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Coarsening in a driven Ising chain with conserved dynamics

V. Spirin, P. L. Krapivsky, and S. Redner
Center for BioDynamics, Center for Polymer Studies, and Department of Physics, Boston University, Boston, Massachusetts

~Received 11 March 1999!

We study the low-temperature coarsening of an Ising chain subject to spin-exchange dynamics and a small
driving force. This dynamical system reduces to a domain diffusion process, in which entire domains undergo
nearest-neighbor hopping, except for the shortest domains—dimers—which undergo long-range hopping. This
system exhibits anomalous ordering dynamics due to the existence oftwo characteristic length scales: the
average domain lengthL(t);t1/2 and the average dimer hopping distancel (t);AL(t);t1/4. As a conse-
quence of these two scales, the density of short domains decays ast25/4, instead of thet23/2 decay that would
arise from pure domain diffusion.@S1063-651X~99!08109-X#

PACS number~s!: 64.60.Cn, 05.40.2a, 05.50.1q, 75.40.Gb
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I. INTRODUCTION

The approach to equilibrium in isotropic systems, whi
are quenched from a high-temperature homogeneous p
to a low-temperature two-phase region, is now relativ
well understood@1,2#. The basic feature of such systems
that they typically organize into a coarsening mosaic
single-phase regions, with a characteristic length scale
grows as a power law in time. For driven systems, on
other hand, considerably less progress has been made i
derstanding the coarsening dynamics, although the statio
properties have been thoroughly investigated@3#. In the pres-
ence of driving, the physically relevant coarsening mec
nisms are those with conserved order-parameter dynam
This would be appropriate, for example, for treating t
phase separation of binary liquids or binary alloys under
influence of gravity@4#.

In this spirit, Cornell and Bray@5# recently studied the
coarsening dynamics of a driven Ising~DI! chain that is en-
dowed with conserved spin-exchange Kawasaki dynam
and which is also subjected to a driving field which favo
transport of up spins to the right and down spins to the l
They argue that in the limit of low temperature and we
field, the spin dynamics of this DI chain reduces to a dom
diffusion ~DD! process@5# in which up domains hop rigidly
by one lattice spacing to the right, and down domains hop
one lattice spacing to the left. Due to this nearest-neigh
hopping, small domains are progressively ‘‘squeezed o
and the adjacent neighboring domains coalesce. T
random-walk mechanism leads both to a reduction in
number of domains and an increase in their average len
L(t);t1/2. Numerical evidence was also presented that
density of domains of lengthk obeys the scaling form
Ck(t);(k/L3)exp(2k2/L2) @5#. This further implies at23/2

asymptotic decay for the density of domains of fixed leng
The goal of this paper is to show that there is a subtle

crucial difference between the dynamics of individual sp
in this DI chain and the DD process. The fundamental po
is that for the shortest domains—dimers—the spin-level
chain dynamics results inlong-rangedimer hopping, with
their average jump length growing asAL. In contrast, for the
DD process, dimers necessarily jump to the next dom
boundary. As a result, dimers, and indeed all domains
PRE 601063-651X/99/60~3!/2670~7!/$15.00
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length<AL, disappear more rapidly in the DD process th
in the DI chain.

As we shall argue, the DI chain is thus characterized
two length scales:~a! the average domain lengthL(t), which
is still proportional tot1/2, as in the DD process, and~b! the
average dimer hopping distance, which is proportional
t1/4. As a result of the two length scales, the density of d
mains of fixed length asymptotically decays ast25/4, instead
of the t23/2 decay of the DD process. Correspondingly, t
domain length distributions in the DI chain and in the D
model exhibit different small-length behaviors.

In Sec. II, we define the spin dynamics precisely, descr
the correspondence between the DI chain and the DD
cess, and address their essential differences. Simulation
sults, which support our basic arguments, are presente
Sec. III. In Sec. IV, we outline a perturbative approac
based on a matched asymptotic expansion, which acco
for the observed breakdown of scaling in the domain len
distribution for a vanishingly small minority fraction. Sec
tion V contains both a summary and a brief discussion
open issues.

II. GEOMETRICAL PICTURE OF THE DYNAMICS

The microscopic system is a chain of Ising spins w
nearest-neighbor ferromagnetic interactionJ. The chain is
subject to spin-exchange dynamics, where the only poss
rearrangement process is the exchange of two antipar
nearest-neighbor spins. Thus the magnetization is manife
conserved~we use a magnetic terminology, although a sy
tem with conserved dynamics naturally applies to an allo!.
The exchange occurs at a rate proportional toe2D/T, where
D is the energy difference between the initial and final sta
and T is the temperature~with Boltzmann constant set to
unity!. There is also a driving fieldE, which favors motion
of up spins to the right and down spins to the left. T
spin-flip events are

~i! 1122
1212 D54J2E,

~ii ! 2211
2121 D54J1E,

~iii ! 1121
1211 D52E,

~iv! 2122
2212 D52E.
2670 © 1999 The American Physical Society
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The first two processes occur on domain boundaries, w
the last two account for the motion of a single spin, which
inside a domain of the opposite sign. The ‘‘forward’’ pro
cesses involve the energy changeD, while the ‘‘backward’’
processes have energy change2D.

Interesting dynamics arises in the limit of low~but non-
zero! temperature and weak driving field, that is, 0,T!E
!J. To appreciate the nature of the dynamics for this
rameter range, notice that in one dimension the ord
disorder transition occurs atTc50. At T50, the spin-
exchange dynamics traps the system in a metastable s
which consists of domains of lengths>2 @6,7#. To avoid this
‘‘freezing,’’ the temperature must be nonzero. At low b
nonzero temperature, the system will coarsen as long as
mean domain length is smaller than the correlation lengtj
;eJ/T@1.

The limit where the driving field satisfiesT!E!J leads
to anapproximateequivalence with the DD process@5#. To
understand this correspondence, consider the situation
domains have coarsened to a relatively large length. By p
cess~i⇀!, an up spin may detach from the right edge of
up domain with ratee2(4J2E)/T, or equivalently, a down spin
may detach from the left edge of a down domain. Similar
an up spin may also detach from the left edge of an
domain~or a down spin may detach from the right edge o
down domain! by step~ii⇀!. However, this process occurs
a rate which is a factore22E/T smaller than step~i⇀!. More-
over, even if step~ii⇀! occurs, the detached spin quick
recombines with the same domain by the reverse pro
~ii↽!, since the motion of the detached spin away from
domain is energetically unfavorable.

Once step~i⇀! occurs, the system evolves further eith
by step~iv⇀!, which corresponds to the up spin moving
the right and eventually joining the next up domain, or
step ~iii⇀!, where a down spin moves to the left and joi
the next down domain. The former process is illustrated
Fig. 1. As a result of these processes, an up domain h
rigidly by one lattice spacing to the right or a down doma

FIG. 1. Illustration of the detachment of an up spin from an
domain and its merging with the neighboring up domain to
right. In the upper part of the figure, each line represents the sta
the system after a single spin-exchange event. This evolutio
equivalent to rigid-body domain hopping, with a down domain ho
ping one lattice site to the left, as indicated in the lower portion
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hops one spacing to the left. If we measure the time in u
of e(4J2E)/T, then both these hopping steps occur at unit ra
independentof the domain length.

An essential feature of the low-temperature weak-fi
limit T!E!J is that all other processes are asymptotica
negligible in the intermediate-time range where coarsenin
occurring. Thus in this time range the system consists of
contiguous array of alternating up and down domains, a
the dynamics proceeds by taking an up~down! domain and
moving it one lattice site to the right~left!. Whenever a do-
main shrinks to zero size, its two adjacent neighbors c
lesce. This description is the basis of the correspondenc
the DD model. It is also worth noting that in the absence
a driving field, the dynamics again reduces to a DD proce
but with a length-dependent hopping rate that is proportio
to the inverse domain length@7,8#.

A crucial feature of the mapping between the spin and
domain dynamics, which is not apparent from the above
scription, is the evolution of dimers~see Fig. 2!. Consider an
up dimer. If the rightmost spin of the dimer detaches,
dimer is converted into two isolated up spins in a sea
down spins. According to the spin dynamics, each isola
spin independently and freely hops to the right. Con
quently, their separation undergoes a simple random w
The motion of spins antiparallel to the field can be neglect
since this motion is inhibited by a factore22E/T. The hop-
ping of this pair of separated spins terminates in one of t
ways: ~i! The rightmost up spin reaches the next dom
boundary and subsequently the other up spin hits this s
boundary. This corresponds to the coalescence of the
adjacent down domains and is part of the DD picture.~ii !
The dimer recombinesbefore the next domain boundary i
reached~Fig. 2!.

Dimer recombination is the crucial new feature which w
not included in the DD process. This recombination plays
essential asymptotic role because the average dimer j
distancel is much smaller than the average domain lengthL
in the long-time limit. Consequently, recombination of
dimer is much more probable than domain coalescence
verify this assertion let us estimatel . The dimer recombines
if the separation between the two spins shrinks to zero be

e
of
is
-

FIG. 2. Time evolution of an up dimer in a sea of down spin
When the dimer dissociates, the isolated spins independently ho
the right. Shown is the space-time trajectory of the dimer for
case where the dimer recombines and becomes stationary a
before the next domain wall is reached.
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the rightmost spin reaches the next domain boundary. Th
a classic first-passage process, and the probability that
separation first equals zero at 2l steps is given by@9#

P~ l !5
1

22l 21

~2l 22!!

~ l 21!! l !
. ~1!

For large l , this expression simplifies toP( l );p21/2l 23/2.
The average dimer jump distancel may now be estimated
as l 5( l<LlP( l );AL. Thus asymptoticallyl !L.

We now use this picture to estimate the overall time
pendence of small-length domains. The crucial feature is
a domain can disappear only if a dimer first dissociates
then does not recombine before its constituent spins re
the next domain boundary. From the analogy with the fir
passage process, the probabilityR(t) that the dissociated
dimer does not recombine before the next domain bound
is given by

R;(
l 5L

`

P~ l !;(
l 5L

`

l 23/2;L21/2. ~2!

Since the disappearance of a dimer leads to domain co
cence, the total number of domainsN(t) obeys the rate equa
tion

dN

dt
52RC2;2

C2

AL
. ~3!

On the other hand, the dynamics of large domains sho
still be governed by the gain and loss of single spins at
boundary, as outlined in Fig. 1. Since these gain and
processes occur at the same rate, the domain length un
goes an isotropic random walk, so thatL(t) should grow as
t1/2. Correspondingly, the number of domainsN(t) decays as
t21/2, the inverse of the average domain length. Substitu
these two expectations into Eq.~3!, we immediately obtain

C2~ t !;t25/4. ~4!

This should be compared with the predictionC2(t);t23/2,
which arises from the DD process. This latter time dep
dence would be obtained from Eq.~3! if the rate of dimer
disappearance were unity, rather than proportional toL21/2.

This slower decay of dimers is one of the primary featu
of the DI chain dynamics and it has fundamental implic
tions for the density of domains of lengthk, Ck(t). Let us
suppose that this density obeys the single-length scaling
pothesis

Ck~ t !;
1

L2
FS k

L D , ~5!

where the prefactorL22 follows from the length normaliza
tion condition (kCk(t)51. If C2(t);t25/4, then either
F(z);Az asz→0, or Ck(t) does not obey scaling for sma
k. We shall present evidence from both simulations and
analytical approach that strongly favors the latter alternat
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III. SIMULATION RESULTS

In our simulations, we first initialize an array of alterna
ing up and down domains of random lengths. For minor
phase densitym, we choose the average length of minori
domains to beL510, andL/m for the majority phase. The
time evolution involves the following steps:~i! Pick a do-
main at random.~ii ! Move an up~down! domain of length
.2 to the right~left!. ~iii ! If the domain is a dimer, choos
its jump distancel from the probability distributionP( l )
given by Eq.~1!. If l exceeds the length of the neighborin
domain, remove the dimer and merge the surrounding
mains. ~iv! Update the time by 1/~number of domains!.
Simulations were performed on a chain of 43106 domains
for times up to 53105, and averaged over 16 samples. Th
is of the same order of data as the simulations of Cornell
Bray @5#.

A. Average time-dependent properties

In Fig. 3, we plotN(t) for various minority fractionsm.

FIG. 3. Time dependence of the domain density for vario
minority spin fractionsm. Upper set of points, DI chain; lower se
DD model. The DD data are divided by 2 to separate the two s
As a guide to the eye, the solid line has a slope21/2.

FIG. 4. The density of dimers as a function of time. Upp
points, DI chain; lower points, DD model. As a guide to the eye,
solid lines have slopes25/4 ~upper! and23/2 ~lower!.
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Also shown are the corresponding results for the DD proc
The linearity of the data suggests power-law behavior,
visually the asymptotic slopes are very close to the expe
value of21/2. The essential difference between the DI ch
and the DD model is manifested by the behavior of the dim
density. Figure 4 shows that the dimer density indeed dec
more slowly than in the DD model.

To highlight this difference, we plot the correspondin
local exponents in Fig. 5. We define the local exponen
time t as the best-fit straight line to ten successive data po
~equally spaced on a logarithmic scale! up to time t in the
double logarithmic plot ofC2(t) versust. This definition
significantly smooths statistical fluctuations while still r
vealing systematic trends in the data. As shown in Fig. 5,
local exponents of the DI chain and the DD model are clea
different. For the DD model, these exponents are close to
expected value23/2 and also exhibit weak systematic tim
dependence. Thus, the natural conclusion is that the d
density ~as well as the density of domains of any fixe

FIG. 5. Local exponents for the time dependence of the num
of dimers. Upper points, DI chain; lower points, DD model.

FIG. 6. Local exponents for the dependence of the numbe
dimers on the total number of domains. Lower points, DI cha
upper points, DD model.
s.
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length! asymptotically decays ast23/2.
For the DI chain, the situation is more subtle. The loc

exponents initially are increasing with time, but this tim
dependence slows when the effective exponent value is c
to the anticipated value25/4. However, the systematic am
biguities in the data make an extrapolation for the asympt
value of the exponent uncertain. This uncertainty and
relatively small difference in the dimer exponent for the tw
models led us to considerC2(N) rather thanC2(t). Indeed,
since bothN(t) andC2(t) should be influenced by the sam
preasymptotic corrections, such corrections might can
when C2 is expressed as a function ofN. From a scaling
perspective, it is also natural to express dependences in t

er

of
;

FIG. 7. Scaling plot for the domain length distribution for the D
chain with equal fractions of up and down spins. Notice that t
distribution does not reach zero atk/L50 ~see Fig. 8!.

FIG. 8. Tail of the domain length distribution for the DI cha
~open symbols! for equal fractions of up and down spins. Shown a
data for t5500(s), t55000(¹), and t550 000(D). Notice the
systematic time dependence with a nonzero intercept atk50. For
comparison the tail of the domain length distribution for the D
process at the same times is also shown~filled symbols!. Data for
t550 000 were smoothed over a 9-point range to reduce fluc
tions.
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of intrinsic variables, rather than in terms of the extrins
time variable. Thus in Fig. 6, we plot the local exponents
C2(N) versusN and the results are now relatively straigh
forward to interpret. Since the variation in the local expon
for the DI chain is small over the entire range ofN, the result
C2(N);N5/2 is strongly suggested. Similarly, the DD da
suggests thatC2(N);N3, as is anticipated fromN(t)
;t21/2 and C2(t);t23/2. Coupled with the basic resu
N(t);t21/2 that holds for both models, we conclude, no
with considerable confidence, thatC2(t);t25/4 for the DI
chain.

B. Domain length distribution

The behavior of the domain length distribution is esp
cially interesting in the small-length limit. This ultimatel
arises from the multistep dissociation and recombination p
cesses that govern the disappearance of dimers. We firs
the conventional scaling hypothesis for the domain len
distribution, namely, Ck(t);L22F(k/L), by plotting
L2Ck(t) versusk/L in Fig. 7.

At the scale shown, this distribution appears to exh
data collapse. In fact, at the resolution of this figure,
domain length distributions for the DI chain and for the D
process are virtually indistinguishable. However, for t
scaling form to be compatible withC2(t);t25/4, the scaling
function must vary asF(z);z1/2 as z→0, while the length
distribution appears to be linear ink in the small-length limit.
This linearity implies that the distribution cannot obe
single-parameter scaling for all lengths. In fact, a closer
amination of the small-k tail ~Fig. 8! reveals a small bu
systematic deviation from data collapse. This deviation
manifested by the length distribution having a nonzero in
cept with thek50 axis, whose value is systematically d
creasing with time.

IV. DOMAIN LENGTH DISTRIBUTION
IN THE LIMIT µ˜0

To better understand the nature of the domain length
tribution, we focus on the limit where the fraction of mino
ity spins m is vanishingly small. This leads to considerab
simplification in the domain dynamics. Generally, the leng
of a domain can change by61 due to diffusion of neighbor-
ing domains, or the length can change arbitrarily by dom
coalescence. In the limitm→0, the diffusive ‘‘shrinkage’’
governs the disappearance of minority domains, while c
lescence governs the disappearance majority domains
verify this, let us estimate the characteristic times for
disappearance of the majority and minority domains
shrinkage. LetL2(L1) denote the average length of mino
ity ~majority! domains. A majority domain can shrink to ze
in a timet1 of orderL1

2 , while the shrinking and disappea
ance of a minority domain requires a timet2;L2

2 . Thus

t2

t1
;S L2

L1
D 2

5m2. ~6!

Therefore in the minority limit, shrinkage of majority do
mains, or equivalently, coalescence of minority domains
negligible. Consequently, the minority domains are eff
f
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tively noninteracting and they evolve only by the addition
loss of single spins as a result of the hopping of major
domains. Therefore, the density of minority domainsCk(t)
obeys the discrete diffusion equation

dCk

dt
5Ck1122Ck1Ck21 , k.2 ~7!

The density of dimers (k52) obeys a separate, but sim
lar equation. For dimers, there is no gain term due to p
cesses that involve monomers, and the loss of dimers du
their dissociation into two monomers and ultimate dom
coalescence occurs at a rateR;L21/2 ~see Sec. II!, since a
dissociated dimer may recombine before the coalescence
curs. Therefore, the master equation forC2(t) is

dC2

dt
5C32C22

C2

AL
. ~8!

In the continuum limit, Eq.~7! is equivalent to

]Ck~ t !

]t
5

]2Ck~ t !

]k2
, ~9!

while Eq. ~8! provides the boundary condition. In this equ
tion, the left-hand side scales ast21C2 , while the last term
on the right-hand side scales asL21/2C2;t21/4C2 . Thus in
the long-time limit the left-hand side is negligible and Eq.~8!
becomes

F ]Ck~ t !

]k
2

Ck~ t !

AL
G

k→0

50. ~10!

This radiation boundary condition@10# expresses the fac
that a dimer does not necessarily disappear when it diss
ates, but it may be reconstituted and then grow into a fin
size domain.

By dimensional analysis, Eq.~9! implies the existence o
the usual diffusive length scaleL5At. By similar reasoning,
Eq. ~10! suggests the existence of an additional length sc
l 5AL. The competition between these two scales de
mines the asymptotic behavior. We therefore separately c
sider the ‘‘inner’’ region of small domainsk!L and the
‘‘outer’’ region of large domainsk@l , and then match thes
limiting solutions in the overlap regionl !k!L @11#.

In the inner regionk!L, the diffusion equation simplifies
to ]2C/]k2 50, whose solution isCk(t)5A(t)1B(t)k. Em-
ploying the boundary condition Eq.~10! we obtain

Ck~ t ! inner5A~ t !S 11
k

AL
D . ~11!

In the outer regionk@l , the system is governed by th
original diffusion equation~9!, while Eq.~10! reduces to the
absorbing boundary condition. The solution in this regi
thus becomes

Ck~ t !outer5
k

t3/2
expS 2

k2

4t D . ~12!
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The inner and outer solutions should match in the overl
ping regionl !k!L. This determines the amplitudeA(t) in
Eq. ~11! to be proportional tot25/4. The inner solution now
becomes

Ck~ t ! inner5
g

t5/4
1

k

t3/2
~13!

with g a constant.
These two limiting forms forCk(t) match smoothly in the

overlap regionl !k!L. This further suggests that the do
main length distribution for the entire length range can
accounted for by the composite form

Ck~ t !5S g

t5/4
1

k

t3/2D expS 2
k2

4t D . ~14!

To determine the validity of this hypotheses, we test for
existence of thek/t3/2 correction term, since the leadingt25/4

time dependence has already been established. For this
pose, considerC3(t)2C2(t) versust. This difference elimi-
nates the leadingt25/4 behavior and thus isolates thek/t3/2

correction term~Fig. 9!. As seen in the figure, the data fo
C32C2 is consistent with at23/2 time dependence. This tes
also supports the correctness of the composite form of

FIG. 9. Plot ofC3(t)2C2(t) versus time. As a guide to the ey
a straight line of slope23/2 is shown.
.

z

-

e

e

ur-

q.

~14! for the domain length distribution. Finally, our numer
cal data suggests that this same dependence holds fo
values ofm.

V. SUMMARY AND DISCUSSION

We investigated the low-temperature coarsening of
Ising chain subject to spin-exchange dynamics and a w
driving force. The spin dynamics of this DI chain was r
duced to a domain diffusion process together with lon
range dimer hopping. From this picture, we established
existence oftwo growing characteristic length scales; one
the fundamental diffusion lengtht1/2, that provides the aver
age domain size, and the other,l ;t1/4, is the average dime
hopping distance. The competition between these two sc
leads to an unusual small-length tail of the domain len
distribution. As a consequence, the density of fixed-len
domains decays ast25/4 as t→`. A key step to verify this
latter result was to study the dependence ofCk on N, rather
than the dependence ont.

For the one-dimensional system, several basic unreso
issues remain. Thus far, an analytical solution for the len
distribution of minority domains only has been obtained
the extreme minority limit. It would be worthwhile to stud
analytically the case of an arbitrary minority fraction. On
approach is to treat domains as statistically independ
Such an approximation is exact in the extreme minority lim
and also works well for the coarsening of the undriven Is
chain for both spin-flip and spin-exchange dynamics@12–
14#. Under the assumption of statistical independence, i
possible to solve the rate equations forCk(t). This solution
reproduces the correct dynamical exponent, as well as
linear small-length tail for the domain length distributio
@15#. This approach further predicts an exponential decay
the the large-length limit of the domain length distributio
for any nonzero fraction of minority spins. However, o
numerical simulations at zero magnetization suggest that
large-length tail has the leading behavior exp(2(k/L)n), with
n greater than 1 and less than 2. This puzzling feature,
ther an exponential nor a Gaussian decay for the large-le
tail of the distribution, deserves more careful attention.
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