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INTRODUCTION

The kinetics of the monomer-monomer and the monomer-dimer catalysis models
are discussed. In the monomer-monomer model, two reactive species, A and B, adsorb
irreversibly onto single sites of a catalytic surface, and nearest-neighbor adsorbed AB
pairs can bond to form a reaction product which desorbs. In the monomer-dimer model,
one of species is diatomic, and requires two free lattice sites for adsorption. A complete-
graph solution shows that finite systems eventually “saturate”, i. e., become completely
covered by only a single species. For the monomer-monomer process, this saturation is
driven by diffusive concentration fluctuations, and the saturation time increases linearly
in the number of sites N. For the monomer-dimer process, there is an effective “po-
tential” that needs to be surmounted by the fluctuations, leading to a saturation time
which grows exponentially in N. This slow saturation gives rise to the apparent reactive
steady state of the model.

We also discuss various aspects of the spatial arrangement of the reactants on a
catalytic surface. The effect of the surface reaction is to introduce an effective repulsion
between unlike species, leading to clustering. We discuss the kinetics of this cluster
growth and related statistical properties of the growing clusters. We also consider the
situation where a microscopic attractive interaction between adsorbed unlike species
competes with the effective repulsion. This competition stabilizes a reactive steady
state. Connections between catalysis models and interacting particle systems will also
be mentioned.

THE MONOMER-MONOMER MODEL

The monomer-monomer model consist of two steps [1]: First there is adsorption
of A’s and B’s, onto single unoccupied substrate sites at respective rates k4 and kp,
yielding the adsorbates, 4, and B,. Secondly, when adsorbates of different species
occupy nearest-neighbor substrate sites, they react at a rate k, to form a product which
desorbs, leaving two sites available for further adsorption. This process is represented
by:

A+ *4 4,
B+S %2 B, (1)
A, + B, 25 (AB) 1 +25.

If ka,kBp < ky, the process is adsorption-controlled, and reaction-controlled in
the opposite case. In the adsorption-controlled limit, if adsorption leads to a nearest-
neighbor AB pair, then a reaction occurs where one pair bonds and desorbs from the
substrate. In the reaction-controlled limit, adsorption occurs rapidly so that the sub-
strate is always nearly full. If two randomly-chosen nearest-neighbor sites happen to be
occupied by opposite species, a reaction occurs in which the reactants desorb, with each
unoccupied site then being immediately refilled by either an A with probability p, or a
B with probability g¢.

KINETICS ON THE COMPLETE GRAPH

To realize the mean-field limit, model the surface by an N-site complete graph
where each site is “connected” to all other sites. On this graph, the spatial distribution
of the reactants is irrelevant, and global densities suffice to describe the system. In the
adsorption-controlled limit, the instantaneous reaction of AB pairs and the fact that all



sites are reactively connected forbids the coexistence of A’s and B’s on the surface. The
system is characterized by n = n4 — np, where n4 and np are the numbers of A and B
adsorbates, respectively. The number difference n equals n 4, if the substrate contains
only A’s, and equals —np, if the substrate contains only B’s. In an elemental event
of adsorption (and possible surface reaction), n changes by +1 if an A is deposited, by
—1 if a B is deposited, and changes by 0 if deposition is attempted onto a previously
occupied site.

The hopping probabilities corresponding to these possibilities are
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If the surface becomes completely covered by a single species, n = £N, the hopping
probabilities are identically zero, corresponding to saturation. Defining Py(t) as the
probability that the substrate has n adsorbed reactants at time ¢, then P,(¢) obeys the
master equation
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Pa(t+At) = Pa(t) = p(1-

for |[n| < N — 1, while for |n| = N slightly different equations apply to account for the
absorbing boundary condition. For a catalytic surface with a constant external supply of
reactants, a time unit corresponds to the time required for an adsorption attempt onto
each surface site. Consequently, the time interval At for a single elemental event in the
stochastic process is proportional to 1/N.

Writing £ = n/N, with z ranging between —1 and +1 in steps of 1/N, and defining
the continuous probability P(z,t)dz = £ Pn(t) as N — oo, the probability density
satisfies the Fokker-Planck equation,

Ple,t) = (4= D) (1= o) Ple,f) + 5 g (L= o) Pet). (&)

The diffusion coefficient is state dependent, D(z) = (1 — |z|), reflecting the probability

of successful adsorption being proportional to the fraction of empty sites, 1 — |z|. The

evolution of the surface concentration therefore can be viewed as the motion of a random
walk moving in an absorbing interval that is increasingly “sticky” near the extremities.

If the walk reaches the endpoints where D = 0, the walk sticks, corresponding to sat-
uration. In a finite-size system, therefore, saturation must occur in a finite time, and
the probability that the system has not yet saturated decreases exponentially in time,
asymptotically. This saturation stems from the fluctuations due to the discreteness of a
finite-size system when p = q.

The general solution to the Fokker-Planck equation in the interesting case of p =

P(z,t) = i A, N1lon 1 - o)) exp (—jiﬁt) , (5)
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where the A, are fixed by initial conditions, and where jg 5 is the n't zero of the Bessel
function of order 0. The resulting probability density has a cusp at the origin, which
arises from the discontinuous first derivative in D(z) at ¢ = 0, and the probability
density increases near the edges of the interval. The qualitative effect of the state-
dependent diffusion coefficient is to increase the probability of the system being close
to the saturated state and also to inhibit the ultimate saturation, relative to a constant
diffusivity system.

From P(z,t), the “survival” probability, S(t) = f_'_*'ll P(z,t)dz, i. e., the probability
that the substrate has not saturated by time ¢, is S(¢) = 3, Snexp (—;‘:), where
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Ta = 8N/j¢ . is the characteristic decay time of the n'* mode (1o ~ 1.38N, while for

a constant diffusivity system 79 = 4N/7? = 0.405N). A closely related quantity is the
mean saturation time, 1. e., the mean-first passage time to reach N in the stochastic
process. Denote the mean first-passage time as ¢,, when starting at site n, corresponding
to a substrate which initially contains n A’s. Then t,, obeys the recursion relation,

1 n ' 1 n n
th = 5(1 - —N-)(tn-q + At) +,§(1 - 'A—,)(tn+1 + At) + "N'(tn + At). (6)

Taking the continuum limit this recursion relation and using At = 1/N, one finds the
solution
t(z) = 2N(1 — z)(1 — In(1 — 2)). (M

where t(z) now denotes the first-passage time to %1, starting from an initial surface
coverage ¢ = n/N. Thus the mean saturation time grows linearly in N for z = 0 (a
nearly empty system), and there is a logarithmic dependence for |z| ~# 1 —1/N (a nearly
full system).

To summarize, the complete graph solution is equivalent to a hindered diffusion
process on a one-dimensional absorbing interval. This equivalence provides a useful
intuitive picture for the kinetics of the monomer-monomer model. In the mean-field
approach, saturation of the surface, corresponding to absorption at the endpoints in the
underlying diffusion process, occurs in a time which is proportional to V. The probability
of not being saturated decays exponentially at long times. These features are observed
in simulations of two- and higher-dimensional substrates.

CLUSTERING IN THE MONOMER-MONOMER MODEL

When the monomer-monomer process takes place on a surface of finite spatial di-
mensionality, the reaction between unlike species leads to an effective repulsion between
unlike species. Consequently, there is a natural tendency for particles of the same species
to cluster into domains of ever-increasing size. In one dimension, this clustering can be
understood on the basis of the close analogy between the behavior of the motion of
domain walls and diffusive annihilation processes in one dimension. Thus the average
domain size grows as v/%, and the distribution of domain sizes is expected to be sharply
peaked. On the other hand in two dimensions, the number of clusters of s-sites, n,(t)
varies as s~7, with 7 &~ 1.95, over many decades is s [2]. Furthermore, the typical cluster
size grows linearly in time. The origin of these power-law behaviors is not clear. The
clustering and concomitant linear growth of the typical cluster size is the feature that
leads to a saturation time which grows as a power of the system size.

These properties of the size distribution are closely analogous to clustering phenom-
ena in the voter model [3]. This is an interacting particle system in which each site of a
lattice contains an A or a B, and the state of each site can change at a rate proportional
to the number of neighboring sites which are in the opposite state. One one and two
dimensions, it has been proved that the voter model “clusters”, in a manner analogous

to the monomer-monomer model. The nature of the cluster size distribution in three
dimensions has not yet been addressed fully.

THE MONOMER-DIMER AND INTERACTING MONOMER-MONOMER MODEL
The phenomenologically richer monomer-dimer process can be usefully analyzed by
an approach in the same spirit to that employed above. The monomer-dimer process
consists of the following steps [4]:
Ay +25 — 245
B+ S — Bs (8)
As+ Bs — (AB) 1 +28S.

In the deposition step, an A; is chosen with probability p, or a B is chosen with prob-
ability ¢ = 1 — p, and an attempt is made to adsorb the chosen molecule either onto a




pair of nearest-neighbor sites (Az), or onto a single site (B). If adsorption does occur,
then if AB nearest-neighbor pairs are created, one such pair immediately bonds into an
AB molecule which desorbs from the lattice.

Again, the states of being saturated by all A’s or by all B’s are absorbing. Thus the
apparent reactive steady state is actually a transient, albeit very-long-lived, phenomenon
in a finite size system. To determine the nature of this transient, consider the macroscopic
rate equation for the number difference n in the monomer-dimer process on the complete
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For p < -;— the system ultimately saturates to B’s, n(t — co) = —1, unless the system

is initially saturated with all A’s. However, for p > %, there is a stable non-trivial
fixed point at n* =1 — -2% which is the attractor if n(0) > —n*. The point n* is the

reactive steady state for an infinite system in the mean-field limit. However, because the
saturated states are the only true absorbing points, fluctuations will ultimately drive a
finite system away from n* to the saturated states. This can be seen by an analysis of
the master equation which can be written in the same spirit as Eq. (3). In the monomer-
monomer process these fluctuations had to overcome only a state-dependent diffusion
constant which vanished monotonically as the saturated state is approached. However,
in the monomer-dimer process these fluctuations must also overcome a potential “well”
induced by the presence of a stable fixed point in order to reach saturation. Thus while
the mean saturation time increases as a power-law of the system size N for the monomer-
monormer process, increases as eV for the monomer-dimer process. The anomalously long
saturation time manifests itself as the observed reactive “steady-state” in simulations of
large systems.

It is also possible to stabilize an apparent reactive steady-state in the monomer-
monomer model by introducing energetic interactions between adsorbates which compete
with the reaction-induced repulsion between unlike species. For example, suppose that
whenever a particle is deposited in a small unoccupied region, it moves preferentially next
to a site containing the opposite species. This simple construction turns out destabilize
the tendency for growth of large single-species domains. Consequently, the concentration
fluctuations that lead to saturation are damped out. We find that the saturation time
for this system can grow faster than a power-law in the system size. Further properties
of this type of interacting system are under investigation.
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