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Abstract. We investigate the first-passage properties of bursty random walks
on a finite one-dimensional interval of length L, in which unit-length steps to the
left occur with probability close to one, while steps of length b to the right—
‘bursts’—occur with small probability. This stochastic process provides a crude
description of the early stages of virus spread in an organism after exposure.
The interesting regime arises when b/L � 1, where the conditional exit time to
reach L, corresponding to an infected state, has a non-monotonic dependence on
initial position. Both the exit probability and the infection time exhibit complex
dependencies on the initial condition due to the interplay between the burst
length and interval length.
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1. Introduction

We are continually exposed to viruses. Despite these constant biological assaults, the
immune system successfully fends off most viruses. Considerable effort has been devoted
to modeling the factors that influence whether a person exposed to a particular virus will
eventually become ill [1]. Typical theoretical models of viral infections account for the
evolution of the number of infected cells, healthy cells, and viruses as a function of the
rates of microscopic infection and transmission rates. Such models have provided many
useful insights about the dynamics of viral diseases [1, 2].

In this work, we study a toy model—the bursty random walk (figure 1)—that
captures one of the elements of viral infection dynamics. The position of the walk in
one dimension represents the number of active viruses in an organism. Since the immune
system constantly kills viruses, they are removed from the body at some specified rate,
corresponding to steps to the left in the bursty random walk. However, with a small
probability, a virus enters and successfully hijacks a cell, the outcome of which is a burst
of a large number of new viruses into the host organism, corresponding to a long step to
the right in the model.

When the number of virus particles reaches zero, the organism may be viewed as
being free of the disease. Conversely, when the number of viruses reaches a threshold
value L, the organism can be viewed as either being ill or dead. With this simplistic
perspective, being cured or becoming ill is recast as a first-passage problem for the bursty
random walk in an interval of length L. When the burst length b is small, the walk has
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Figure 1. A bursty random walk with burst length b = 6.

a diffusive continuum limit whose first-passage properties are well known [3, 4]. However,
if the burst length is of the order of the system length, this burstiness strongly affects
the first-passage characteristics. This large burst limit should be applicable to infectious
processes where the threshold number of viruses for being ill is not large and the number
of new viruses created in a burst event is a finite fraction of this threshold [5]. Related
discreteness effects were found in the first-passage characteristics of a random walk that
hops uniformly within a range [−a, a] in the interval [0, L], with a � L [6].

In the next section, we define the model and the basic first-passage quantities that we
will investigate. In sections 3 and 4, we determine the exit probabilities and the average
exit times to either end of the interval as a function of the burst length b. When b � L, very
different first-passage properties arise compared to those for pure diffusion in the interval.
Perhaps the most striking is the conditional exit time to reach x = L, corresponding to
a state of infection, which has a non-monotonic dependence on the starting position x.
We compute these first-passage properties from the backward Kolmogorov equations for
the exit probabilities and exit times [3, 4]. In the concluding section, we briefly discuss
the corresponding first-passage properties for the bursty birth/death model. This process
accounts for the feature that bursts should occur at a rate that is proportional to the
number of live viruses. It is natural to model this situation by defining the rate at which
steps occur to be proportional to the current position of a bursty walk on the interval.

2. The model

In the bursty random walk, unit-length steps to the left occur with probability q, while
long steps (bursts) of length b occur with probability p = 1−q (figure 1). We choose p and
q so that the average position of the walk does not change at each step; however, most of
our results are derived for general p and q. The motivation for considering these hopping
probabilities is based on the experimental observation that viral counts in an organism
often remain nearly constant for time periods much longer than the lifetime of individual
viruses. Such a near constancy could only arise if an organism produces new viruses (by
bursts) and clears viruses at similar overall rates [2].

With the constraint that the number of virus particles remains fixed, on average, the
respective probabilities of making a single step to the right and to the left are

p =
1

b + 1
, q =

b

b + 1
. (1)

The bursty random walk is confined to the finite interval [0, L], where the coordinate
represents the number of live viruses. The state where the virus is cleared is represented
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by the point x = 0, while the state where a sufficient number of viruses exists that
the organism is ill or dead is represented by x = L. Our goal is to understand first-
passage properties of this bursty walk that are relevant to the state of health of the
organism. Namely, what is the probability that the organism becomes cured or becomes
ill, corresponding to the walk eventually exiting through the left edge or the right edge of
the interval, respectively? What is the time needed for the organism to become cured or
ill?

To set the stage for our results, let us recall some well-known first-passage properties
for the isotropic nearest-neighbor random walk on the interval [4]. Let E+(x) denote the
probability that this random walk eventually exits the interval at L without ever touching
x = 0, given that the walk started at an arbitrary point x, with 0 < x < L. The
complementary exit probability to the left boundary is E−(x) = 1 − E+(x). These exit
probabilities satisfy the recursion

E±(x) = 1
2
E±(x − 1) + 1

2
E±(x + 1), (2)

subject to the boundary conditions E+(0) = 0, E+(L) = 1, or E−(0) = 1, E−(L) = 0.
This recursion expresses the exit probability starting at x as the probability of first taking
a step to the left or right (the factor 1/2) and then exiting from either x − 1 or x + 1,
respectively. The solution to equation (2) with these boundary conditions is:

E+(x) =
x

L
, E−(x) = 1 − x

L
. (3)

We also define t(x) as the average time for the walk to leave the interval at either end
when it starts at x. This unconditional exit time satisfies the recursion

t(x) = 1
2
t(x − 1) + 1

2
t(x + 1) + 1, (4)

subject to the boundary conditions t(0) = t(L) = 0. Equation (4) expresses the average
exit time from x as the time for the first step (the additive factor 1) plus the exit time from
the new positions (either x±1); the factor 1

2
accounts for the probability for each of these

two choices. Similarly, we also define the conditional exit times, t±(x), as the average
times for the walk to leave the interval by the right or the left boundary, respectively,
without ever reaching the opposite boundary. These conditional exit times satisfy [4]

C±(x) = 1
2
C±(x−1) + 1

2
C±(x+1) + E±(x), (5)

with C± ≡ E±t±, and this equation is subject to the boundary conditions C±(0) = C±(L) =
0. For the nearest-neighbor random walk, the exit times are given by

t(x) = 1
2
x(L − x),

t+(x) = 1
3
(L2 − x2),

t−(x) = 1
3
(2Lx − x2).

(6)

Our goal is to determine the results analogous to equations (3) and (6) for the bursty
random walk. As we shall see, first-passage properties depend only on b/L as long as this
ratio is nonzero.
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3. Exit probabilities

For the bursty random walk with burst length b, we may naturally define two distinct
types of exit probabilities to the right boundary:

• the total exit probability E+(x) that the walk eventually reaches any point at the
right boundary or beyond, without ever touching the left boundary x = 0;

• the restricted exit probability Rm(x) that the walk eventually reaches the specific
point L + m (with 0 ≤ m ≤ b − 1), without ever touching the left boundary or
any other point beyond the right boundary. There are b such distinct restricted exit
probabilities, Rm(x), with m = 0, 1, . . . , b − 1.

While the total exit probability is most relevant physically, because it corresponds to the
probability of illness for a given level of initial exposure, the restricted exit probabilities
display intriguing features that stem from the bursty character of the walk1.

The total exit probability to the right boundary satisfies the recursion

E+(x) = qE+(x − 1) + pE+(x + b) , (7)

that represents the extension of equation (2) to the bursty random walk. This recursion
expresses exit via the right boundary, when starting from x, either by taking the first
step to the left (probability q), after which exit from x− 1 occurs, or by first stepping to
the right (probability p), after which exit from x + b may occur. This recursion must be
supplemented by the boundary conditions E+(x) = 1 for all x ≥ L and E+(0) = 0. Namely,
a walk that starts at x ≥ L has already exited, while a walk that starts at x = 0 can never
exit via the right boundary. The equations for the restricted exit probabilities are similar
to (7), but are now subject to the boundary conditions Rm(0) = 0 and Rm(L+k) = δk,m.

While the exit probabilities can be obtained by enumerating all random walk
trajectories to the exit point and computing the probabilities for all these paths, the
above recursions provide the same results much more easily [3, 4]. We will use different
methods to solve equations (7) for short and large burst lengths, and therefore study these
cases separately.

3.1. Burst lengths b = 2, 3, . . .

For the first non-trivial case of burst length b = 2, we solve the constant-coefficient
recursion (7) by attempting a solution of the form E+(x) = λx. This leads to the
characteristic equation λ3 − 3λ + 2 = 0, with solutions λ = −2 and λ = 1 (doubly
degenerate). Henceforth, we use λ to denote the first root of the characteristic polynomial.
The general solution to equation (7) thus is E+(x) = aλx + bx+ c. Invoking the boundary
conditions, the total exit probability to the right boundary is

E+(x) =
x

L+1
+

1

L+1

[
(λx−1) − (x/(L + 1))(λL+1−1)

]

[(λL−1) − (L/(L + 1))(λL+1−1)]
. (8)

1 For the left boundary, exit occurs only at x = 0 and there is no distinction between the total and restricted exit
probabilities.
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Figure 2. Exit probabilities for the bursty random walk for: (a) burst length
b = 3, (b) b = 10, and (c) b = L, L/2, and L/3. Simulations are on a system of
length L = 100.

For the restricted exit probabilities to a specific point in the range [L, L + b− 1], the
boundary conditions are:

R0(0)=R0(L+1)=0, R0(L)=1, exit to x = L,

R1(0)=R1(L)=0, R1(L+1)=1 exit to x = L+1.

Applying these boundary conditions to the general solution aλx + bx + c, we obtain

R0(x) =
(λx − 1) − (x/(L + 1))(λL+1 − 1)

(λL − 1) − (L/(L + 1))(λL+1 − 1)
,

R1(x) =
(λx − 1) − (x/L)(λL − 1)

(λL+1 − 1) − ((L + 1)/L)(λL − 1)
,

(9)

for the restricted exit probabilities to x = L and to x = L+1, respectively. Parenthetically,
once we know one of R0(x) or R1(x), the other is determined by the martingale property
that the mean position of the bursty walk always remains fixed [7]. That is, after all of the
probability has been absorbed onto the boundary, the two restricted exit probabilities are
related by 0× [1−R0(x)−R1(x)]+L×R0(x)+ (L+1)×R1(x) = x. The restricted exit
probabilities initially grow nearly linearly in x/L (figure 2), but then oscillate violently as
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x → L. The total exit probability E+(x) is a nearly linear function of x for small x but
its slope develops oscillations as x → L.

This same calculational method can be extended to longer bursts. By assuming an
exponential solution of the form E+(x) = λx in equation (7), the characteristic polynomial
generically is (λ − 1)2A(λ), where A(λ) is a polynomial of order b − 1. Explicit closed-
form solutions can therefore be obtained for b ≤ 5, but numerically exact results can be
obtained for any burst length; details for the case b = 3 are given in appendix A. Typical
results are shown in figure 2 for burst lengths b = 2, 10, and also b = L/3, L/2, and L.
The total exit probability is a very close to linear function with slope less than one for
x < L− b, but deviates from linearity within one burst length from x = L. The restricted
exit probabilities are also nearly linear functions for x < L − b, but oscillate violently in
the boundary region.

3.2. Long bursts

When the burst length is of the order of the interval length, we can simplify the
determination of the exit probabilities by considering separate recursions in each of the
disjoint subintervals [L − b, L], [L − 2b, L − b − 1], [L − 3b, L − 2b − 1], etc, instead of
directly solving for the roots of a characteristic polynomial of order b−1. As we shall see,
this partitioning significantly reduces the order of the recursions for the exit probabilities.

3.2.1. Total exit probabilities. In the extreme situation where the burst length b ≥ L, a
single burst results in exit at or beyond the right end of the interval. Thus the total exit
probability satisfies the recursion E+(x) = qE+(x−1)+ p; that is, either the walk steps to
the left and then exits from x − 1, or the walk steps to the right and exits immediately.
The solution to this recursion is a constant plus an exponential function. The boundary
condition E+(0) = 0 immediately gives

E+(x) = 1 − qx. (10)

Because of the overwhelming probability of stepping to the left, the exit probability to
the right boundary is not close to one for x → L from below. As an example, for b = L,
we have E+(L − 1) → 1 − e−1 ≈ 0.6321 (figure 2(c)).

For the case L/2 ≤ b < L, we partition [0, L] into the subintervals [0, L − b − 1]
(defined as region I) and [L − b, L] (region II), as indicated in figure 3. Making a slight
abuse of notation, we define E I(x) and E II(x) as the total exit probabilities to x ≥ L,
when starting at a point x that is in either region I or region II, respectively. These exit
probabilities satisfy

E I(x) = qE I(x − 1) + pE II(x + b),

E II(x) = qE II(x − 1) + p.
(11)

These recursions are identical in form to equations (7), but with the subinterval explicitly
identified. Thus, for example, exit to x ≥ L, when starting from a point x in region I,
can occur by taking a step to the left with probability q and then exiting from x − 1
(necessarily in region I), or by taking a step to the right with probability p and then
exiting from x + b (necessarily in region II). Equations (11) are subject to the boundary
condition E I(0) = 0 as well as the joining condition E II(L − b) = qE I(L − b − 1) + 1.

doi:10.1088/1742-5468/2010/06/P06018 7
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Figure 3. Partitioning of the interval into [0, L − b − 1] (region I) and [L − b, L]
(region II). To exit from region I requires at least two bursts.

By this partitioning, the exit probabilities in each subinterval are functionally distinct
and can be solved separately. In the second of equations (11), a particular solution is
E II

par = 1. Thus the general solution has the form E II(x) = 1 + Aqx. Substituting

this expression in the first of equations (11), now gives the closed recursion E I(x) =
qE I(x − 1) + p + Apqx. With the inhomogeneous term p + Apqx, the general solution is
E I(x) = A + (Bx + C)qx. Using the boundary condition E I(0) = 0, and substituting this
form for E I(x) into the first of equations (11), we find B = Apqb. Finally, we invoke the
joining condition and obtain

E I(x) = 1−qx − xqb

1−ypqb
, E II(x) = 1− qx

1−ypqb
, (12)

where y ≡ L− b− 1. Notice again that because of the large probability of hopping to the
left, EII(x) is discontinuous as x → L.

For L/3 ≤ b < L/2, we partition [0, L] into the three subintervals [0, L − 2b − 1],
[L − 2b, L − b − 1], and [L − b, L], (regions I, II, and III respectively) and solve the
generalization of equations (11) to three intervals, supplemented by two joining conditions
at x = L−b and at x = L−2b (appendix B). As shown in figure 2, the total exit probability
has two (barely visible) singularities and deviates considerably from linearity within one
burst length from the right boundary. Generally, for a partitioning into k intervals, the
slope of the total exit probability is discontinuous at the boundary between intervals k and
k − 1, the second derivative is discontinuous at the boundary between intervals k − 1 and
k − 2, the third derivative is discontinuous at the boundary between intervals k − 2 and
k − 3, etc. A similar intricate pattern of a sequence of progressively weaker singularities
arises in various fragmentation models [8, 9].

3.2.2. Restricted exit probabilities. The restricted exit probabilities to a specific point
undergo a more dramatic sequence of discontinuities between successive subintervals. We
again start with the case where b lies in the range [L/2, L] so that there are two subintervals
to consider: [0, L−b−1] and [L−b, L]. For concreteness we determine the exit probability
to the specific site x = L; similar behavior arises for other exit points in [L, L + b − 1].
Now the recursion relations for the restricted exit probabilities are

RI(x) = qRI(x − 1) + pRII(x + b),

RII(x) = qRII(x − 1).
(13)

Since we seek only the exit probability to x = L, we simplify notation by omitting the
subscript that specifies the exit location; thus R0 → R. The first equation states that to
reach x = L from subinterval I, the walk either steps to the left (probability q) and exits

doi:10.1088/1742-5468/2010/06/P06018 8
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Figure 4. Restricted exit probabilities to x = L for the cases of b = L/2 and
b = L/3. The arbitrary vertical scale has been fixed by setting the integral of
R(x) over the interval equal to 1.

from x−1, or the walk steps to the right (probability p) and exits from x+ b. The second
equation states that to reach x = L from within subinterval II, the only possibility is to
step to the left; a burst would lead to exit at a point x > L, which does not contribute to
the exit probability to x = L. The recursions (13) must be supplemented by the boundary
condition RI = 0 and the joining condition RII(L− b) = qRI(L− b − 1) + p. Notice that
exit to L can occur only if the walk is at the point x = L − b.

Employing the same method as that used to obtain equations (12), we now obtain

RI(x) =
xp2qx+2b−L

1 − ypqb
, RII(x) =

pqx+b−L

1 − ypqb
. (14)

This solution method can be extended to more subintervals; the results for b = L/2 (two
intervals) and b = L/3 (three intervals) are shown in figure 4. For a partitioning into k
intervals, the exit probability is discontinuous at the boundary between intervals k and
k−1, the first derivative is discontinuous at the boundary between intervals k−1 and k−2,
etc; the pattern is similar to that for the total exit probability, but the discontinuities are
more prominent here since they begin with the function itself rather than with the first
derivative.

4. First-passage times

By adapting equation (4) to the bursty random walk, the unconditional mean first-passage
time satisfies

t(x) = qt(x−1) + pt(x+b) + 1, (15)

subject to the boundary conditions t(0) = 0 and also t(L+m) = 0 for m = 0, 1, . . . , b− 1.
Similarly, the quantities C±(x), which are related to the conditional exit times, satisfy the
recursion (see equation (5))

C±(x) = qC±(x−1) + pC±(x+b) + E±(x), (16)

subject to the same boundary conditions as for t(x) itself. Again, we treat the exit times
separately for short and for long bursts.

doi:10.1088/1742-5468/2010/06/P06018 9
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4.1. Short bursts

For the first non-trivial case of b = 2, let us focus on the unbiased case of p = 1
3

and q = 2
3

for simplicity. We solve the recursion (15) with these values of p and q by noting that the
inhomogeneous term can be eliminated by writing t(x) = T (x) − x2/2. Substituting this
ansatz into equation (15), we find that T (x) obeys this same equation, but without the
inhomogeneous term. From our analysis of the exit probability in section 3.1, the general
solution is T (x) = aλx+bx+c, with λ = −2, subject to the boundary conditions T (0) = 0,
T (L) = L2/2, T (L + 1) = (L + 1)2/2 that correspond to t(0) = t(L) = t(L + 1) = 0. We
thereby obtain, for the unconditional mean first-passage time,

t(x) =
1

2
x(L−x) +

1

2

(L+1)[(λx−1) − (x/L)(λL−1)]

(λL+1 − 1) − (L + 1/L)(λL−1)
, (17)

with λ = −2. The second term represents a tiny correction to the leading diffusive
behavior of 1

2
x(L − x).

4.2. Long bursts

In the extreme case of burst length b ≥ L, the walk exits after any single burst, and the
unconditional first-passage time satisfies t(x) = qt(x − 1) + 1, subject to the boundary
condition t(0) = 0. The solution is

t(x) =
1 − qx

1 − q
. (18)

Similarly, the conditional mean first-passage time to the right boundary, t+ = C+/E+, is
determined from the recursion

C+(x) = qC+(x − 1) + E+(x) = qC+(x − 1) + 1 − qx, (19)

subject to the boundary condition C+(0) = 0. The solution now is

t+(x) =
1

1 − q
− x qx

1 − qx
. (20)

The conditional exit time t− may be obtained from the conservation statement t(x) =
E−(x)t−(x) + E+(x)t+(x) and gives t−(x) = x. An apparently paradoxical feature is that
the exit time t+ increases when the starting point is closer to x = L (figure 5(d)). This
behavior arises because steps to the left occur with overwhelming probability. Thus a walk
that starts near x = L will almost surely hop a considerable distance to the left before a
burst occurs. However a walk that starts near x = 0 can only hop a short distance to the
left before a burst must occur to ensure exit at the right boundary.

For L/2 ≤ b < L, we again partition the interval into the subintervals [0, L − b − 1]
(region I) and [L − b, L] (region II) and denote the mean first-passage times within each
as tI(x) and tII(x) respectively. The unconditional mean first-passage time satisfies

tI(x) = qtI(x − 1) + ptII(x + b) + 1 ,

tII(x) = qtII(x − 1) + 1,
(21)

subject to the boundary condition tI(x) = 0 and the joining condition tII(L − b) =
qtI(L − b − 1) + 1. Solving first for tII and then using this solution in the equation

doi:10.1088/1742-5468/2010/06/P06018 10
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Figure 5. Normalized mean first-passage times τ ≡ t/(L2/D), with D = b/2,
for: (a) the nearest-neighbor random walk, and the bursty random walk with:
(b) burst length b = L/5, (c) b = L/2, and (d) b = 2L. Shown are the
unconditional first-passage time τ(x) and the conditional times, τ±(x), to the
right and left boundary, respectively.

for tI, we obtain

tI(x) =
x (q−y − 2) qb+x

1 − ypqb
− 2 (qx − 1)

p
,

tII(x) =

(
1 − ypqb + qx−y − 2qx

)

p (1 − ypqb)
,

(22)

with y = L − b − 1.
For the conditional first-passage time to the right boundary, the quantity C+(x) =

E+(x)t+(x) satisfies

CI(x) = qCI(x − 1) + pCII(x + b) + E I(x) ,

CII(x) = qCI(x − 1) + E II(x),
(23)

subject to the boundary condition CI(x) = 0 and the joining condition CII(L − b) =
qCI(L − b − 1) + E II(L − b). Again, we have made the notational abuse of dropping the
subscript ± and focusing only on the exit time to the right boundary. Solving these
equations for C+ and dividing by E+(x) yields the conditional first-passage time to the
right boundary (figure 5). This same calculation can be straightforwardly (but tediously)
extended to smaller values of b, corresponding to more subintervals.
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Figure 6. The normalized conditional exit time to the right boundary, τ+ ≡
t+/(L2/D) for the case b/L = 0.8.

A peculiar feature of the conditional first-passage time t+(x) is its non-monotonic
dependence on x as the burst length becomes of the order of the system length (figure 6).
This non-monotonicity has a simple origin. For x/L � 1, a typical walk will move a
considerable distance to the left before exit occurs. Thus, in some sense, points near
the right boundary are ‘further’ from the exit than points in the interior of the interval.
Similarly, a particle that starts near x = 0 must quickly hop to the right to avoid exiting
at the left boundary. Thus again, the exit time to the right is an increasing function of
x in this range. Finally, for a particle that starts in a narrow range in which x is slightly
larger than L − b, the exit time decreases as x increases. The source of this decreasing
dependence on x in this range is that a particle with x � L − b is increasingly likely to
reach a point that is less than L−b as x decreases toward L−b. Once the point x = L−b
is crossed, two bursts are required for exit to the right and typically there will be many
steps to the left between these two bursts. Thus the exit time increases rapidly as the
starting point approaches L − b from above.

5. Discussion

We investigated the first-passage properties of the bursty random walk on a finite interval,
where short steps to the left occur with a high probability, while long steps to the right—
‘bursts’—occur with a small probability. The disparity in these hopping probabilities is
needed to ensure that there is no net displacement of a random walker, a feature that
maximizes the time for the walker to survive within the interval. This model was motivated
by the problem of the early stages of virus spread after initial exposure [5].

When the burst length is short, there are only small corrections to the well-known
first-passage properties of the nearest-neighbor random walk. Conversely, when the burst
length is of the order of the interval length, discreteness effects play an important role. For
such burst lengths, we solved for first-passage properties by partitioning the full interval

doi:10.1088/1742-5468/2010/06/P06018 12

http://dx.doi.org/10.1088/1742-5468/2010/06/P06018


J.S
tat.M

ech.
(2010)

P
06018

First-passage properties of bursty random walks

Figure 7. The normalized unconditional and conditional exit times, τ ≡ t/L, for
the bursty birth/death process with b/L = 0.75.

into disjoint subintervals of length b, solving each one separately, and then patching
together these subinterval solutions by invoking appropriate joining conditions. Strikingly,
the mean first-passage time to the right boundary, corresponding to the time for a host
organism to become ill, has a non-monotonic dependence on the initial location for b/L � 1
(figure 6). Another basic feature of the first-passage properties for large b is that they are
functions of b/L rather then depending on b and L separately.

In spite of the strange behavior of the mean first-passage time, the distribution of first-
passage times is generically characterized by an exponential decay, but with superimposed
oscillations due to burstiness. Consequently, higher moments of the first-passage times
can be simply characterized by powers of the first moment.

If one takes seriously the equivalence that the position of the random walker is
equivalent to the number of active viruses, then the frequency of bursts as well as the
frequency of virus death events should also be proportional to the current position of the
walk. Thus it would be more realistic to consider the bursty birth/death process, where
the rate at which the random walker hops is proportional to its current location. If a
step does occur, then a unit-length step to the left occurs with probability q and a step
of length b to the right occurs with probability p � q.

Because the exit probabilities are independent of the rate at which steps occur, all
our results about exit probabilities continue to hold for the bursty birth/death process.
However, exit times for bursty birth/death are quite different from those of the bursty
random walk. For example, the unconditional exit time for bursty birth/death satisfies
the recursion

t(x) = qt(x − 1) + qt(x + b) + δt(x), (24)

where δt(x), the microscopic time step at position x, is proportional to 1/x. For the
classic birth/death process (burst length b = 1) and in the continuum limit, equation (24)
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becomes t′′(x) = −2/x with solution t(x) = 2x ln(L/x). Over most of the interval range,
this exit timescales linearly with L, compared to t(x) ∼ L2 for the exit time of the nearest-
neighbor random walk. For bursty birth/death, representative results for exit times are
given in figure 7. While no longer non-monotonic in x, the conditional exit time t+(x) has
a near plateau when the initial position x < L− b and then decreases in x. Thus once an
infection has progressed to a certain threshold, illness quickly ensues.
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Appendix A: Exit probabilities for burst length b = 3

For burst length b = 3, the recursion relation for the total exit probability to the right
boundary is

E+(x) = 3
4
E+(x − 1) + 1

4
E+(x + 3) . (A.1)

Assuming the exponential form E+ = λx and substituting into (A.1), the characteristic
equation is λ4−4λ+3 = 0, with solutions λ = 1 (doubly degenerate) and λ± = −1±i

√
2 ≡√

3 eiφ, with φ = tan−1(−√
2). The general solution is E+(x) = aλx

+ + bλx
− + cx + d. Now

we impose the boundary conditions E+(0) = 0 and E+(L) = E+(L + 1) = E+(L + 2) = 1
one by one. The boundary condition E+(0) = 0 gives

E+(x) = a(λx
+ − 1) + b(λx

− − 1) + cx. (A.2)

The boundary condition E+(L) = 1 gives

E+(x) = a
[
(λx

+ − 1) − (λL
+ − 1)

x

L

]
+ b

[
(λx

− − 1) − (λL
− − 1)

x

L

]
+

x

L
,

≡ aα(x) + bα∗(x) +
x

L
, (A.3)

with α(L) = 0. Next we impose E+(L + 1) = 1 to give

E+(x) = a[α(x)α∗(L + 1) − α∗(x)α(L + 1)] +
x

L
+

(
1 − x

L

) α∗(x)

α∗(L + 1)
, (A.4)

≡ aW (x, L + 1) +
x

L
+

(
1 − x

L

) α∗(x)

α∗(L + 1)
, (A.5)

where the Wronskian W (L + 1, L + 1) = 0. Finally, imposing E+(L + 2) = 1 gives

E+(x) =
W (x, L + 1)

W (L + 2, L + 1)

[
1 − L + 2

L
− 1

L

α∗(L + 2)

α∗(L + 1)

]
+

[
x

L
− 1

L

α∗(x)

α∗(L + 1)

]
. (A.6)

By inspection, it is clear that equation (A.6) satisfies all the boundary conditions; this
solution is also real.

A similar calculation can be performed for all the restricted exit probabilities. For
example, for the restricted exit probability R0(x) to L, we start with equation (A.2) and
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next impose R0(L + 1) = 0 to give

R0(x) = a

[
(λx

+ − 1) − (λL+1
+ − 1)

x

L + 1

]
+ b

[
(λx

− − 1) − (λL+1
− − 1)

x

L + 1

]
,

≡ aβ(x) + bβ∗(x), (A.7)

with β(L+1) = 0. The boundary condition R0(L+2) = 0 leads to R0(x) = aV (x, L+2),
where the Wronskian is now defined as V (x, y) = β(x)β∗(y) − β∗(x)β(y). Imposing the
boundary condition R0(L) = 1 gives the final result

R0(x) =
V (x, L + 2)

V (L, L + 2)
. (A.8)

For the other two restricted exit probabilities, the same calculation as that outlined above
gives

R1(x) =
W (x, L + 2)

W (L + 1, L + 2)
, R2(x) =

W (x, L + 1)

W (L + 2, L + 1)
. (A.9)

These results for the total and restricted exit probabilities are plotted in figure 2.

Appendix B: Exit probabilities for burst length L/3 < b < L/2

When the burst length b is in the range [L/3, L/2], the interval naturally divides into the
three subintervals [0, L−2b−1], [L−2b, L− b−1], and [L− b, L]. The recursion relations
satisfied by the total exit probability to the right edge of the interval are:

E I(x) = qE I(x − 1) + pE II(x + b) ,

E II(x) = qE II(x − 1) + pE III(x + b) ,

E III(x) = qE III(x − 1) + p .

(B.1)

These exit probabilities must also satisfy the joining and boundary conditions

E I(0) = 0,

E II(L − 2b) = qE I(L − 2b − 1) + pE III(L − b),

E III(L − b) = qE II(L − b − 1) + p.

We generalize the approach used to solve the two-interval case (cf. equation (12))
by first solving for E III in the form E III = 1 + Aqx, substituting this result into the
recursion for E II to obtain its general form, and finally substituting the result for E II into
the recursion for E I. All the unknown constants may then be fixed by the boundary and
joining conditions, and the final result is:

E I(x) = 1 − qx{pqb[2(x − y) + pqb(b + x − y)(b + x − y + 1)] + 2}
pqb[(b − y)(b − y + 1)pqb − 2y] + 2

,

E II(x) = 1 − 2qx[pqb(x − y) + 1]

pqb[(b − y)(b − y + 1)pqb − 2y] + 2
,

E III(x) = 1 − 2qx

pqb[(b − y)(b − y + 1)pqb − 2y] + 2
,

(B.2)

where y = L− b− 1. This procedure can be continued to as many subintervals as desired
both for the total and for the restricted exit probabilities.
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