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Role of global warming on the statistics of record-breaking temperatures
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We theoretically study the statistics of record-breaking daily temperatures and validate these predictions
using both Monte Carlo simulations and 126 years of available data from the city of Philadelphia. Using
extreme statistics, we derive the number and the magnitude of record temperature events, based on the
observed Gaussian daily temperature distribution in Philadelphia, as a function of the number of years of
observation. We then consider the case of global warming, where the mean temperature systematically in-
creases with time. Over the 126-year time range of observations, we argue that the current warming rate is
insufficient to measurably influence the frequency of record temperature events, a conclusion that is supported
by numerical simulations and by the Philadelphia data. We also study the role of correlations between tem-
peratures on successive days and find that they do not affect the frequency or magnitude of record temperature

events.
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I. INTRODUCTION

Almost every summer, there is a heat wave somewhere in
the U.S. that garners popular media attention [1]. During
such hot spells, daily record high temperatures for various
cities are routinely reported in local news reports. A natural
question arises: is global warming the cause of such heat
waves or are they merely statistical fluctuations? Intuitively,
record-breaking temperature events should become less fre-
quent with time if the average temperature is stationary. Thus
it is natural to be concerned that global warming is playing a
role when there is a proliferation of record-breaking tempera-
ture events. In this work, we investigate how systematic cli-
matic changes, such as global warming, affect the magnitude
and frequency of record-breaking temperatures. We then as-
sess the potential role of global warming by comparing our
predictions both to record temperature data and to Monte
Carlo simulation results.

It bears emphasizing that record-breaking temperatures
are distinct from threshold events, defined as observations
that fall outside a specified threshold of the climatological
temperature distribution [2]. Thus, for example, if a city’s
record temperature for a particular day is 40 °C, then an
increase in the frequency of daily temperatures above 36 °C
(i.e., above the 90th percentile) is a threshold event, but not
a record-breaking event. Trends in threshold temperature
events are also impacted by climate change and are thus an
area of active research [2-7]. Studying threshold events is
also one of the ways to assess agricultural, ecological, and
human health effects due to climate change [8,9].

Here we examine the complementary issue of record-
breaking temperatures, in part because they are popularized
by the media during heat waves and they influence public
perception of climate change and in part because of the fun-
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damental issues associated with record statistics. We focus
on daily temperature extremes in the city of Philadelphia, for
which data are readily available on the Internet for the period
1874-1999 [10]. In particular, we study how temperature
records evolve in time for each fixed day of the year. That is,
if a record temperature occurs on 1 January 1875, how long
until the next record on 1 January occurs? Using the fact that
the daily temperature distribution is well approximated by a
Gaussian (Sec. II B), we will apply basic ideas from extreme
value statistics in Sec. III to predict the magnitude of the
temperature jump when a new record is set, as well as the
time between successive records on a given day. These pre-
dictions are derived for an arbitrary daily temperature distri-
bution, and then we work out specific results for the ideal-
ized case of an exponential daily temperature distribution
and for the more realistic Gaussian distribution.

Although individual record temperature events are fluctu-
ating quantities, the average size of the temperature jumps
between successive records and the frequency of these
records are systematic functions of time (see, e.g., [11] for a
general discussion). This systematic behavior permits us to
make meaningful comparisons between our theoretical pre-
dictions, numerical simulations (Sec. IV), and the data for
record temperature events in Philadelphia (Sec. V). Clearly,
it would be desirable to study long-term temperature data
from many locations to discriminate between the expected
number of record events for a stationary climate and for glo-
bal warming. For U.S. cities, however, daily temperature
records extend back only 100—140 years [12,13], and there
are both gaps in the data and questions about systematic
effects caused by “heat islands” for observation points in
urban areas. In spite of these practical limitations, the Phila-
delphia data provide a useful testing ground for our theoret-
ical predictions.

In Sec. VI, we investigate the effect of a slow linear glo-
bal warming trend [14,28] on the statistics of record-high
and record-low temperature events. We argue that the pres-
ently available 126 years of data in Philadelphia, coupled
with the current global warming rate, are insufficient to
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FIG. 1. (Color online) Average annual high, middle, and low
temperature (in degrees Celsius) for each year between 1874 and

1999 (dotted jagged lines). Also shown are the corresponding
10-year averages (solid curves).

meaningfully alter the frequency of record temperature
events compared to predictions based on a stationary tem-
perature. This conclusion is our main result. Finally, we
study the role of correlations in the daily temperatures on the
statistics of record temperature events in Sec. VII. Although
there are substantial correlations between temperatures on
nearby days and record temperature events tend to occur in
streaks, these correlations do not affect the frequency of
record temperature events for a given day. We summarize
and offer some perspectives in Sec. VIII.

II. TEMPERATURE OBSERVATIONS

The temperature data for Philadelphia were obtained from
a website of the Earth and Mineral Sciences department at
Pennsylvania State University [10]. The data contain both
the low and high temperatures in Philadelphia for each day
between 1874 and 1999. The data are reported as an integer
in degrees Fahrenheit, so we anticipate an error of +1 °F. No
information is provided about the accuracy of the measure-
ment or the precise location where the temperature is mea-
sured. Thus there is no provision for correcting for the heat
island effect if the weather station is in an increasingly ur-
banized location during the observation period. For each day,
we also document the middle temperature, defined as the
average of the daily high and daily low.

To get a feeling for the nature of the data, we first present
basic observations about the average annual temperature and
the variation of the temperature during a typical year.

A. Annual averages and extremes

Figure 1 shows the average annual high, middle, and low
temperature for each year between 1874 and 1999. To help
discern systematic trends, we also plot 10-year averages for
each data set. The average high temperature for each year is
increasing from 1874 until approximately 1950 and again
after 1965, but is decreasing from 1950 to 1965. Over the
126 years of data, a linear fit to the time dependence of the
annual high temperature for Philadelphia gives an increase of
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FIG. 2. (Color online) Record high, average high, middle, and
low, and record low temperature (in degrees Celsius) for each day
of the year.

1.62 °C, compared to the well-documented global warming
rate of 0.6+0.2 °C over the past century [9]. On the other
hand, there does not appear to be a systematic trend in the
dependence of the annual low temperature on the year. A
linear fit to these data gives a decrease of —0.38 °C. This
disparity between high and low temperatures is a puzzling
and as yet unexplained feature of the data.

A basic feature about the daily temperature is its approxi-
mately sinusoidal annual variation (Fig. 2). The coldest time
of the year is early February while the warmest is late July.
An amusing curiosity is the discernible small peak during the
period 20-25 January. This anomaly is the traditional “Janu-
ary thaw” in the northeastern U.S. where sometimes snow-
pack can melt and a spring like aura occurs before winter
returns (see [15] for a detailed discussion of this phenom-
enon).

Also shown, in Fig. 2, are the temperature extremes for
each day. The highest recorded temperature in Philadelphia
of 41.1 °C (106 °F) occurred on 7 August 1918, while the
lowest temperature of —=23.9 °C (=11 °F) occurred on 9 Feb-
ruary 1934. Record temperatures also fluctuate more strongly
than the mean temperature because there are only 126 years
of temperature data. As a result of this short time span, some
days of the year have experienced very few records and the
resulting current extreme temperature can be far from the
value that is expected on statistical grounds (see Sec. V).

B. Daily temperature distribution

To understand the magnitude and frequency of daily
record temperatures, we need the underlying temperature dis-
tribution for each day of the year. Because temperatures have
been recorded for only 126 years, the temperature distribu-
tion for each individual day is not smooth. To mitigate this
problem, we aggregate the temperatures over a 9-day range
and then use these aggregated data to define the temperature
distribution for the middle day in this range. Thus, for ex-
ample, for the temperature distribution on 5 January, we ag-
gregate all 126 years of temperatures from 1 to 9 January
(1134 data points). We also use the middle temperature for
each day to define the temperature distribution.
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FIG. 3. (Color online) Nine-day aggregated temperature distri-
butions for 5 January, 5 April, 5 October, and 5 July in degrees
Celsius (top to bottom). Each data set is averaged over a 10%
range—10, 9, 8, and 6 points, respectively, for 5 January, 5 April, 5
October, and 5 July. The distributions are all shifted horizontally by
the mean temperature for the day and then vertically to render all
curves distinct. The dashed curves are visually determined Gaussian
fits.

Figure 3 shows these aggregated temperature distributions
for four representative days—the 5th of January, April, July,
and October. Each distribution is shifted vertically to make
them all nonoverlapping. We also subtracted the mean tem-
perature from each of the distributions, so that they are all
centered about zero. Visually, we obtain good fits to these
distributions with the Gaussian P(AT) e~ AD20° \here AT
is the deviation of the temperature from its mean value (in
°C) and with 0=5.07, 4.32, 4.12, and 3.14 for 5 January, 5
April, 5 October, and 5 July, respectively. We therefore use a
Gaussian daily temperature distribution as the input to our
investigation of the frequency of record temperatures in the
next section.

An important caveat needs to be made about the daily
temperature distribution. Physically, this distribution cannot
be Gaussian ad infinitum. Instead, the distribution must cut
off more sharply at finite temperature values that reflect basic
physical limitations (such as the boiling points of water and
nitrogen). We will show in the next section that such a cutoff
strongly influences the average waiting time between succes-
sive temperature records on a given day.

Notice that the width of the daily temperature distribution
is largest in the winter and smallest in the summer. Another
intriguing aspect of the daily distributions is the tail behav-
ior. For 5 January, there are deviations from a Gaussian at
both at the high- and low-temperature extremes, while for 5
April and 5 October, there is an enhancement only on the
high-temperature side. This enhancement is especially pro-
nounced on 5 April, which corresponds to the season where
record high temperatures are most likely to occur (see Sec.
VIII and Fig. 13). What is not possible to determine with
126 years of data is whether the true temperature distribution
is Gaussian up to the cutoff points and the enhancement re-
sults from relatively few data or whether the true temperature
distribution on 5 April actually has a slower than Gaussian
high-temperature decay.
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FIG. 4. Schematic evolution of the record high temperature on a
specified day for each passing year. Each dot represents the daily
high temperature for different years. The first temperature is, by
definition, the zeroth record temperature 7). This event occurs in
year fo=0. Successive record temperatures 7,7,,73,... occur in
years tl,tz,t3,....

III. EVOLUTION OF RECORD TEMPERATURES

We now determine theoretically the frequency and mag-
nitude of record temperature events. The schematic evolution
of these two characteristics is sketched in Fig. 4 for the case
of record high temperatures. Each time a record high for a
fixed day of the year is set, we document the year #; when the
ith record occurred and the corresponding record high tem-
perature T;. Under the (unrealistic) assumptions that the tem-
peratures for each day are independent and identical, we now
calculate the average values of 7; and #; and their underlying
probability distributions. (For a general discussion of record
statistics for excursions past a fixed threshold, see, e.g.,
[14,16], while related work on the evolution of records is
given in Ref. [17].)

Suppose that the daily temperature distribution is p(7).
Two subsidiary distributions needed for record statistics are
(i) the probability that a randomly drawn temperature ex-
ceeds T, p-(T), and (ii) the probability that this randomly
selected temperature is less than T, p-(T). These distribu-
tions are [18]

o

T
p<(T)EJ p(T")dT", p>(T)Ef p(T)dr’. (1)

0 T

We now determine the kth record temperature 7} recur-
sively. We use the terminology of record high temperatures,
but the same formalism applies for record lows. Clearly T,
coincides with the mean of the daily temperature distribu-
tion, To= [(Tp(T)dT. The next record temperature is the
mean value of that portion of the temperature distribution
that lies beyond T: that is,

f” Tp(T)dT
T, = TO—~ (2)

f“’ p(T)dT

Ty

The above formula actually contains a sleight of hand. More
properly, we should average the above expression over the
probability distribution for 7|, to obtain the true average
value of T, rather than merely using the typical or average
value of Tj in the lower limit of the integral. Equation (2)
therefore does not give the true average value of T, but
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rather gives what we term the fypical value of T,. We will
show how to compute the average value shortly.

Proceeding recursively, the relation between successive
typical record temperatures is given by

f ’ Tp(T)dT

Ty

foop(T)dT

Ty

A3)

T =

where the above caveat about using the typical value of T} in
the lower limit, rather than the average over the (as yet)
unknown distribution of T, still applies.

We now compute P, (T), the probability that the kth
record temperature equals 7; this distribution is subject to the
initial condition Py(T)=p(T). For the kth record temperature,
the following conditions must be satisfied (refer to Fig. 4): (i)
the previous record temperature 7' must be less than 7, (ii)
the next n temperatures, with n arbitrary, must all be less
than 77, and (iii) the last temperature must equal 7. Writing
the appropriate probabilities for each of these events, we
obtain

, .
PUT) = ( f Pe(T) 2 [p<(T’)]"dT’>p(T)

0 n=0
"Pea(T)
= (fo —p>(T’) dT )p(T). (4)

This formula recursively gives the probability distribution
for each record temperature in terms of the distribution for
the previous record.

Complementary to the magnitude of record temperatures,
we determine the time between successive records. Suppose
that the current record temperature equals T} and let g,(7T})
be the probability that a new record high—the (k+1)st—is
set n years later. For this new record, the first n— 1 highs after
the current record must all be less than 7}, while the nth high
temperature must exceed 7. Thus

q,(Ty) =P<(Tk)”_lp>(Tk)- (5)

The number of years between the kth record high 7} and the
(k+1)st record Ty, is therefore

o

1
-1
fkl‘ﬁFE”Pn D>= .
" n=1 = p=(T})

(6)

We emphasize that this waiting time gives the time between
the kth record and the (k+1)st record when the kth record
temperature equals the specified value T;. If the typical value
of T} is used in Eq. (6), we thus obtain a quantity that we
term the typical value of ¢,.

To obtain the true average waiting time, we first define
0, (k) as the probability that the kth record is broken after n
additional temperature observations, averaged over the dis-
tribution for 7). Using the definition of g,, we obtain the
formal expression
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o

0,(k) = f Pi(T)q,(T)dT = f PuD)p(T)"'p=(T)dT.

0 0
(7)

Different approaches to determine the O, are given in Refs.
[14,19].

There are a number of fundamental results available about
record statistics that are universal and do not depend on the
form of the initial daily temperature distribution, as long as
the daily temperatures are independent and identically dis-
tributed (iid) continuous variables [14,19-22]. In a string of
n+1 observations (starting at time n=0), there are n! permu-
tations of the temperatures out of (n+1)! total possibilities in
which the largest temperature is the last of the string. Thus
the probability that a new record occurs in the nth year of
observation, R,, is simply [14,19-22]

1
n+1l’

R =

" (8)

In a similar vein, the probability that the initial (Oth)
record is broken at the nth observation, Q,(0), requires that
the last temperature be the largest while the Oth temperature
be the second largest out of n+ 1 independent variables. The
probability for this event is therefore

0,(0)= )

nn+1)’
again independent of the form of the daily temperature dis-
tribution. Thus the average waiting time between the zeroth
and first records, (n)=="_ nQ,(0), is infinite.

More generally, the distribution of times between succes-
sive records can be obtained by simple reasoning [20,21].
Consider a string of iid random variables that are labeled by
the time index n, with n=0,1,2, ...,t. Define the indicator
function

if record occurs in the nth year,

1
0, = . (10)
0 otherwise.

By definition, the probability for a record to occur in the nth
year is R,=(o0,)= ﬁ Therefore the average number of
records that have occurred up to time 7 is

(Ry=2 (o) ~nt. (11)
n=1

Moreover, because the order of all nonrecord events is im-
material in the probability for a record event, there are no
correlations between the times of two successive record
events: that is, (o,,0,)=(0,,){c,). Thus the probability distri-
bution of records is described by a Poisson process in which
the mean number of records up to time ¢ is In¢. Conse-
quently, the probability I1(n,7) that n records have occurred
up to time 7 is given by [20]

(Ing)" ., (Inn)"1
Ab A N P e

II(n,1) ~ 0 e

(12)
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To appreciate the implications of these formulas for
record statistics, we first consider the warm-up exercise of an
exponential daily temperature distribution. For this case, all
calculations can be performed explicitly and the results pro-
vide intuition into the nature of record temperature statistics.
We then turn to the more realistic case of the Gaussian tem-
perature distribution.

A. Exponential distribution

Suppose that the temperature distribution for each day of
the year is p(T)=T"'e""'7. Equation (1) then gives

p(D=1-" p (D) =TT (13)

We now determine the typical value of each T). The zeroth
record temperature is Ty=[;7p(T)dT=T. Performing the in-
tegrals in Eq. (3) successively for each k gives the basic
result

T,=(k+1)T, (14)

namely, a constant jump between typical values of succes-
sive record temperatures.

For the probability distribution for each record tempera-
ture, we compute P,(7) one at a time for k=0,1,2,... using
Eq. (4). This gives the gamma distribution [23]

1 T*
PuD) = 7,me—T’T. (15)
This distribution reproduces the typical values of successive
temperature records given by Eq. (14); thus the typical and
true average values for each record temperature happen to be
identical for an exponential temperature distribution. The
standard deviation of P (T) is given by (T%)—(T)*
=T\s’m, so that successive record temperatures become less
sharply localized as k increases.
For the typical time between the kth and (k+ 1)st records,
Eq. (6) gives

tee1 — I =eT’</T. (16)

p=(Ty)
Substituting Ty=(k+1)7 into Eq. (16), the typical time is
eTWT=¢® 1) Thus records become less likely as the years
elapse. Notice that the time between records does not depend
on 7 because of a cancellation between the size of the tem-
perature “barrier” (the current record) and the size of the
jump to surmount the record.

For the distribution of waiting times between records, we
first consider the time between T, and T in detail to illus-
trate our approach. Substituting Egs. (13) and (15) into Eq.
(7), this distribution is

o0

1
0,(0)=7 f e (1 — e Ty 171G T, (17)
0

Performing this integral by parts gives the result of Eq. (9),
0,(0)=1/[n(n+1)].

For later applications, however, we determine the large-n
behavior of Q,(0) by an asymptotic analysis. Defining x
=T/7, we rewrite Eq. (17) for large n as
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0,(0)= f e (1 — e le™dx ~ f e Xe™ dx.
0

0
(18)

The double exponential in the integrand changes suddenly
from 0 to 1 when n=¢*, or x=Inn. To estimate Q,(0), we
may omit the double exponential in the integrand and simply
replace the lower limit of the integral by In n. This approach
immediately leads to Q,(0) ~n~2, in agreement with the ex-
act result.

In general, the average waiting time between the kth and
(k+1)st record is, from Eq. (7),

Q,(k) = f %;ﬁle‘rﬁ(l—e‘T/T)"‘le‘T/TdT. (19)
o k!

While we can express this integral exactly in terms of de-
rivatives of the B function [24], it is more useful to deter-
mine its asymptotic behavior by the same analysis as that
given in Eq. (18). We thus rewrite (1—-¢7*)""! as a double
exponential and use the fact that this function is sharply cut
off for x<<In n to reduce the integral of Eq. (19) to

k!

o] xk
0, (k) ~ f —e 2dx. (20)
Inn

To find the asymptotic behavior of this integral, we note that
the integrand has a maximum at x"=k/2. Thus, for n>x",
the exponential decay term controls the integral and we may
again estimate its value by taking the integrand at the lower
limit to give Q, (k) « (In n)*/n?. As a result of the power-law
tail, the average waiting time between any two consecutive
records is infinite.

However, the observationally meaningful quantity is the
typical value of the waiting time and we thus focus on typi-
cal values to characterize the steps between successive
records depicted in Fig. 4. The typical time to reach the kth
record, #;, is simply the sum of the typical times between
records. Thus

=ty =ti) + (o =) + - (=1 +1

k
k—1

e -1
=ef+ e+ reltel = — ~ 1.58¢5. (21)

—-e
Equivalently, Inz,=~k+0.459 so that Eq. (14) gives T
=~ (In 1;+0.541)7. Therefore the kth record high temperature
increases logarithmically with the total number of observa-
tions, as expected from basic extreme statistics consider-
ations [18].

After k record temperatures for a given day have been set,
the probability for the next record to occur is p~(T;)=e 7¥7.
Since T, ~7ln t;, we recast this probability as a function of
time to obtain

p-(t)=eWToce™Mi= 1y, (22)

thus reproducing the general result in [14,19-22]. The annual
number of record temperatures after ¢ years should be 365/t;
for the Philadelphia data, this gives 2.90 record temperatures
for the year 2000, 126 years after the start of observations.
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B. Gaussian distribution

We now study record temperature statistics for the more
realistic case of a Gaussian daily temperature distribution.
Again, to avoid the divergence caused the unphysical infinite
limits in the Gaussian, we begin by computing the typical
value T}, of the kth record temperature and the typical time #;
until this record. While the calculational steps to obtain these
quantities are identical to those of the previous subsection,
the details are more complicated because the integrals for p_
and p- must be evaluated numerically or asymptotically.

As will become evident, the mean value in the Gaussian
merely sets the value of T, and plays no further role in suc-
cessive record temperatures. Thus, for the daily temperature
distribution, we use the canonical form

p(T) — N/ij_o'ze—TZ/zal (23)

to determine the values of successive record temperatures.
The exceedance probability then is

[

1
p-(T) = e gy = 2 erfe(T/ \/ﬁ)

r \27d?
1 o —s

~ ?;e—ﬂlzo{ 7> \,20'2, (24)
Nz

where erfc(z) is the complementary error function [24].

Clearly, T()=0, since the Gaussian distribution is symmet-
ric. If we had used a Gaussian with a nonzero mean value,
then all the 7}, would merely be shifted higher by this mean
value. For the next record temperature, Eq. (3) gives

| 2

Te—T /Z(YZdT
Jo \2ma?

T, = ) (25)

1= o
f /l_e—rz/zosz
0o \2m

Substituting u=72/20” and v=T/v20? in the numerator and
denominator, respectively, we obtain

“ o

f —¢ "du

0o V2 2
Ty=——————=1/—0. (26)

1
— erfc(0
2erc()

Continuing this recursive computation, Eq. (3) gives
J N 1 TE_T2/202 dT
Ty \'2’77' 0'2

k+1 o] 1
12262
—¢ dar
ka \’2’770'2

For the first few k, it is necessary to evaluate the
error function numerically and we find 7,~=~1.712T;, T;
~2.288T), T,=2.782T), etc. Now, from Eq. (26), the argu-
ment of the error function in Eq. (27) is T/V20”

T o Ti20?
- erfe(T,/ \'@) .

(27)
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=T/ (T, \s"TT). Thus, for k=3, this argument is greater than 1,
and it becomes increasingly accurate to use the large-z
asymptotic form [24]

-2 |
erfc(z) ~ er(l——2+ )

N 2z

This approximation reduces the recursion for 7}, to

_ Tle—Tf/ztﬁ
A erfc(Ty/ \s’ﬁ)
Tle—ﬁ/zol
20° 72/202( ! )
——e 'k 1 _—— 4 -
\/ﬂi 2T N20%)?
2
~ Tk(l +—2), (28)

Ty

where we have used 7,=\20>/7 from Eq. (26).

Writing the last line as Ty, —Ty=0>/T,, approximating
the difference by a derivative, and integrating, the kth record
temperature for large k has the remarkably simple form

T, ~ \2ko”. (29)

Thus successive record temperatures asymptotically become
more closely spaced for the Gaussian distribution. It should
be noted, however, that the largest number of record tem-
perature events on any given day in the Philadelphia data is
10, so that the applicability of the asymptotic approximation
is necessarily limited.

The more fundamental measure of the temperature jumps
is again P,(T), the probability distribution that the kth record
high equals 7. For a Gaussian daily temperature distribution,
the general recursion given in Eq. (4) for P,(T) is no longer
exactly soluble, but we can give an approximate solution that
we expect will become more accurate as k is increased. We
merely employ the large-T asymptotic form for p(T) in the
recursion for Py(T) even when k is small so that T is not
necessarily much larger than o. Using this approach, we thus
obtain, for P,(7),

1 o1
T |
2 mc? 1
PUT) = f vom 4T’ : 6—72/202
0 0’2 e—T’Z/ZUZ V27TO’2
27T"?
7 1 >
-T21262
~ . 30
207 \/2170’26 (30)

Continuing this straightforward recursive procedure then
gives
1 T2k

Pk(T) ~ —102k+|e_T2/2(r2? (31)
r{kes)

k+—
2

where the amplitude is determined after the fact by demand-
ing that the distribution is normalized.
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FIG. 5. Simulation data for the probability distribution of the kth
record high temperature in degrees Celsius, P;(T). The distribution
Po(T) coincides with the Gaussian of Eq. (23), whose parameters
match the average temperature and dispersion in Philadelphia. The
solid curves correspond to a stationary temperature, while the
dashed curves correspond to global warming with rate v
=0.012 °C year™! (see Sec. VI).

In spite of the crudeness of this approximation, this dis-
tribution agrees reasonably with our numerical simulation
results shown in Fig. 5 (details of the simulation are de-
scribed in the following section). The distributions P;(T)
move systematically to higher temperatures and become pro-
gressively narrower as k increases, in accordance with naive
intuition. The approximate form of Eq. (31) gives a similar
shape to the simulated distributions, but there is an overall
shift to higher temperatures by roughly 1-2 °C.

Next, we study the typical time between successive record
temperatures. Equation (6) states that f,,,—f,=1/[p=(T})].
Using the above asymptotic expansion of the complementary
error function in the integral for p~ and T, ~ y2ko? from Eq.
(29), we obtain, for large &,

T —
feal =t~ Vam IZLeT/%/Z‘TZ ~ V4mket. (32)
'\J

Again, the times between records are independent of o; this
independence arises because both the size of the record and
the magnitude of the jumps to surpass the record are propor-
tional to o, so that its value cancels out in the waiting times.

Finally, we compute the asymptotic behavior for the dis-
tribution of waiting times between records. For simplicity,
we consider only the waiting time distribution Q,(0) until the
first record. The distribution of waiting times for subsequent
records has the same asymptotic tail as Q,(0), but also con-
tains more complicated preasymptotic factors. Substituting
the Gaussian for p(T) and the asymptotic form for p~(T) into
Eq. (7) and then expanding (1—p-)""! as a double exponen-
tial, we obtain

a 2 [ 2}
0) ~ . _ R 1207 dx.
0.(0) JO 27X exp{ o 27sze !

(33)

The double exponential again cuts off the integral when x is
less than a threshold value x* ~ 202 Inn. As a result, Eq.
(33) reduces to
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” 1 1
0,(0) ~ f S a5 (34)
V207 Inn 271X n

In the final result, we drop logarithmic corrections because
the approximation made in writing Eq. (33) also contains
errors of the same magnitude. Thus the distribution of wait-
ing times n until the first record again has a n~2 power-law
tail and the mean waiting time is infinite.

The typical time until the kth record is again given by the
sum of successive time intervals. Asymptotically, Eq. (32)
gives

ko J—
Iy~ f Vdamedn ~ V4arkek, (35)
0

or k=In t—% In(47 In 7). Thus the number of records grows
slowly with time; this result has the obvious consequence
that records become less likely to occur at later times.

IV. MONTE CARLO SIMULATIONS

To verify our theoretical derivations, Monte Carlo simu-
lations were performed for both the exponential and Gauss-
ian temperature distributions. Our simulations typically in-
volve 10° realizations (days) over a minimum of 1000 years
of observations and continue until six record temperatures
have been achieved. We use “years” consisting of 10° days
so that we generate a sufficient number of record tempera-
tures to have reasonable statistics. For our initial simulations,
we used a stationary mean and variance of 18 °C and 5 °C,
respectively, which are typical values for the distribution of
maximum daily temperatures in the spring or fall in Phila-
delphia. However, the numerical validation of our theoretical
distributions does not depend on the particular values of
mean and variance.

The simulation errors using an exponential distribution
for the kth record (with k=0,1,...,5) are less than 3
X 1075 for P,(T) [Eq. (15)] using a distribution with 100
bins, 8.3 X 1073 for Q,(0) [Eq. (9)], 2.2 X 1073 (relative error)
for the mean temperature of the kth record temperature [Eq.
(14)], and 0.01 (relative error) for the variance. The Gaussian
distribution yields fewer exact expressions for comparison,
but includes a relative error of 6.4 X 10~ for the mean tem-
perature of the kth record temperature [Eq. (28)], k
=0,...,5. For both the exponential and Gaussian distribu-
tions, the probability of breaking a record temperature with
time is well fit by the form 1/(¢+1), with an error of less
than 9.2 X 107>. These errors decrease as the number of real-
izations increases, and the small errors for simulations with
10° realizations confirm the correctness of the theoretical dis-
tributions.

Monte Carlo simulations were also performed to explore
the effect of temporal correlations in daily temperatures on
the frequency statistics of record-temperature events and the
magnitude of successive record temperatures. This topic will
be discussed in detail in Sec. VII. We used the Fourier filter-
ing analysis method [25,26] to generate power-law correla-
tions between daily temperature data for years consisting of

061114-7



S. REDNER AND MARK R. PETERSEN

k

FIG. 6. (Color online) Average kth record high (A) and record
low (V) temperature for each day, divided by the daily temperature
dispersion versus k (from the Philadelphia temperature data). The
dashed curve is T,/ o=1.15\k.

10* days over 200 years and for several values of the expo-
nent in the power law of the temporal correlation function.

V. RECORD TEMPERATURE DATA

Between 1874 and 1999, a total of 1707 record highs
(4.68 for each day on average) and 1343 record lows (3.68
for each day) occurred in Philadelphia [27]. Because the tem-
perature was reported as an integer, a temperature equaling a
current record could represent a new record if the measure-
ment was more accurate. With the less stringent definition
that a new record either exceeds or equals the current record,
the number of record high and record low events over
126 years increased from 1707 to 2126 and from 1343 to
1793, respectively. However, this alternative definition does
not qualitatively change the statistical properties of record
temperature events.

To compare with our theory, first consider the size of suc-
cessive record temperatures. According to Eq. (29), the kth
record high (and record low) temperature should be propor-
tional to \2ko?. Because the mean temperature for each day
has already been subtracted off, here 7} denotes the absolute
value of the difference between the kth record temperature
and the zeroth record. To have a statistically meaningful
quantity, we compute T,/o, for each day of the year and
then average over the entire year; here, the subscript a=h,!
denotes the daily dispersion for the high and low tempera-
tures, respectively. As shown in Fig. 6, the annual average
for T,/o, is consistent with Vk growth for both the record
high and record low temperature. Up to the 6th record, both
data sets are quite close, and where the data begin to diverge,
the number of days with more than 6 records is small—69
for high temperatures and 26 for low temperatures.

Finally, we study the evolution of the frequency of record
temperature days as a function of time. As discussed in Sec.
III, the number of records in the tth year of observation
(since 1874) should be 365/t. In spite of the year-to-year
fluctuations in the number of records, the prediction 365/t
fits the overall trend (Fig. 7). We also examine the distribu-
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FIG. 7. Probability that a record high temperature (top) or
record low (bottom) occurs at a time ¢ (in years) after the start of
observations. The symbols A and V are 10-point averages of Phila-
delphia data from 1874 to 1999 for ease of visualization. Simulated
data were produced by a stationary Gaussian distribution (v=0) or
where the mean increases according to v=0.003, 0.006, or
0.012 °C year™!. The stationary data fit the theoretical expectation
of 1/(¢+1) (thick dashed line), while warming leads the distribution
to asymptote to a constant probability (thin dashed lines).

tion of waiting times between records. Since the amount of
data is small, it is useful to study the cumulative distribution,
Q,(k)=="_ 0,,(k), defined as the probability that the time
between the kth and the (k+1)st record temperatures on a
given day is n years or larger. As shown in Fig. 8, the agree-
ment between the Philadelphia data and the theoretical pre-
diction from Eq. (34), Q,,(0) < 1/n, is quite good. The Monte
Carlo simulations match the theoretical prediction nearly ex-
actly, with an rms error of 9 X 1072,

In summary, the data for the magnitude of temperature
jumps at each successive record, the frequency of record
events, and the distribution of times between records are
consistent with the theoretical predictions that arise from a
Gaussian daily temperature distribution with a stationary
mean temperature.

VI. SYSTEMATICALLY CHANGING TEMPERATURE

We now study how a systematically changing average
temperature affects the evolution of record temperature
events. For global warming, we assume that the mean tem-
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FIG. 8. Probability that the kth record high temperature occurs
at time 7 (in years) or later, using simulated data (solid curves). The
k=1 simulated data closely match the asymptotic theoretical distri-
bution of 1/t (dashed line). Also shown are the k=1 data for record
high temperatures (A) and record low temperatures (V) for the
Philadelphia data.

perature has a slow superimposed time dependence vz, with
v >0 and where 7 is the time (in years) after the initial ob-
servational year.

A. Exponential distribution

Again, as a warm-up exercise, we first consider the ideal-
ized case of an exponential daily temperature distribution,

e T T >y,

36
0, T <vt, (36)

p(T:1) =

where we set the characteristic temperature scale 7 to 1 for
simplicity. In these units, both 7 and vr are dimensionless.
With this distribution, the recursion equation (3) for succes-
sive record temperatures becomes

‘f Te™TVi)dT

Ty

| etronar

Ty

Ti = (37)

The factor e’’*+! appears in both the numerator and denomi-
nator and thus cancels. As a result, T,=k+ 1, independent of
v. Thus a systematic temperature variation—either global
warming or global cooling—does not affect the magnitude
of the jumps in successive record high temperatures.
This fact was verified by numerical simulations with an
exponential distribution, where the distributions of P,(7) for
v=0.012 °C years™' and v=0 match to within a few percent
for k=0,...,5.

On the other hand, a systematic temperature dependence
does affect the time between records. Suppose that the cur-
rent record high temperature of 7, was set in year #;. Then
the exceedance probability at time #;+/ is
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p>(Tk;tk +]) = f e—[T—v(tk+j)]dT: e—(Tk—Utk)ejv = X@lv
T

(38)

The exceedance probability is thus either enhanced or sup-
pressed by a factor ¢ due to global warming or cooling,
respectively, for each elapsed year. The probability g,(T})
that a new record high temperature occurs n years after the
previous record 7} at time f; is

n—1

g,(T) =X ] (1 - eX), (39)

j=1

with ¢,(T})=¢"X; this generalizes Eq. (5) to incorporate a
global climatic change.

For the case of global warming (v >0), each successive
term in the product decreases in magnitude and there is a
value of j for which the factor (1—e/VX) is no longer posi-
tive. At this point, the next temperature must be a new
record. Thus we (over)estimate the time until the next record
after T, by the criterion (1-¢/°X)=0, or j=(T—vt,)/v
~ (k/v)—t;. Since this value of j also coincides with 7,
—t, by construction, we obtain #,~k/v. Thus the time be-
tween consecutive records asymptotically varies as f,,;—7;
~1/v. This conclusion agrees with a previous mathematical
proof of the constancy of the rate of new records when a
linear temporal trend is superimposed on a set of continuous
iid variables [28]; a different approach to deal with a linear
trend is given in [29].

If global warming is slow, the waiting time between
records will initially increase exponentially with &, as in the
case of a stationary temperature, but then there will be a
crossover to the asymptotic regime where the waiting time is
constant. We estimate the crossover time by equating the two
forms for the waiting times, f;,;—f;,=¢**!) (stationary tem-
perature) and 7, —t,=1/v (increasing temperature), to give
k*~-Inv. Now the average annual high temperature in
Philadelphia has increased by approximately 1.94 °C over
126 years. The resulting warming rate of 0.0154 °C per year
then gives k=~ 3.6. Thus the statistics of the first 3.6 record
high temperatures should be indistinguishable from those in
a stationary climate, after which record temperatures should
occur at a constant rate. Since the average number of record
high temperatures for a given day is 4.7 and the time until
the next record high is very roughly e>7—e*7=~190 years,
we are still far from the point where global warming could
have an unambiguous effect on the frequency of record high
temperatures.

For global cooling (v<0), the waiting time probability
becomes

n—1

(T =11 (1= y)emy, (40)

J=1

with g,(T})=e™"Y, where w=|v| is positive, and Y= Tk "k,
We estimate the above product by the following simple ap-
proach. When jw< 1, then /¥ <1, and each factor within
the product is approximately (1—Y). Consequently, for nw
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>1, each term in the product approximately equals (1-7Y)
for j<n"=1/w, while for j>n", ¢e7/" =0, and the later terms
in the product are all equal to 1. Thus

(1=Y)e™Y, n<n’

. 41
(1=Y)e™y n>n". “41)

Qn(Tk) -~ {

Using this form for ¢,, we find, after straightforward but
slightly tedious algebra, that the dominant contribution to the
waiting time until the next record temperature, f, ;—%;
=3"_nq,, comes from the terms with n<n" in the sum. For
the case slow global cooling, we thereby find

1Y

~— /Y = el 42
[1+w(1/Y—1)P ¢ “2)

Ty1 — Iy

Since #;,,—t;,=~dt/dk and using T~ k, Eq. (42) can be inte-
grated to give (1—e™%)=w(ef~1). As long as the right-hand
side is less than 1, a solution for #; exists. In the converse
case, there is no solution and thus no additional record highs
under global cooling or, equivalently, no more record lows
for global warming. For small w and in the precrossover
regime where ef~1,, the criterion for no more records re-
duces to > 1/w. If the daily low temperature in Philadelphia
also experienced a warming rate of 0.0154 °C per year, then
there should be no additional record low temperatures after
about 36 years of observations. However, the daily low tem-
peratures do not show a long-term systematic variation, so
new record lows should continue to occur, as is observed.

B. Gaussian distribution

We now treat the more realistic case where a systematic
temperature variation is superimposed on a Gaussian daily
temperature distribution, as embodied by

PT:= = T -v02e”, (43)
N2

The details of the effects of a systematic temperature varia-
tion on the statistics of record temperatures are tedious, and
we merely summarize the main results. We assume a slow
systematic variation 7;—v¢>0, so that an asymptotic analy-
sis will be valid. Under this approximation, both global
warming or global cooling lead to the following recursion for
Ty, to leading order:

T1<+1—Tk~£ 1+ 2. (44)
T T

k k

The term proportional to vt in Eq. (44) is subdominant, so
that T, still scales as ~v2ka?, for both global warming and
global cooling.

Next we determine the times between successive record
high temperatures. The basic quantity that underlies these
waiting times is again the exceedance probability, when the
current record is 7} and the current time is #;,+j. Following
Eq. (24), this exceedance probability is
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T —v(te+j) )

— . (45)
\"ﬁ

In the asymptotic limit where the argument of the comple-

mentary error function is large, the controlling factor in p- is

1
p=(Tit+j) ~ > erfc

o T =0T+ NP2 o =T = vi)*1207 poj(T-vi)l o (46)

The crucial point is that the latter form for the exceedance
probability has the same j dependence as in the exponential
distribution [Eq. (38)]. Thus our arguments for the role of
global warming with an exponential daily temperature distri-
bution continue to apply. In particular, the time between suc-
cessive records initially grows as y4ke*, but then asymp-
totically approaches the constant value 1/v. As a result, the
time before global warming measurably influences the fre-
quency of record high and record low temperatures will be
similar for both the exponential and Gaussian temperature
distributions.

Monte Carlo simulations were performed for warming
rates v=0.003, 0.006, and 0.012 °C/year, where the middle
case corresponds to the accepted rate of global mean warm-
ing of 0.6 °C for the 20th century [9]. Unlike the exponential
distribution simulations, for the Gaussian distribution P(7)
is slightly different in the cases of no warming and warming
(Fig. 5).

Figure 7 shows the results of numerical simulations using
the Gaussian distribution with 10° realizations for the three
warming rates. For the stationary case (v=0), the probability
of breaking a record after r years closely follows the theoret-
ical expectation of 1/(¢+1). For warming, the rate of break-
ing a record high (Fig. 7, top) ultimately asymptotes to a
constant frequency of approximately 1.25v by 10* years.
Given our crude calculation following Eq. (39) that the time
between records is 1/v, the agreement between the observed
rate of 1.25v and our estimate of v is gratifying. As also
predicted in our theory, the probability of breaking a record
low temperature under global warming precipitously decays
after a few hundred years (Fig. 7, bottom); eventually, record
low temperatures simply stop occurring in a warming world.

VII. ROLE OF TEMPORAL CORRELATIONS

Thus far our presentation has been based on independent
daily temperatures—no correlations between temperatures
on successive days. However, from common experience we
know that local weather consists of multiday patterns within
which smaller temperature variations occur. Anecdotally, the
temperature tomorrow will be close to the temperature today.
In fact, it has been found in global climatological data that
correlations between temperatures on two widely separated
days decay as a power law in the separation [30]. Here we
quantify these correlations for the Philadelphia data and then
discuss the potential ramifications of these correlations on
the frequency of record temperature events.

A. Daily temperature correlation data

From the Philadelphia data, we compute the normalized
interday temperature correlation function defined as
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FIG. 9. (Color online) The correlation functions C,(r) for high
(A), middle (O), and low temperature (V) versus time (in years).
The straight line of slope —4/3 is a guide for the eye.

_(TT)—(TXT) )

W= iy

Here i and j>1i denote the ith and jth days of the year, T; is
the temperature on the ith day, and (T}) is its average value
over the 126 years of data, while the index a=h,m,[ denotes
the high, middle, and low temperature for each day. If i is a
day near the end of the year, then T will refer to a tempera-
ture in the following year when the separation between the
two days exceeds (365—1i). According to Eq. (47), if the tem-
peratures T; and T are both greater than or both less than the
respective average temperatures for days i and j, then there is
a positive contribution to the correlation function. Thus
¢,(i,j) measures systematic temperature deviations from the
mean on these two days. For convenience, we normalize the
c,, 50 that they all equal 1 when |i—j|=0.

The correlation functions depend primarily on the separa-
tion between the two days, |i—j|, and weakly on the initial
day i. To obtain a succinct measure of the temperature cor-
relation over a year, we define the annual average correlation
function

365

C (1) =D colii+1). (48)

i=1

All three correlations functions are consistent with a power-
law decay C,(r) ~ 17 (Fig. 9). Over a range of approximately
1-20 days, the best-fit value of y is 1.29 for C; (which re-
mains strictly positive until 36 days) and y=1.44 for C,,
(which remains strictly positive until 41 days). The correla-
tion function C; is visibly distinct and remains strictly posi-
tive until 149 days, with a best-fit exponent of y=1.36.
These power-law decays in the temperature correlation func-
tions are consistent with the previous results of Ref. [30].
However, the exponent value that we observe, approximately
4/3, is considerably larger than that reported in Ref. [30].
The time integrals of the high-, middle-, and low-
temperature correlation functions are 1.78, 2.04, and 5.16
respectively. We may therefore view 1.78 as the average
length of an independent high-temperature event and, corre-
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FIG. 10. Simulation data for the probability distribution of the
kth record high temperature in degrees Celsius, P(7), where daily
temperatures are uncorrelated (solid line) and power-law correlated
with exponent 1.5. (dashed line).

spondingly, 365/1.78 =205 as the number of effective inde-
pendent “days” for high temperatures. Parallel results hold
for middle and low temperatures. These numbers provide a
feeling for the extent of multiday weather patterns because of
temperature correlations.

B. Simulations with correlated daily temperatures

To determine if these correlations affect the frequency and
magnitude of record temperature events, we performed
Monte Carlo simulations in which daily temperatures had
temporal correlations that matched the data discussed above.
We generate such correlated data using the Fourier filtering
method of Refs. [25,26] with a correlation function of the
form

Cot)=17" (49)

for a range of y values around the observed value of 1.3—1.4.
Due to the computational demands of generating correlated
data, simulations of years consisting of 10*days for
200 years were performed, which are less extensive than our
simulations for uncorrelated temperatures. We find that the
statistics of the time between record temperature events and
the magnitude of successive record temperatures are virtually
identical to those obtained when the temperature is an inde-
pendent identically distributed random variable (Figs. 10 and
11). Our results are also not sensitive to the value of the
decay exponent y of the correlation function within our
tested range of y<[0.5,1.5]. We conclude that the discus-
sion in Secs. III-VI, which assumed uncorrelated day-to-day
temperatures, can be applied to real atmospheric observa-
tions, where daily temperatures are correlated. It is worth
mentioning, however, that interday correlations do strongly
affect the statistics of successive extremes in temperatures

[31].

C. Correlations between record temperature events

While temperature correlations do not affect record statis-
tics for a given day, these correlations should cause records
to occur as part of a heat wave or a cold snap, rather than
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FIG. 11. Probability that the kth record high temperature occurs
at time 7 (in years) or later, using uncorrelated (solid line) and
power-law correlated daily temperatures (dashed line).

being singular one-day events. As a matter of curiosity, we
studied the distribution of times (in days) between successive
record events, as well as the distribution of streaks (consecu-
tive days) of record temperatures from the time history of all
record temperature events.

Because the number of record temperatures decreases
from year to year, these time and streak distributions are not
stationary. We compensate for this nonstationarity by rescal-
ing so that data for all years can be treated on the same
footing. For example, for the distribution of times between
successive records, we rescale each interevent time by the
average time between records for that year. Thus, for ex-
ample, if two successive records occurred 78 days apart in a
year where 5 record temperature events occurred (average
separation of 73 days), the scaled separation between these
two events is 7=78/73~1.068. For the length of record
streaks, we similarly rescaled each streak by the average
streak length in that year, assuming record temperature
events were uncorrelated.

The distribution of times between successive record tem-
perature days decays slower than exponentially (Fig. 12); the
latter form would occur if record temperature events were

2

10

p(v)

scaled time interval t

FIG. 12. (Color online) Distribution of times p(7) between suc-
cessive record temperature events (A record highs, V record lows).
The times are scaled by the average time between record events for
each year.
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uncorrelated. In a similar vein, we observe an enhanced
probability for records to occur in streaks. Since record
streaks are rare, we can only make the qualitative statement
that the streak distribution is different than that from uncor-
related data. Our basic conclusion is that interday tempera-
ture correlations do affect statistical features of successive
record temperature events but do not affect the statistics of
record temperatures on a given day, where events are more
than one year apart.

VIII. DISCUSSION

Two basic aspects of record temperature events are the
size of the temperature jump when a new record occurs and
the separation in years between successive records on a
given day. We computed the distribution functions for these
two properties by extreme statistics reasoning. For the
Gaussian daily temperature distribution, we found that (i) the
kth record high temperature asymptotically grows as ko,
where o is the dispersion in the daily temperature, and (ii)
record events become progressively less likely, with the typi-
cal time between the kth and (k+1)* record growing as vkeX.
This latter result is independent of o so that systematic
changes in temperature variability should not affect the time
between temperature records.

From these predictions, the distribution of waiting times
between two successive records on a given day has an
inverse-square power-law tail, with a divergent average wait-
ing time. Furthermore, the number of record events in the tth
year of observations decays as ! [14,19-22]. These theoret-
ical predictions agree with numerical simulations and with
data from 126 years of observations in Philadelphia. Another
important feature is that the annual frequency of record tem-
perature events is not measurably influenced by interday
power-law temperature However, these correlations do play a
significant role at shorter time scales.

Our primary result is that we cannot yer distinguish be-
tween the effects of random fluctuations and long-term sys-
tematic trends on the frequency of record-breaking tempera-
tures with 126 years of data. For example, in the 100th year
of observation, there should be 365/100=3.65 record-high
temperature events in a stationary climate, while our simula-
tions give 4.74 such events in a climate that is warming at a
rate of 0.6 °C per 100 years. However, the variation from
year to year in the frequency of record events after 100 years
is larger than the difference of 4.74-3.65, which should be
expected because of global warming (Fig. 7). After
200 years, this random variation in the frequency of record
events is still larger than the effect of global warming. On the
other hand, global warming already does affect the frequency
of extreme temperature events that are defined by exceeding
a fixed threshold [2-7].

While the agreement between our theory and the data for
record temperature statistics is satisfying, there are various
facts that we have either glossed over or ignored. These in-
clude (i) a significant difference between the number of
record high and record low events: 1705 record high events
and only 1346 record low events have occurred the
126 years of data. (ii) A propensity for record high tempera-
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FIG. 13. (Color online) Number of high-temperature records for
each day of the year, averaged over a 30-day range (top). Below are
the variances in the high (A), middle (O), and low (V) tempera-
tures for each day averaged over a 10-day range.

tures in the early spring. This seasonality is illustrated both
by the number of records for each day of the year and by the
daily temperature variance ;= \/<T,-2>—(T,<>2, where (T;) and
<T52> are the mean and mean-square temperatures for the ith
day (Fig. 13). (iii) The potential role of a systematically in-
creasing variability on the frequency of records. For the last
point, Krug [32] has shown that for an exponential daily
temperature distribution whose width is increasing linearly
with time, the number of record events after 7 years grows as
(In 7)?, intermediate to the In ¢ growth of a stationary distri-
bution and linear growth when the average temperature sys-
tematically increases. (iv) Day/night or high/low asymmetry
[33]. That is, as a function of time there are more days whose
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highs exceeds a given threshold and fewer days whose high
is less than a threshold. Paradoxically, however, there are
fewer days whose lows exceed a given temperature and more
days whose lows are less than a given temperature. Since
highs generally occur in daytime and lows in nighttime,
these results can be restated as follows: the number of hot
days is increasing and the number of cold nights is increas-
ing. We do not know how this latter statement fits with the
phenomenon of global warming.

Another caveat is that our theory applies in the asymptotic
limit, where each day has experienced a large number of
record temperatures over the observational history. The fact
that there are no more than 10 record events on any single
day means that we are far from the regime where the
asymptotic limit truly applies. Finally, and very importantly,
it would be useful to obtain long-term temperature data from
many stations to provide a more definitive test of our predic-
tions.
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