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Abstract. The survival probability,Sy (), of a diffusing prey (‘lamb’) in the proximity of

N diffusing predators (a ‘pride of lions’) in one dimension is investigated. When the lions
are all to one side of the lamb, the survival probability decays as a non-universal power law,
Sy (1) oc t78N , with the decay exponerfty proportional to InV. The crossover behaviour as a
function of the relative diffusivities of the lions and the lamb is also discussed. When co,

the lamb survival probability exhibits a log-normal decay, (1) o« exp(— In? 7).

1. Introduction

Consider a particle system which consists of a diffusing preyMdriddependent, diffusing
predators, withN either finite or infinite. The prey is absorbed, or dies, whenever

it is touched by any of the predators. We are interested in the probalSility) for

this ‘lamb’ surviving until timer when it is besieged by these predatory ‘lions’ [1].
While this appears to be a simple problem, there are important aspects of the long-
time behaviour which are incompletely understood. Their resolution has fundamental
ramifications for diffusive processes in the presence of complex absorbing boundaries
and also has practical implications, as this type of capture process appears in a variety
of applications, such as diffusion-controlled chemical kinetics, wetting, melting, and
commensurate—incommensurate transitions (see, e.g., [2—4]). It is known rigorously that
for spatial dimension! > 3, the capture process is ‘unsuccessful’ (in the terminology of
[1]), in that there is a finite probability that the lamb survives indefinitely for ahyand

for any initial spatial distribution of lions. This result is a consequence of the transience
of random walks ford > 2 [5]. There may also be some relation between the number
of distinct sites visited by random walkers and the lamb survival probability fbr 2

[6]. Ford = 2, the capture process is ‘successful'-the lamb dies with probability one.
However, diffusing lions in two dimensions are still sufficiently poor predators that the
average lifetime of the lamb is infinite. Moreovesy (1) o [S1(H)]Y o [In¢]~Y, i.e. the
many-body nature of the capture process is basically irrelevant.

In one dimension, however, diffusing lions are more efficient in their predation because
of the recurrence of random walks [5]. This typically leads to a lamb survival probability
which decays as a power law in time. More generally, we may consider the survival
probability, Sy »(t) = Sy y(¢), when initially N lions are placed to the left an®f lions
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are placed to the right of the lamb. The most interesting situation is when iniNallpns
are to one side of the lamb. For this initial condition, realizations in which the lamb runs
away from the lions leads to an anomalously slow decay of the lamb survival probability.
Our primary result is to determine the asymptotic behaviour of the lamb survival probability
in this predatory environmensy o(t) = Sy(¢). For finite N, we predict thatSy () ~ t#v
with By o INN, while So.(r) « exp(—In?r) for N — oco. We shall argue that these
dependences arise from the fact that the motion of ‘closest’ lion (whose individual identity
can change with time) is enhanced compared with normal diffusion. When the number
of lions is finite, this enhancement manifests itself in the diffusivity of the last lion being
proportional to InV. This factor is ultimately responsible for the logarithmic increase of
By on N. In the limit N — oo, the co-ordinate of the last lion actually varies-asint,
and leads to the lamb survival probability varying as @xm?1).

To provide context for our results, consider first a system consisting of one lamb and
one lion, i.e.(M, N) = (1,0) or (0,1). The survival probability is trivially calculable in
this case, since the distance between the lion and the lamb undergoes pure diffusion with
an associated diffusivityp, + D,. Here D| and D, are the lion and lamb diffusivities,
respectively. Because of the equivalence to diffusion, the survival probability [5] is

X0
100 b+ Do @
where xg is the initial separation between the lion and the lamb. A more interesting
situation is that of two lions with either: (i) one lion on either side of the lamb (a
‘trapped’ lamb), or (ii) both lions to one side (a ‘chased’ lamb). These two systems can
be solved straightforwardly when the diffusivities of all three particles are different. For
the trapped lamb, denote the particle positionscgsxy, andxs, with 1 and 3 referring
to the surrounding lions, and 2 to the trapped lamb. Let the corresponding diffusivities be
D1, Dy, and D3. To solve for the survival probability, it is convenient to introduce the
rescaled co-ordinateg = x;/+/D;, each of which diffuses at the same rate. The survival
of the lamb corresponds to the constraipts/D; < y2+/D> and y, /D, < ya«/Da. Since
the co-ordinatey; diffuse isotropically, lamb survival is equivalent to the survival of a
random walk in three-dimensional space within the wedge-shaped region bounded by the
absorbing planesi/D1 = y»,«/D> and y>+/D, = y3+/D3. By straightforward geometric
considerations [2], this three-dimensional diffusion process is equivalent to diffusion in two
dimensions within a wedge of opening angle

6 = cost < D2 ) . 2)
V(D1 + D2)(D2 + D3)

For this two-dimensional problem, it is well known that the survival probability
asymptotically varies as~™/% [7]. Identifying D; = D3 = D and D, = D, leads to

2 -
— | Z cos A 3
B11(R) [n cos 1+R} (3a)
whereR = D,/D,. Similarly, one finds for the ‘chased’ lamb
2 -1
=|2—-Zcost —— . 3b
B2.0 [ _ cos 1+R] (3b)

Physically, wherR — oo, the motion of the lions becomes irrelevant and the trapped
lamb problem maps to a diffusing particle in a fixed size absorbing domain. For this
geometry, the survival probability decays exponentially in time, correspondifg;te> oo
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in (3a). Conversely, for the lamb at resR — 0, the survival probability is the square
of the corresponding survival probability in the two-particle system so ghat— 1. For
the chased lamb (equationb(3, 820 has the limiting valueg,;o = % for R - oo and
B20 = 1 for R — 0. These two values are in accord with a direct consideration of the
extreme cases of immobile lions or immobile lamb, respectively. Note also th@ ferl
we getfi1 = g and 20 = %, results which were known previously [1].

Extending the above approach, the survival of a lamb in the presende-of2 lions
can be mapped onto the survival of @i + 1)-dimensional random walk which is confined
within an absorbing hyper-wedge. This problem does not appear to be generally solvable,
however. Numerically, there has been an investigation [1] of the one-sided equal-diffusivity
problem for the case®’ = 3, 4, and 10 as part of an effort to understand the general
behaviour onN. This simulation reveals that the exponeiit grows slowly with NV, with
Bz = 091, B4 ~ 1.032+ 0.01, andBig ~ 1.4. (Because the cas€ = 4 is close to the
transition between a finite and infinite lamb lifetime, there is more numerical data and hence
a greater precision in the estimate f&y.) The understanding of this slow dependence of
By on N is the focus of our work.

In the next section, we provide a heuristic argument for the dependengg oh N,
as well the behaviour foN — oco. A more complete derivation of these results is given
in section 3. The general dependence of the survival probability on theRatioD,/ D,
is also considered. In section 4, we treat the cas®& 6f> co. A general discussion and
conclusions are given in section 5.

2. Heuristic arguments for a one-sided siege

First consider the trivial case of a stationary lanih, = 0. For non-interacting lions, the
lamb survival probability is just the product of the survival probabilities associated with
each lion—-lamb pair. This immediately gives (1) o (r=¥?)N, from which By (0) = N/2.

For this case, the relative positions of the lions do not matter in the asymptotic behaviour
of Sy(?), i.e. it is immaterial whether the lamb is ‘trapped’ or ‘chased’. When the lamb
also diffuses, it is convenient to consider the survival probability in the rest frame of the
lamb. Although the lions still diffuse independently, their relative motions with respect to
the lamb are not independent. Therefore to determine the survival probability of a diffusing
lamb, it is more useful to track the position of the closest lion only. For concreteness and
simplicity, suppose initially that all the lions are at the origin and the lamb ig at 0. A

rough estimate for the location of the closest or ‘last’ liaf(z), is provided by

o 1 2
—X /4D|_l —
I dx = 1/N. (4)
/;+(;) Ja4mr Dt
This specifies that there should be one lion in the rapgér), co) out of an initial group
of N lions. By asymptotic expansion of this integral, the location of the last lion is given

by

x4 (t) ~+/4D t InN. (5a)

In the limit N — oo, a physically tractable initial condition is to have a uniform density of
lions ¢g extending from—oc to 0. In this situation, only a numbe¥ «/COZDLI of the lions

are ‘dangerous’, i.e. are potential candidates for being closest to the lamb. Consequently,
for N — oo, the leading behaviour of, (¢) is

x4(t) ~/2DLt In(c3D, 1) N — oo. (5b)
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The next step in our heuristic approach is to postulate that for lstghe true stochastic
motion of the last lion can be replaced by a continuous matigin with x(¢) = x, (¢), as
given in equations (5). Then the system reduces to a two-body problem of a diffusing lamb
and an approaching absorbing boundary, whose location (8) = +/Az. As discussed
in the next section, the survival probability of a lamb adjacent to such an approaching
‘cliff can be calculated analytically. This gives the exponent of the survival probability as
B ~ A/16D,. Substituting the appropriate value df as specified by equations (5), we
obtain Sy (t) ~ t~#v® with By (R) ~ IN(NR)/4R for finite N, and S (1) ~ exp(— In?7)
for N — oo.

3. Asymptotic analysis for a one-sided siege

A more rigorous approach is to consider the survival probability in an auxiliary ‘deadline’
problem whose asymptotic behaviour turns out to give a tight lower bound for the true
survival probability of the lamb. The deadline problem is defined as follows. Consider
an imaginary pointegead?) between the lamb and the lions which moves deterministically
according toxqead?) = v/At. If the lamb crosses this line, it is considered to have died;
analogously, if any of the lions overtakes the deadline, the lamb is again considered to have
died. Our strategy is to determine the survival probability in this auxiliary problem, and
then maximize this probability with respect to the parameterFirst note that a deadline
position which is proportional ta/r already optimizes the lamb survival probability with
respect to other power-law motions for the deadline. That isif¢) were proportional to

t* with o < % we would asymptotically recover the behaviour for the stationary deadline,
which grossly overestimates the decay exponemas- N/2. Conversely, for faster than
diffusive deadline motion, i.ex > % the probability that the lamb does not hit the deadline
decays as a stretched exponential [8]; therefore, this case can also be ignored. The marginal
situation ofa = % thus plays a fundamental role.

To compute the survival probability for the deadline problem, we have to solve two
first-passage problems. (i) The survival of a diffusing particle in the proximity of a
receding absorbing boundary, or cliff. This corresponds to a single lion, and we define
the probability that a lion does not reach the cliff to Bgn(r) oc ¢~ PienPLA  (jj) The
survival of a diffusing particle in the proximity of an approaching cliff. This corresponds
to the lamb, and the associated survival probability is definedag(r) oc ¢t~ Aam(DeA)

The full survival probabilitySy () o< t=#v is clearly the productSl’i‘{m(t) Siamb(?), SO that

By = Biamn(D¢, A) + NBiion(DL, A). Once we know the exponenfion and Biamn, We
optimize the decay exponemty with respect to the amplitudd. By appealing to the
method of ‘optimal fluctuation’ [9], we hypothesize that this extremal survival probability
in the deadline problem gives the true asymptotic behaviour.

Fortunately, the exponen.m, and Siion have been computed in various physical [10]
and mathematical studies [11] so that the full deadline problem is solvable. For
completeness, however, we outline our approach, given in [8], which has the advantage
of conceptual and technical simplicity. While this earlier work considered only the case
of a receding cliff (relevant for the lions), the extension to the case of an approaching
cliff can be derived with minimal additional effort. Let us therefore recall the steps in the
computation of the survival probability for the case of the receding cliff. Consider a lion
which is initially placed on the negative-axis and that the cliff position iso(r) = +/At.

In the long-time limit, the lion density approaches [8] the scaling form

clx, 1) ~ 17120 (g) 6)
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whereé = 1— x/xg is the appropriate dimensionless distance variableC4ayis a scaling
function. The initial co-ordinate of the lionyoco < x < xg, corresponds to & & < oo.
The power law prefactor is chosen to ensure that the survival probability decayécas
as defined previously.
Substituting equation (6) into the diffusion equation, one finds that the scaling function

satisfies

D d’C 1 dc 1

Ad§2+2(5_1)ds+(ﬂ"°”+2)c_o' (7)
Introducing the transformation

2D 2

e-1= 0 o =ew(- )00 ©
one finds thatD(n) satisfies the parabolic cylinder equation of ordgf.r [13],

d2D2 ion 1 772

dnf' + |:2,3Iion + é - 4i| DZﬁ"On =0. (9)

The absorbing boundary condition at the edge of the cliff implies

D(-y/A/2D0) = 0. (10a)

On the other hand, to avoid a singular solutiom at oo, the second boundary condition is
D(n = o0) = 0. (10b)

Mathematically, the determination gf,n andD(n) is equivalent to finding the ground-
state energy and wavefunction of a quantum particle in a potential composed of an infinite
barrier aty = —/A/2D,_ and the harmonic oscillator potential for> —./A/2D_ [12].

Higher excited states do not contribute in the long time limit. This relation with quantum
mechanics allows one to apply well known techniques to determine the asymptotic behaviour
[8, 11]. Among the two elemental solutions of the parabolic cylinder equafiop,, (1)
andDag,,,(—1), only the former satisfies the boundary conditid(oo) = 0. Therefore, the
absorbing boundary condition of (Apdetermines the decay expondtn = Biion(Dy, A).

As discussed previously, the interesting behaviour emerges in the Maigait. For
this case, the deadline position grows gl but with an anomalously large amplitude
A. Consequently, the probability distribution of each lion is only weakly affected by the
receding deadline. This allows us to employ the ‘free particle’ Gaussian approximation for
the probability distribution of each lion. Although this form does not satisfy the absorbing
boundary condition, the error is negligible becadss> 1. Consequently, we can determine
the decay exponent simply by computing the flux to the absorbing boundary for the assumed
Gaussian probability distribution [8]. This yields

Bion(Di, A) = %ﬁ CREA (11)
In the limit A — oo, this simple-minded approach coincides with the results from a complete
analysis in terms of the parabolic cylinder function solution.

An analogous, but simpler, treatment applies for the approaching cliff, which we use
to describe the interaction of the deadline with the lamb. That is, suppose that a lamb is
initially placed on the positive-axis and that there is an approaching cliff whose location is
at+/Ar. To solve this problem by the same approach as the receding cliff, we introduce the
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appropriate dimensionless length variable- (x/xp) — 1 and make the analogous scaling
ansatz as in (6), so that equation (7) is replaced by

D, d’C 1 dc
Il 1)—

1 d$2+2($+ )ds
For this case, it is again helpful to introdueevia & + 1 = /2D,/A n andC(§) =

e‘”2/4D(n). The scaling functiorD(n) is again the parabolic cylinder function of order
2Bamp and the absorbing boundary condition

D2ﬂ|amb(v A/ZDZ) =0 (13)

now determines the decay expon@yn, = Biamn(De, A). Since the relevant zero of the
parabolic cylinder functiom = \/A/2D, is large, Biamp iS also large. Then an inspection
of equation (9), withBiion replaced byBiams, provides the estimatefRmo+ 3 = 312, or

+ <,3Iamb+ ;) c=0. (12)

Biamb(Dy, A) =~

. 14
16D, (14)

Therefore the total decay exponent for the deadline problem is

By (R, A) = Bamn(De, A) + NBiion(Dy, A) =~ AV S SV (15)
N 3 am 3 ion ) — 16D[ 4]TD|_ .

Minimizing this expression with respect t yields the optimal valuet* ~ 4D In(4NR).
Thus the deadline motion is enhanced by a factor @¥ loompared simple diffusion; note
that this coincides with the motion of the last lion in a prideNdflions. Correspondingly,
the optimal value of the decay exponght(R) = Bn (R, A*) is

IN(ANTR)
4R

Our construction of the deadline problem relies on the assumptionMhat 1. This
assumption is crucial, otherwise the deadline problem would not provide a meaningful
approximation for the behaviour of the original system. However, the physical nature of
the problem suggests that different asymptotic behaviours for the lamb survival probability
should arise forR > 1 andR « 1. In fact, consideration of the limiting cases of a
stationary lamb and of stationary lions, suggests that equation (16) is actually valid only
for N1 « R < InN. In the slow-lamb limit, R <« N~1, the logarithmic behaviour
of (16) should cross over to that of the stationary-lamb limit, namgiy0) = N/2. In the
complementary fast-lamb limifR >> In N, the behaviour of the stationary lion case should
be recovered, in whicliy (c0) = % Thus the full dependence gfy on the diffusivity ratio
R is expected to be

Bn(R) ~ (16)

N/2 R <K 1/N
Bn(R) = { IN(ANR)/4R /N K R<KLInN (17)
3 R>InN.

2

The non-universal dependence gf on the diffusivity ratio for the intermediate regime
of 1/N « R « InN is the generalization of the exponents in equations (3), for the
three-particle system, to arbitrary.
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4. An infinite number of lions

Now consider a lamb which is under one-sided siege by an infinite pride of lions. (These
lions need to be distributed over an infinite domain so that their density is finite everywhere.
If the lion density were infinite at some point, then the closest lion would move inexorably
toward to the lamb at each step, leading to the survival probability decaying exponentially in
time.) The interesting situation is when the lions are all to one side of the lamb. However,
to introduce our approach, it is instructive to consider first the simpler two-sided problem,
in which lions are uniformly and symmetrically distributed with unit density on either side
of a stationary lamb, a problem has been previously investigated by asymptotic and exact
methods [14, 15]. For completeness, we describe an approach which is in the spirit of the
previous section.

For a stationary lamb at the origin, the density of the lieqs, 1) may be found by
solving the diffusion equation with an absorbing boundary conditian-at0 and with the
initial condition of a unit density everywhere. This yields [5]

2 |x|/~/4Dyt )
Clamb(X, 1) = ﬁ/ dr e, (18)
0

Thus the diffusive flux of lions toward the lamb B (dc/dx| _,, — dc/dx| _, ) =
4D /mt. The survival probabilityS,.(¢) therefore obeys

) 4D,
= S (1), ——£ 1
4 Soo(t) o (19)
with solution
D
Se(t) = exp|:—4 Lt] . (20)
T

When both the lions and the lamb are diffusing, a faster decay occurs. However, since the
dominant annihilation mechanism arises from the diffusive flux of lions toward the lamb,
we expect that the asymptotic decay is still given by (20) [14]. The crucial feature of this
two-sided problem is that there is no good ‘survival’ strategy, so that the lamb survival
probability must decay rapidly in time.

For a lamb under one-sided siege, we again attempt a solution via the auxiliary
deadline model. Assume that the deadline undergoes enhanced square-root motion, i.e.
xdead?) = ~/At, with A > 1. Repeating the steps employed previously for a finite pride of
lions, we haveSs (1) = Sion(?)Siamb(?), With Siamp(?) o =4/ as in the case of a finite
pride. To determineS;on(f) we again use a free particle approximation, since we expect
that the amplituded will be large. Thus for the probability density of the lions, we ignore
the adsorbing boundary condition on the moving deadline. For the initial condition of unit
density of lions forx < 0 and zero density otherwise, the time dependent lion density [5]
is

1 [ g2
Clion(X, 1) ﬁ /AP d; e . (21)
Although this solution disagrees with the adsorbing boundary condition on the deadline, the
disagreement is of order &/’ and is negligible whem > 1.
Computing the diffusive flux of lions through the deadline, we make use of (21) and
A/Dp > 1 to find

dc

D,
L 0x

—A/4D,
~ € . 22
X=Xdead!) At ( )
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The lion survival probability Siion (¢), therefore obeys

dSlion(t) DL _A
>~ —Sjion (1), — e A/4P 23
dr I|on() At ( )
with solution
Dt
Siion (1) :exp[—e/‘/‘“)L i } ) (24)
T

Thus the full survival probability is

Dt A
Seo(t) cx exp| —e4/4P [ 2= " _In¢|. 25
oo(1) o p[ V < 16D, (25)

Maximizing this survival probability with respect té, we find that optimal valued*,
grows in time as

In?¢
The leading logarithmic behaviour is in accord with our naive estimate given in section 2.
Combining equations (25) and (26) gives

Seo(t) oc exp[—constantx R~ In?¢]. (27)

Thus we obtain a survival probability for the one-sided system which defeeysr than

any power law andglower than any stretched exponential. The decay is universal in that
the power of logarithm doesot depend on the diffusivity rati® = D,/D,. However, as

R — 0 (the lamb becomes stationary), the log-normal decay given in (27) crosses over to
the stretched exponential form given in (20).

A* ~ 2D, I [t} . (26)

5. Summary and discussion

For a diffusing lamb in one dimension which is adjacent to a prid¥ aliffusing, predatory
lions, the survival probability of the lamb decays &g(r) ~ t~#v with 8y proportional
to InN. This slow increase oy on N reflects the fact that the dominant contribution
to the survival probability arises from realizations in which the lamb ‘runs away’ from the
lions. Consequently, each additional lion in the system has a progressively weaker effect
on the survival of the lamb. This is in contrast to the case of a stationary lamb, where each
additional lion is equally effective in hunting the lamb, so ti#at is proportional toN.
The exponengy is also a decreasing function of the diffusivity rati®,= D,/ D, , with
By = N/2 for R =0 andBy = % for R = co. Thus, in accord with intuition, the best
survival strategy for the lamb is to diffuse faster than the lions. In contrast, for a two-sided
system, where the lions initially surround the lamb, the best survival strategy for the lamb
is to remain still. Parenthetically, we expect that our results will continue to hold even
when the probability for a lion to ‘kill' the lamb when the two meet is less than unity. This
follows because of the transience of random walks in one dimension.

The above non-universal power-law decay £¥(r) motivated the basic question,
considered in [1], of whether the mean lamb lifetime

v = —/Oo dr ¢ dSw () = /OO dr Sy(2) (28)

is finite or infinite. From equation (28), it is clear that is finite for 8y > 1, andty
diverges otherwise. The numerical evidence from [1] indicates that Whenl the lamb
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lifetime is finite for N > 4. Since our prediction foBy is anticipated to be accurate
only for large N, we may conclude that the lamb lifetime is finite wh&n> N*(R), but
cannot provide an accurate estimate of this threshold value. Additionally, we predict that
N*(R) should increase rapidly with the diffusivity ratib,/D_, namely INnN*(R) o« R
(equation (17)).

For an infinite number of predators, the lamb survival probabifity(r) exhibits a
log-normal decay exp-In?#). This contrasts sharply with the corresponding behaviour
in the two-sided geometry, whei®, (1) « exp(—t¥?). For the one-sided geometry, it is
striking that this same survival probability occurs for a reactive system consisting of a single
‘fast impurity’ which moves with velocityy > 1 within a semi-infinite sea of mutually
annihilating ballistic particles moving at velocity = +1 [16]. Given the superficial
similarity of the fast impurity with the lions-plus-lamb systems, it may be interesting to
seek a deeper connection between these two problems.

We close by mentioning a generalization where the lions are ‘vicious’ among themselves,
in addition to stalking the lamb. (For such self-predatory lions, their number must be
infinite; otherwise, the lamb survival probability has a non-zero asymptotic value.) There
are two natural possibilities for the outcome when two lions meet: either (i) one lion dies
(aggregation), or (ii) both die (annihilation). The first possibility is particularly simple,
since the closest lion undergoes pure diffusion, independent of its individual identity. Thus
the two-sided geometry reduces to the finite particle systeimnN) = (1, 1), with decay
exponent given by @). The one-sided aggregation problem is even simpler since it reduces
to the (1, 0) problem whose solution is given in (1).

Annihilating lions framework leads to more interesting behaviour, as the position of the
closest lion suddenly jumps away from the lamb whenever the closest two lions annihilate.
The two-sided version of this problem was introduced in [16]. It was found that the
lamb survival probability decays as a non-universal power I8¢) o +—7®, with a
Smoluchowski theory predicting(R) = /(1 + R)/8. This agrees with the obvious exact
result y(1) = ; and is close to the exact value(0) = 3 [18]. This Smoluchowski
prediction and also provides a good approximation for the simulation results for arbitrary
R [17]. Generalizations of the two-sided annihilation problems (e.g. to many dimensions)
have also been discussed in [17-19]. To the best of our knowledge, however, lamb survival
in the presence of a one-sided distribution of annihilating lions has not yet been treated.
If one naively assumes that the two-sided death probability can be expressed in terms of
independent one-sided death probabilities, then the exponents of the one-sided SyRtgm,
and the two-sided systeny,(R), are simply related bys(R) = y(R)/2. This is clearly
correct forR = 0, where the independence of the one-sided death probabilities is exact.
Consequently, the known value pf0) gives8(0) = 13’6 However, forR > 0, the motions
of the lions are not independent in the rest frame of the lamb, and the independence of one-
sided killing probabilities is only an approximation. Interestingly, however, simulations
suggest that for equal lion and lamb diffusivitigg(R = 1) = 211, which conforms to the
relation 8(R) = y(R)/2. We do not have an understanding of this simple yet paradoxical
result. Finally, asR — oo, it is clear thatg(R) — % Thus we conclude tha#(R) is a

slowly increasing function ok, with (0) = 136 and B(c0) = 3.
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