. Therefore,

3

p1/2

r
1

1/2

r+p=1

r=p

14

2

Fig. 2. Phase diagram of the advancement-decline model. The
small graphs in each region are sketches of the scaled cumula-
tive fitness distribution.

the linear solution (9) holds only when its slope is posi-
tive, that is, when p > 1/2. Second, the scaling function
is bounded, 0 ≤ Φ(x) ≤ 1; this condition implies the lower
and upper bounds

x− = 1 − (p+ r) and x+ = p− r (10)

on the scaled fitness. The obvious constraints x− > 0 and
x+ > 0 lead to the conditions p + r < 1 and p > r.
By imposing continuity, as well as the limiting behav-
iors Φ(x) = 0 and Φ(x) = 1 outside the linear region,
the scaled cumulative distribution is the piecewise linear
function (Fig. 3):

ΦM(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 0 < x < x−
p+ r − 1
2p− 1

+
x

2p− 1
x− < x < x+

1 x+ < x.

(11)

This behavior describes a middle class society where all
agents are upwardly mobile, as their fitness improves lin-
early with time. In this case, social inequalities also in-
crease indefinitely with time: the agents at the bottom
of the middle class have fitness k− = [1 − (p + r)]t and
the richest agents have fitness k+ = (p− r)t. The middle-
class society lies within the triangular region defined by
the lines r+p = 1, r = 0, and p = 1/2, shown in Figure 2.

3.1.2 Hierarchical society

Along the line r + p = 1, the fitness of the poorest agents
vanishes. Moreover, the linear scaling solution (9) has a
finite positive value at zero fitness for a range of param-
eter values p and r. These two observations suggest the
existence of another type of piecewise linear solution with
Φ(0) > 0. The bounds 0 < Φ(0) < 1 impose the conditions
p + r > 1 and r > p. In this region, the scaling function
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Fig. 3. Middle-Class society. The scaled cumulative fitness
distribution Φ(x) versus x = k/t at different times for p = 5/8
and r = 1/4.

has two distinct components (Fig. 4)

ΦH(x) =

⎧
⎨

⎩

p+ r − 1
2p− 1

+
x

2p− 1
0 < x < x+

1 x+ < x.
(12)

Thus, we find a hierarchical society (Fig. 2) that includes
both an upwardly-mobile middle class and a static lower
class. The lower class consists of a finite fraction

L =
p+ r − 1
2p− 1

(13)

of agents with zero fitness (in scaled units). In Section 5,
we examine the lower class more closely and show that its
fitness distribution is time-independent and extends only
over a finite range.

3.1.3 Lower-class society

When the fraction L of agents with zero fitness reaches 1,
the entire population is poor. For p > 1/2, the condition
L = 1 occurs on the boundary p = r. At this point the
fitness distribution becomes a step function,

ΦL(x) = Θ(x), (14)

with Θ(x) = 0 for x ≤ 0 and Θ(x) = 1 for x > 0. We
therefore conclude that there is a region of the phase di-
agram where the scaled fitness of the entire population is
zero. For any initial state, the fitness distribution quickly
approaches the step-function in a lower-class society.

3.1.4 Egalitarian society

There is another region of the phase diagram where the
fitness distribution also becomes a step function. When
p = 1/2 and r < 1/2, then both x+ and x− are equal to
1/2−r. Therefore Φ(x) = Θ(x−v) with v = 1/2−r. Since
the scaling function must change in a continuous fashion,
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Fig. 4. Hierarchical society. The scaled cumulative fitness dis-
tribution Φ(x) versus x = k/t at different times for p = 3/4
and r = 1/2.

we conclude that for p < 1/2, the scaling function is again
a step function but with a jump at non-zero fitness. That
is

ΦE(x) = Θ(x − v). (15)

In this egalitarian society, all agents have the same scaled
fitness x = v or alternatively the fitness k ≈ vt. The
velocity v follows easily from the average fitness (4). Since
all agents advance at constant rate, then the term −rf0
is negligible and therefore, the propagation velocity is

v =
1
2
− r. (16)

In Section 4, we show that in this society, the fitness dif-
ferences between agents are small and do not grow with
time. This is the sense in which the society is egalitarian.
When p < 1/2, the weaker agent preferentially benefits
in an interaction, so that the rich effectively supports the
poor. We also note that the lower class and the egalitar-
ian society share one common feature: they do not have
a middle class. The boundary between these two phases,
determined by the condition v = 0, is the line r = 1/2
(Fig. 2).

Our numerical integration of the evolution equations
confirms the overall picture of four different social struc-
tures (Fig. 2): a middle class society (Fig. 3), a hierarchi-
cal society (Fig. 4), a lower-class society as in (14), and
an egalitarian society as in (15). The numerical data was
obtained by integrating Fk for 0 ≤ k < 10000 using a
fourth-order Adams-Bashforth method [24], with a speci-
fied accuracy of 10−10 in the distribution Fk.

3.2 Refinements to the scaling solutions

Our numerical results for the cumulative distribution Fk,
when plotted versus the scaling variable x = k/t, smoothly
approaches the appropriate expressions for the piecewise
linear scaling function Φ(x) derived in the previous subsec-
tion (Figs. 3, 4). As time increases, the fitness distribution
narrows. The simulations also show that the approach to
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the scaling solution is slowest in the vicinity of the ex-
tremes of the middle class x = x− and x = x+ (with
x− = 0 for the hierarchical phase).

The correction to scaling near these extrema can be
determined by keeping derivatives up to second order in
the continuum limit of the master equation. This approx-
imation gives the nonlinear diffusion equation [25,26]

∂F

∂t
= (r + p− 1)

∂F

∂k
+

1
2
(1 + r − p)

∂2F

∂2k

+ (1 − 2p)F
[
∂F

∂k
− 1

2
∂2F

∂2k

]

+ (p− 1/2)
(
∂F

∂k

)2

. (17)

The linear terms are separately displayed in the first line
and the nonlinear terms in the second. For completeness,
we mention that this partial differential equation can be
transformed into a compact form

∂F̃

∂τ
+
∂F̃ 2

∂k
=

1
2
∂2

∂k2

[

F̃ +
2r + 1
2p− 1

]2

(18)

using τ = (p− 1/2)t and F̃ = F − Φ(0).
Let us first consider the poorest agents, i.e, the behav-

ior close to x = x−. Since the cumulative fitness distribu-
tion is small near this point, the nonlinear terms can be
neglected and the governing equation (17) reduces to the
standard convection-diffusion equation

∂F

∂t
+ v−

∂F

∂k
= D−

∂2F

∂2k
(19)

with propagation velocity v− = x− = 1 − p − r and dif-
fusion coefficient D− = (1 − p + r)/2. Indeed, since the
fitness distribution is obtained from the cumulative dis-
tribution by differentiation, f = ∂F/∂k, the fitness distri-
bution satisfies the same equation (5) as the cumulative
distribution.

For the middle-class society, we therefore conclude that
the bottom of the middle class has a Gaussian tail, with
the center of the Gaussian located at k− = v−t and with
width

√
D−t. The same analysis can be carried out for

the hierarchical society, where the quantity F − L now
satisfies the diffusion equation with zero velocity v− =
0 and diffusivity D− = r. Conversely, the distribution
for the top end of the middle class can be obtained by
analyzing 1−F . It is immediate to show that this quantity
again obeys equation (19) with velocity v+ = x+ = p− r
and diffusivity D+ = (r + p)/2. We conclude that the
extremes of the middle class are characterized by Gaussian
tails whose extents grow diffusively with time. In terms
of the scaling variable x, the deviation from the scaling
function Φ(x) is appreciable only within a region of whose
width is shrinking as t−1/2.

For the special case p = 1/2, the nonlinear terms van-
ish and the fitness distribution is described exactly by the
linear convection-diffusion equation (19) with drift veloc-
ity v = 1/2−r and diffusion coefficient D = (r+p)/2 (the
nonlinear term is negligible). Thus there is a drift toward
smaller fitness for r > 1/2 and the fitness distribution ap-
proaches a steady-state profile that decays exponentially
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Fig. 5. The scaled cumulative fitness distribution U(z) versus
z = k − vt, where v = 1/2 − r is the speed of wavefront at
different times for p = 1/4 and r = 1/4 (egalitarian society).

with fitness. In the opposite case of v > 0, the fitness dis-
tribution is simply a Gaussian that drifts to larger fitness
with velocity 1

2 − r and whose width is proportional to√
Dt. In the case of p = 1/2, the relative position of an

agent in the society is irrelevant and advancement reduces
to a pure random walk [27].

4 Egalitarian society

In the egalitarian phase, the step function form of the
scaling solution, equation (15), suggests that the fitness
distribution has the traveling wave form

Fk(t) → U(k − vt) (20)

with the propagation velocity (16). This is confirmed by
numerical integration of the master equation (3), as shown
in Figure 5.

To determine the shape of the wave U(z) analytically,
we substitute the waveform (20) into the master equa-
tion (3) to give the nonlinear difference-differential equa-
tion for U(z)

−vU ′(z)= r[U(z+1)−U(z)]+(1−p)[U(z−1)−U(z)]
+ (p− 1/2)[U2(z − 1) − U2(z)]. (21)

The boundary conditions are U(−∞) = 0 and U(∞) = 1.

4.1 Waveforms in the tail regions

We apply standard linear analysis in the tail regions to
deduce the leading and trailing shapes of the waveform.
When z → −∞, then U � 1 and therefore U2 � U . To
first order in U , equation (21) becomes

vU ′ + r[U(z+1) − U(z)] + (1−p)[U(z−1)− U(z)] = 0.

The behavior in this case is determined by the balance
between decline and advancement events where the less fit
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agent advances. The solution to this linearized equation is
the exponential decay

U(z) ∼ eαz, z → −∞. (22)

Substituting this form and (16) into the linearized equa-
tion, the decay constant α is the root of the following
equation

1/2 − r = α−1
[
(1 − p)(1 − e−α) − r(eα − 1)

]
. (23)

Similarly, in the limit z → ∞ we linearize the wave equa-
tion (21) for the small quantity R = 1 − U to obtain

vR′ = r[R(z) −R(z+1)] + p[R(z) −R(z−1)].

In this case the behavior at large fitness is governed by the
balance between decline and advancement events where
the fitter agent advances [27]. The solution to the above
differential equation is again the exponential decay

R(z) ∼ e−βz, z → ∞, (24)

with the decay constant β satisfying

1/2 − r = β−1
[
p

(
eβ − 1

) − r
(
1 − e−β

)]
. (25)

We conclude that the likelihood of having agents that are
much richer or much poorer than the average fitness k = vt
in the egalitarian society is exponentially small, as illus-
trated in Figure 6. The society therefore consists of agents
whose fitnesses are all roughly the same, k ≈ vt. As one
might naturally anticipate, social inequalities are small
under the dynamics in which the rich preferentially gives
to the poor.

4.2 Less fit advances (p = 0)

For the case where the less fit agent always advances, the
fitness distribution has a special form. In this case, the
complementary cumulative distribution obeys

dGk

dt
= r(Gk+1 −Gk) +

1
2

(
G2

k−1 −G2
k

)
(26)
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Fig. 7. The super-exponential tail: the quantity 2−zR(z) ver-
sus 2z, obtained by numerical integration of (26) to time
t = 100 with r = 0.

with the initial condition Gk(0) = δk,−1 and the boundary
condition G−1(t) = 1.

We expect that the fitness distribution will continue
to have the form of a propagating wave. Substituting the
traveling wave form Gk(t) → R(k − vt) into the master
equation (26) gives

−vR′(z) = r [R(z + 1) −R(z)] +
1
2

[
R2(z − 1) −R2(z)

]
.

An exponential solution does not give asymptotic balance
of terms as z → ∞, and we therefore attempt a solution of
the form R(z) ∼ ψ(z)e−φ(z). Substituting this form into
the above equation and keeping only the dominant term
1
2R

2(z − 1) on the right-hand-side gives

vψ(z)φ′(z)e−φ(z) ≈ 1
2
ψ2(z − 1)e−2φ(z−1). (27)

For the positive terms on the left and the right hand side
to balance, the dominant exponential terms must first bal-
ance, yielding the recursion equation φ(z) = 2φ(z − 1).
The solution is the exponential φ(z) = C 2z. Balancing
the prefactors, vψ(z)φ′(z) = 1

2ψ
2(z − 1) yields ψ(z) =

8 ln 2Cv 2z. As a result, the decay in the tail region is
super-exponential [28]

R(z) ∼ 8 ln 2Cv 2z exp (−C2z) , (28)

as z → ∞. The constants C and v should be determined
numerically. Hence, the front of the traveling wave is ex-
tremely sharp. This tail characterizes statistics of the rich,
so when the rich never benefits from interactions with the
poor, rich agents are ultra-rare (Fig. 7). Even though the
leading tail extends to only a handful of sites, it is still
possible to verify the super-exponential decay (28). In
contrast, the z → −∞ tail that characterizes the poor
is not altered; it has the same exponential tail as in equa-
tion (22).
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5 The lower class

We now determine the fitness distribution of poorest
agents, a class that exists in both the hierarchical and
lower-class societies. As we shall now show, the fitness
distribution of the lower class in the limit of small but
non-zero fitness approaches a steady state. For the case of
the hierarchical society, we write Fk = L(1 − gk), where
L is the lower-class fraction, with the deviation gk van-
ishing for large k. Substituting this form into the master
equation (3) and setting the time derivative to zero, gives

r
gk − gk+1

gk−1 − gk
= 1 − p+ (p− 1/2)L (2 − gk − gk−1) . (29)

Consider first the lower-class society, for which the entire
population is poor, L = 1. Using this fact, and neglecting
terms of the order g2, we find

gk − gk+1

gk−1 − gk
=
p

r
. (30)

The solution to this equation is simply the exponential
form gk ∼ αk with α = p/r. Since fk = Fk+1 − Fk =
gk − gk+1, then

fk ∝
(p

r

)k

. (31)

In the lower-class society, the fitness is confined to a very
small range. Notice also that this exponential decay co-
incides with the traveling wave solution (24) with v set
equal to zero, as the decay function is now e−β = p/r.

Finally, we consider the hierarchical society. Using (13)
and following the same steps that led to equation (30), we
obtain

gk − gk+1

gk−1 − gk
= 1 − γgk (32)

with γ = (r+p−1)/r. To determine gk, we expand the dif-
ferences to second order and assume that g′′ � g′ to give,
after straightforward steps, g′′ + γgg′ = 0. The asymp-
totic solution to this equation is g � 2/(γk). Finally, using
fk = Fk+1 − Fk and Fk = L(1 − gk), we determine the
fitness distribution from fk � −Lg′ to be

fk � 2r
2p− 1

k−2. (33)

Thus, for the hierarchical society, the fitness distribution
has a power-law large-fitness tail in the lower class region
(see also [21] for more details).

As discussed in Section 3, there is a diffusive bound-
ary layer that separates the steady-state fitness distri-
bution in the lower class and the time dependent fit-
ness distribution in the middle class. From equations (6)
and (12), the fitness distribution in the middle class is
fk � [(2p− 1)t]−1. Equating this expression with equa-
tion (33) gives a crossover scale

k∗ � √
2rt. (34)

Thus, the steady-state region extends over a fitness range
that grows as t1/2. We also note that this crossover scale

agrees with the diffusivity D− = r, obtained in Section 3.
In terms of the variable x = k/t, the size of this region
x∗ ∼ t−1/2 decays with time. Thus, a diffusive boundary
layer separates the lower class and the middle class.

6 Conclusions

In summary, we have seen that the competition between
advancement and decline leads to a rich and realistic set
of possible social structures. From the master equation for
the underlying fitness distribution, we obtain three types
of classes: a static lower class, a mobile but disperse mid-
dle class, and a mobile but “condensed” egalitarian class.
The population as a whole organizes into four types of
societies, three of which consist of one of these classes,
and a hierarchical society in which the lower class and the
middle class coexist. Two parameters, the rate of decline
and the advancement probability, quantify the competi-
tion between advancement and decline. The overall social
organization is determined solely by these two parameters.

The fitness distribution has a very different character
in each of the classes. In the lower class, this fitness dis-
tribution approaches a steady state. In the middle class,
the distribution is self-similar in time and correspondingly
the characteristic fitness increases linearly with time. Al-
though agents are upwardly mobile, the disparities be-
tween agents in the middle class also grows indefinitely.
In the egalitarian class, the fitness distribution follows a
traveling wave, so that all agents constantly advance, but
fitness differences between agents remains small.

Much of the richness of the phenomenology is due to
the fact that the mechanisms for advancement and decline
are fundamentally different. One requires interaction be-
tween agents, while the other is a single-agent process.
This dichotomy is reflected by the master equation where
the decline terms are linear but the advancement terms
are nonlinear. As a result, there is no detailed balance
and the dynamics are non-equilibrium in character.

It should be interesting to use the advancement-decline
model to analyze real-world data. One natural application
is to wealth and income distributions of individuals, where
both power-law and exponential behavior has been ob-
served [11,12]. A related issue is the wealth of nations. It is
well documented that the wealth distribution of countries
is extremely inequitable, with 60% of the world’s popu-
lation producing just 5.6% of the planet’s gross domestic
product (GDP), another 20% producing 11.7%, and the
remaining 20% of the population producing 82.7% of the
GDP [29]. The existence of such a large underclass corre-
sponds to a large decline rate in our diversity model and it
may be worthwhile to understand the social mechanisms
for such a large decline. Another possibility is sports statis-
tics where the winning percentage distribution of teams
plays the role of the fitness distribution [30].

We thank Philip Rosenau for pointing out that (17) can be
compactly written. We acknowledge financial support from



538 The European Physical Journal B

DOE grant W-7405-ENG-36 and NSF grants DMR0227670 &
DMR0535503.

References

1. I.D. Chase, Amer. Sociological Rev. 45, 905 (1980)
2. R.V. Gould, Amer. J. Sociology 107, 1143 (2002)
3. H.G. Landau, Bull. Math. Biophys. 13, 1 (1951)
4. E.O. Wilson, Sociobiology (Harvard University Press,

Cambridge, MA, 1975)
5. E.O. Wilson, The Insect Societies (Harvard University

Press, Cambridge, MA, 1971)
6. W.C. Allee, Biol. Symp. 8, 139 (1942)
7. A.M. Guhl, Anim. Behav. 16, 219 (1968)
8. M.W. Schein, M.H. Forman, Brit. J. Anim. Behav. 3, 45

(1955)
9. M. Varley, D. Symmes, Behaviour 27, 54 (1966)

10. I.D. Chase, Behav. Sci. 19, 374 (1980)
11. S. Ispolatov, P.L. Krapivsky, S. Redner, Eur. Phys. Jour.

B 2, 267 (1998)
12. A. Dragulescu, V.M. Yakovenko, Eur. Phys. Jour. B 17,

723 (2000)
13. G. Weisbuch, G. Deffuant, F. Amblard, J.P. Nadal,

Complexity 7, 55 (2002)
14. E. Ben-Naim, P.L. Krapivsky, S. Redner, Physica D 183,

190 (2003)
15. D. Stauffer, H. Meyer-Ortmanns, Int. J. Mod. Phys. B 15,

241 (2004)
16. S. Wasserman, K. Faust, Social Network Analysis

(Cambridge University Press, Cambridge, 1994)

17. M. Girvan, M.E.J. Newman, Proc. Natl. Acad. Sci. USA
99, 7821 (2002)

18. W. Weidlich, Sociodynamics: A Systematic Approach to
Mathematical Modelling in the Social Sciences (Harwood
Academic Publishers, 2000)

19. D. Helbing, I. Farkas, T. Vicsek, Nature 407, 487 (2000)
20. I.D. Couzin, J. Krause, N.R. Franks, S.A. Levin, Nature

433, 513 (2005)
21. E. Ben-Naim, S. Redner, J. Stat. Mech. L11002 (2005)
22. E. Bonabeau, G. Theraulaz, J.-L. Deneubourg, Physica A

217, 373 (1995)
23. A.O. Sousa, D. Stauffer, Intl. J. Mod. Phys. C 5, 1063

(2000); K. Malarz, D. Stauffer, K. Kulakowski, e-print
arXiv:physics/0502118

24. D. Zwillinger, Handbook of Differential Equations
(Academic Press, London, 1989)

25. G.B. Whitham, Linear and Nonlinear Waves (Wiley, New
York, 1974)

26. J.M. Burgers, The nonlinear diffusion equation (Reidel,
Dordrecht, 1974)

27. E. Ben-Naim, P.L. Krapivsky, S.N. Majumdar, Phys. Rev.
E 64, 035101(R) (2000)

28. E. Ben-Naim, P.L. Krapivsky, S.N. Majumdar, unpub-
lished

29. United Nations Development Program 1992, Human
Development Report (Oxford University press for the
United Nations Development Program, New York, 1992)

30. E. Ben-Naim, F. Vazquez, S. Redner, “What is the most
competitive sport?”, e-print arXiv:physics/0512143


