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A simple relation is developed between the elastic collisions of freely moving particles in one
dimension and a corresponding billiard system. For two particles with massesm1 andm2 on the
half-line x.0 that approach an elastic barrier atx50, the corresponding billiard system is an
infinite wedge. The collision history of the two particles can be easily inferred from the
corresponding billiard trajectory. This connection explains the classic demonstrations of the ‘‘dime
on the superball’’ and the ‘‘baseball on the basketball’’ that are a staple in elementary physics
courses. It also is shown that three elastic particles on an infinite line and three particles on a finite
ring correspond, respectively, to the motion of a billiard ball in an infinite wedge and on a triangular
billiard table. It is shown how to determine the angles of these two sets in terms of the particle
masses. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

A standard topic in introductory mechanics courses is e
tic collisions. There are two very nice lecture demonstratio
to accompany this topic.1 The first is the ‘‘dime on the su
perball.’’ Here one carefully places a dime on top of a sup
ball and drops this composite system on a hard floor. Be
doing so, the instructor asks the class to guess the maxim
height of the dimehmax compared to the initial heighth0 .
For perfectly elastic collisions and in the limit where th
mass of the dime is vanishingly small, it is easy to show t
hmax59h0!

2 Although this theoretical limit cannot b
achieved, the dime can easily hit the ceiling of a norm
classroom when the superball is dropped from chest lev

Another demonstration of this genre is to carefully plac
baseball~hardball! of massm on top of a basketball of mas
M and then drop the two together. The question for the c
is how high does the basketball rise after a collision with
floor? It turns out that form5M /3 ~which is close to the
actual mass ratio for a baseball and a basketball! and again
for perfectly elastic collisions, the basketball hits the flo
and stays there. However, be sure to warn the class to be
of the rapidly moving baseball. In the theoretically ideal si
ation, it rises to a heighthmax54h0. Working out these two
examples are left as exercises for the reader.

The extension of this simple two-particle system to ar
trary mass ratios presents many interesting and unexpe
challenges. In what follows, we generally ignore gravity b
cause it plays a negligible role during the collisions. If t
upper mass is much larger than the lower mass, then for
separated masses that approach an elastic barrier, there
be a large number of collisions before the two masses
verge and ultimately recede from the barrier. This dynam
can, in principle, be analyzed by applying momentum c
servation to map out the particle trajectories. This appro
is tedious, however, and does not provide physical ins
~see the Appendix!.

The goal of this article is to present a simple connect
between the motion of few-particle elastically colliding sy
tems in one dimension and a corresponding billiard syst
For two particles and an elastic barrier, the correspond
1492 Am. J. Phys.72 ~12!, December 2004 http://aapt.org
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billiard ball moves in a two-dimensional wedge-shaped b
liard table with elastic and specular reflection each time
ball hits the boundary of the table.3–6 Specular means tha
the angle of incidence equals the angle of reflection. T
description can be greatly simplified by recognizing th
specular reflection at a boundary is geometrically identica
passing straight through the boundary, where on the o
side of the boundary there is an identical image of
wedge. By repeating this construction, the end result is
billiard motion in the wedge is equivalent to a straight tr
jectory in a plane that is ‘‘tiled’’ by a fan of wedges. B
using this equivalence, it is easy to completely solve
collision history of the original two-particle and barrier sy
tem.

We then extend this approach to treat three elastically
liding particles of arbitrary masses on an infinite on
dimensional line. We ask the question: how many collisio
occur when two cannonballs are approaching, with an in
vening elastic ping-pong ball that is rattling between them7

This system can again be mapped onto the motion of a
liard ball in an infinite wedge whose opening angle depe
on the three masses. Finally, we discuss the motion of th
particles on a finite ring.8,9 This system can be mapped on
the motion of a billiard ball on a triangular table. From th
connection, we can gain many insights about the collisio
properties of the three particle on the ring.

These exactly soluble few-body systems naturally op
new issues. For example, what happens when the numb
particles,N, becomes large? In one dimension, the mom
tum distribution of a polydisperse system of elastic partic
converges to a finite-N version of the Gaussian
distribution.10 However, the transport properties appear to
anomalous. In particular, there is a lingering controve
about the nature of heat flow through such a system,11 and
the nature of the thermodynamic limit of this system is n
yet fully understood.

More generally, it is natural to inquire about the roles
inelastic collisions and the spatial dimension on the dyna
ics. This question is a natural entry to the burgeoning field
granular media.12 Although this area is beyond the scope
this letter, it is worth mentioning a few relevant topics.
1492/ajp © 2004 American Association of Physics Teachers
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particularly intriguing feature of inelastic systems is the ph
nomenon of ‘‘inelastic collapse,’’ where clumps of particl
with negligible relative motion form. This collapse occu
when the number of particles is sufficiently large or when
collisions are sufficiently inelastic.13–15Some of the methods
described here may be useful for understanding these
tems. The inclusion of other parameters also leads t
wealth of new effects. For example, a variety of collision
transitions occur when inelastic particles are pushed b
massive wall,16 while the presence of gravity in an elast
system of two particles and a wall leads to both quasip
odic and chaotic behavior.17 Again, a billiard-theoretic per-
spective may provide helpful insights into these systems

In the next section, we discuss the dime on the super
and the baseball on the basketball problems by elemen
means. Then in Sec. III we show how to map these syst
onto the motion of a billiard ball in a wedge domain. Th
same approach is used in Sec. IV to show the equivalenc
three particles on an infinite line to a billiard ball in an in
nite wedge. In Sec. V the equivalence of three particles o
ring to a triangular billiard is discussed. A brief discussion
given in Sec. VI.

II. DIME ON A SUPERBALL AND A BASEBALL ON
A BASKETBALL

To aid in the analysis of the dime on the superball, it
helpful to imagine that the two particles are separated. Ag
gravity is neglected throughout the collisions; its only role
to give the final height of the dime in terms of its veloci
immediately after the last collision. Figure 1 shows the v
locities of the dime and superball given the assumption
the massm of the dime is negligible compared to that of th
superballM ; all collisions are assumed to be perfectly ela
tic. The following collision sequence occurs:

~i! The dime and the superball both approach the gro
with velocity 2v.

~ii ! The superball hits the ground and reverses direc
so that its velocity is1v.

~iii ! For m/M→0, the center-of-mass coincides with th
center of the superball. In this reference frame,
dime approaches the superball with velocity22v.

~iv! After the dime–superball collision in the center-o
mass frame, the dime moves with velocity12v,
while the superball remains at rest.

~v! Returning to the original lab frame, the superb
moves with velocity1v, while the dime moves a
velocity 13v. This velocity of13v leads to the dime
rising to a final height that is nine times that of th
superball in the presence of gravity.

Fig. 1. Collision sequence for the dime-superball system. The arr
~drawn to scale! denote the velocities at each collision stage.
1493 Am. J. Phys., Vol. 72, No. 12, December 2004
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For the baseball on top of the basketball, the same ana
now gives the following collision sequence~again assuming
perfectly elastic collisions!:

~i!–~ii ! The basketball hits the ground with velocity2v
and reverses direction so that its velocity is1v.

~iii ! For m/M51/3, the center-of-mass has velocity1v/2.
In the center-of-mass reference frame, the baseball has
locity 23v/2, while the basketball has velocity1v/2.

~iv! After the collision between the two balls in the cente
of-mass frame, their velocities are reversed.

~v! In the original lab frame, the baseball has veloc
12v, while the basketball is at rest.

In both these cases, there are just two collisions—an in
collision of the lower ball with the floor and a second col
sion between the two balls. Subsequently, the upper
moves faster than the lower ball and there would be no m
collisions in the absence of gravity. However, if the upp
ball is heavier than the lower ball, there will be many col
sions before the two balls recede from the floor and fr
each other. How many total collisions occur for this syste
What are the details of the collision sequence? These q
tions should be simple to answer, because only energy
momentum conservation are involved. However, when
upper ball is much heavier than the lower ball, the numbe
collisions is large and a direct solution is tedious. As w
discuss in Sec. III there is an elegant mapping of this co
sion problem to an equivalent billiard system that provide
remarkable simplification.

III. BILLIARD MAPPING

We now map the problem of two colliding particles and
elastic barrier into an equivalent billiard system. From th
approach, the entire particle collision history can be infer
in a simple geometric manner. To be general, suppose
the particles have massesm1 andm2 and are located, respec
tively, at x1 andx2 , with x1,x2 ~andx1 ,x2.0). The trajec-
tories of the two particles in one dimension are equivalen
the trajectory@x1(t),x2(t)# of an effective billiard ball in the
two-dimensional domain defined byx1 ,x2.0 andx1,x2 .
The billiard ball hitting the boundaryx150 corresponds to a
collision between the lower particle and the floor, while t
ball hitting the boundaryx15x2 corresponds to a collision
between the two particles.

Now define the following billiard rescaling:3–6

yi5xiAmi wi5v iAmi , ~1!

for i 51 and 2. In these coordinates, the constraintx1,x2
becomes

y2.Am2

m1
y1 . ~2!

Thus the allowed region is now a wedge-shaped domain~see
Fig. 2! with opening angle

a[tan21Am1

m2
. ~3!

The crucial feature of this rescaling is that it ensures that
collisions of the billiard ball with the boundary of the do
main are specular. To demonstrate this point, we take
energy and momentum conservation statements:

s

1493S. Redner
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2
m1v1

21
1

2
m2v2

25
1

2
m1v18

21
1

2
m2v28

2, ~4a!

m1v11m2v25m1v181m2v28 , ~4b!

where the prime denotes a particle velocity after a collisi
and rewrite these conservation laws in rescaled coordin
to give

w1
21w2

25w18
21w28

2, ~5a!

Am1w11Am2w25Am1w181Am2w28 . ~5b!

Equation~5a! states that the speed of the billiard ball is u
changed by a collision. Equation~5b! can be rewritten as
(Am1,Am2)•(w1 ,w2) remains constant in a collision. Be
cause the vector (Am1,Am2) is tangent to the constraint lin
y25y1Am2 /m1, the projection of the rescaled velocity on
this line is constant in a particle–particle collision. It also
intuitively clear that in a particle–wall collision, the rescale
velocity is preserved. As a result, the collision sequence
two elastically colliding particles and an elastic barrier in o
dimension is completely equivalent to the trajectory of a b
liard ball in a two-dimensional wedge of opening anglea
given by Eq.~3! in which each collision with the boundary i
specular.

A more dramatic simplification arises in theyi coordinates
by recognizing that because each reflection is specular,
trajectory in the wedge is the same as a straight trajector
the periodic extension of the wedge~see Fig. 3!. Each colli-
sion is alternately a particle–particle or a particle-wall co
sion, so that the identity of each barrier alternates betw
pp and pw. From this description, we immediately dedu
that the collision sequence of the two-particle system e
when the trajectory of the billiard ball no longer crosses a
wedge boundary. As shown in Fig. 3, when the original t
jectory is extended in this manner, it will ultimately pa
through six wedges. Thus five collisions~particle–wall and
particle–particle! occur in total.

The maximum number of wedges that can be packed
the half plane isp/a. A straight trajectory of the billiard bal
typically passes through all these wedges. This is there

Fig. 2. Allowed wedge inyi coordinates. A sample billiard ball trajectory i
shown. Hitting they2 axis corresponds to a particle-wall collision~denoted
by pw), while hitting the liney25y1Am2 /m1 corresponds to a particle–
particle collision~denoted bypp).
1494 Am. J. Phys., Vol. 72, No. 12, December 2004
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the maximum number of collisions,Nmax, possible in the
two-particle system. In the limit wherem1!m2 , we thereby
find ~using Eq.~3!!

Nmax.pAm2

m1
. ~6!

Thus the total number of collisions in the original partic
system emerges from extremely simple geometric consi
ations of the equivalent billiard.

From Fig. 3, the incidence angle of the billiard ball at ea
boundary increases by a factora after each collision. Fur-
thermore, using the constancy of the rescaled velocityw, we
also can deduce the particle velocities at every collis
stage. We now illustrate this approach by reconsidering
initial examples from this billiard-theoretic perspective.

IV. DIME ON A SUPERBALL AND A BASEBALL ON
A BASKETBALL: A SECOND LOOK

For the dime on the superball, the opening angle of
wedge has the limiting behaviora5 p/22d, with d
'Am2 /m1 asm2 /m1→0. In Fig. 4 the trajectory of the cor
responding billiard ball is shown in they1–y2 coordinate
system. Because the dime and the superball have the s
initial velocities, the incoming trajectory in the wedge is pa
allel to the initial pp boundary. The distance to thepp

Fig. 3. Periodic extension of the allowed wedge. The trajectory in the or
nal wedge is equivalent to the straight trajectory shown~dashed!.

Fig. 4. Allowed wedge inyi coordinates for the dime and superball.
trajectory corresponding to the dime and the superball approaching the
at the same velocity is shown. The dashed line shows the trajectory in
periodic extension of the wedges.
1494S. Redner
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boundary is proportional to the initial separation of the dim
and the superball.~If, initially, x25x11e, then y2

5y1Am2 /m11Am2e.)
After the superball collides with the wall, the billiard tra

jectory is incident on thepp boundary with inclination angle
2d ~see Fig. 4!. After specular reflection from this boundar
the final outgoing trajectory is then inclined at an angled
with respect to the horizontal. This inclination angle mea
that the final velocity of the dime is three times that of t
superball. Thus in the presence of gravity, an ideal dime
rise to nine times its initial height.

This same result can be obtained even more simply
drawing a straight trajectory through the periodic extens
of the wedges. In this case, the final trajectory is inclined
an angle ofp/223d with respect to the last periodicall
extendedpw boundary. This construction again implies th
the outgoing trajectory is inclined at an angle of 3d with
respect to the initialpp boundary.

For a basketball of massm153m and a baseball of mas
m25m, the opening angle of the wedge isa560° ~see Fig.
5!. Again, there are two collisions in total and by simp
geometry it easily follows that the final outgoing billiar
trajectory is vertical, that is,v1850 andv28.0. We can obtain
the final speedv28 by exploiting the constancy of the rescale
speed. Initially,Aw1

21w2
25Am1v21m2v252Amv, wherev

is the initial speed. In the final state, the rescaled spee
w285Amv28 . Therefore,v1850 andv2852v.

As a byproduct of the billiards approach, notice that
soon asm1 /m2,3, the total angle of three wedges is le
than 180°, and there necessarily must be one morepw col-
lision. Whenever the final trajectory is tangent to either app
or a pw line, a critical point is defined where the total num
ber of collisions changes by one. Asm1 continues to de-
crease, a sequence of transitions arises. Each transition
curs when the wedge angle decreases belowp/n, with n an
integer. At this point the total number of collisions increas
from n21 to n. We therefore find that three collisions fir
occur whenm1,3m2 , four whenm1,m2 , five whenm1

,0.5278m2 , six whenm1,m2/3, etc.

V. THREE PARTICLES ON AN INFINITE LINE

The billiards approach gives an extremely simple way
solve the classic elastic collision problem that apparen
was first posed by Sinai.7 Consider a three-particle system o

Fig. 5. Allowed wedge inyi coordinates for the baseball–basketball syst
with m153m2 . The dashed line again shows the billiard trajectory in t
periodic extension of the wedges.
1495 Am. J. Phys., Vol. 72, No. 12, December 2004
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an infinite line that consists of two approaching cannonba
each of massM . Between them~and nonsymmetrically lo-
cated! lies a ping-pong ball of massm!M . Due to the col-
lisions between the cannonballs and the intervening pi
pong ball, the latter rattles back and forth with rapid
increasing speed until its momentum is sufficient to drive
cannonballs apart~see Fig. 6!. In the final state, the three
particles are receding from each other. How many collisio
occur before this final state is reached?

By using energy and momentum conservation, we can
termine the state of the system after each collision a
thereby find the number of collisions before the three p
ticles mutually recede. However, this approach is com
cated and provides minimal physical insight~see the appen
dix and Refs. 14, 15, 18, and 19.! We now present a much
simpler solution by mapping the original three-particle sy
tem onto a billiard in an appropriately defined domain.

We let the coordinates of the particles bex1 , x2 , andx3 ,
with x1,x2,x3 . This order between the particles aga
translates to a geometrical constraint on the accessible re
for the billiard ball in the three-dimensionalxi space. Simi-
larly, the trajectories of the particles on the line translate
the trajectory@x1(t),x2(t),x3(t)# of a billiard ball in the al-
lowed region.

As in the previous examples, we introduce the resca
coordinatesyi5xiAmi . These coordinates satisfy the co
straints

y1

AM
,

y2

Am
,

y2

Am
,

y3

AM
. ~7!

~The generalization to arbitrary masses is straightforw
and is made in the next section.! In yi space, the constraint
correspond, respectively, to the effective billiard ball bei
confined to the half-space to the right of the planey1 /AM
5y2 /Am and to the half-space to the left of the plan
y2 /Am5y3 /AM ~see Fig. 7!. These constraints define th
allowed region as an infinite wedge of opening anglea.

The use of rescaled coordinates ensures that all collis
between the effective billiard particle and these constra
planes are specular. Furthermore, momentum conserva
gives

Fig. 6. Space-time diagram of the typical evolution of two cannonba
~heavy lines! approaching an initially stationary ping-pong ball~light line!.
The cannonballs each have massM51 and initial conditions
@x1(0),v1(0)#5(0,1) and @x3(0),v3(0)#5(2,21). A ping-pong ball of
massm50.005 is initially atx2(0)51/2. There are 31 collisions in tota
before the three particles recede. The first 30 collisions are shown.
1495S. Redner
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Mv11mv21Mv35AMw11Amw21AMw350, ~8!

where, without loss of generality, we take the total mom
tum to be zero. In this zero momentrum reference frame,
trajectory of the billiard ball is always perpendicular to t
diagonal,d5(AM ,Am,AM ). Thus we may reduce the three
dimensional billiard to a two-dimensional system in t
plane perpendicular tod.

To complete this picture, we need to find the wedge an
a. The normals to the two constraint planes aree125

(2 1/AM , 1/Am,0) and e235(0,2 1/Am , 1/AM ). Conse-
quently, the angle between these planes is given by

a5cos21S 2
e12•e23

ue12uue23u
D5cos21S 1

11
m

M
D . ~9!

In the limit m/M→0, Eq.~9! givesa'A2m/M . Finally, the
maximum number of possible collisions is determined by
number of wedges that fit into the half plane. This conditi
gives

Nmax5
p

a
'pAM

2m
. ~10!

For m/M→0, the opening angle of the wedge goes to z
and correspondingly, the number of collisions diverges.

VI. THREE PARTICLES ON A RING AND THE
TRIANGULAR BILLIARD

Finally, let us consider three elastically colliding particl
of arbitrary massesm1 , m2 , andm3 on a finite ring of length
L.8,9 If we make an imaginary cut in the ring between pa
ticles 1 and 3, we can write the order constraints of the th
particles as

x1,x2 , x2,x3 , x3,x11L. ~11!

As usual, we employ the rescaled coordinatesyi5xiAmi to
ensure that all collisions of the billiard ball with the doma
boundaries in theyi coordinates are specular. In these co
dinates, the first two constraints again confine the particl
be between the planes defined by the normal vectorse125

(2 1/Am1 , 1/Am2,0) and e235(0,2 1/Am2 , 1/Am3). With-
out the offset ofL, the constraintx3,x11L corresponds to
a plane that slices they1–y3 plane and passes through th
origin. The offset ofL means that we must translate th
plane by a distanceLAm3 along y3 . The fact thatx3 is the

Fig. 7. Allowed wedge in theyi coordinate system for a system of tw
cannonballs and an intervening ping-pong ball on an infinite line. The we
is the region where the vectorse12 ande23 point toward.
1496 Am. J. Phys., Vol. 72, No. 12, December 2004
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lesser coordinate also means that the billiard ball is confi
to the near side of this constraint plane. Thus the billiard b
must remain within a triangular bar whose outlines a
shown in Fig. 8.

If the total momentum of the system is zero, th
(Am1,Am2,Am3)•(w1 ,w2 ,w3)50, and the trajectory of the
billiard ball remains within a triangle perpendicular to th
long axis of the bar, with anglesa, b, andg. We compute
these angles by the same approach given in Eq.~9!. Thus, for
example,

a5cos21S 2
e12•e23

ue12uue23u
D

5cos21SA m2m3

~m11m2!~m21m3!
D . ~12!

The anglesb andg can be obtained by cyclic permutation
of this formula.

Therefore the elastic collisions of three particles on a fin
ring can be mapped onto the motion of a billiard ball with
a triangular billiard table. One can then exploit the wealth
knowledge about triangular billiards5,6,8 to infer basic colli-
sional properties of the three-particle system. For exam
periodic or ergodic behavior of the billiard translates to p
riodic or nonperiodic behavior in the three-particle collisio
sequence.

VII. DISCUSSION

We have shown how to recast the elastic collisions
point particles in one dimension into the motion of a billia

e

Fig. 8. Allowed region in theyi coordinates for three particles of arbitrar
masses on a ring of circumferenceL. The triangular billiard with anglesa,
b, andg is defined by the thick solid lines.

Fig. 9. Allowed region inz1–z2 coordinates for three particles of arbitrar
masses on the line. Typical nonspecular collisions of the billiard ball w
the boundary are shown for 12 collisions whenv23.0 andv23,0 @see Eq.
~A1!#. A similar picture arises for 23 collisions.
1496S. Redner
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ball that moves at constant speed in a confined region
higher-dimensional space. A crucial step in this reformu
tion is the introduction of the rescaled coordinatesyi

5xiAmi . This rescaling ensures that all collisions of the b
liard ball with the boundaries of its accessible region
specular. For the examples of two particles on a semi-infi
line and a reflecting wall and for three particles on an infin
line, the allowed region for the billiard ball is an infinit
wedge. For three particles on a ring, the allowed region
triangular billiard. The shape of the associated wedge or
angle is readily calculable in terms of the particle masse
the original system.

If these masses are widely disparate, the opening ang
the wedge or one angle in the triangle becomes small.
billiard ball enters such an acute corner, a large numbe
bounces occurs before the ball recedes from this cor
These frequent bounces are completely equivalent t
straight line trajectory passing close to the tips of a la
number of periodic extensions of the wedge over a sh
distance. In the original system, either picture correspond
a large number of collisions between neighboring particle

The mapping onto a billiard system can, in principle,
generalized to an arbitrary number of particlesN. The spatial
dimension of the accessible region in the corresponding
liard is now (N21) dimensional. Although less is know
about such high dimensional billiards, this mapping provid
a useful perspective to deal with the elastic collisions
many particles in one dimension.

Finally, it is worth mentioning that a similar wedge ma
ping has been applied to determine the probability that th
diffusing particles on the line satisfy various constraints
their relative positions.20 In both the collisional and diffusive
systems, the order constraint leads to nearly identical we
constructions, and these provide elegant solutions to
original respective problems.
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APPENDIX A: PING –PONG BALL BETWEEN TWO
CANNONBALLS: DIRECT SOLUTION

We consider three particles with massesmi , positionsxi ,
and velocitiesv i for i 51, 2, and 3. Define the relative coo
dinates zi5xi2xi 11,0 and the relative velocitiesv i ,i 11

5xi2xi 11 . From elementary mechanics, these relative
locities transform as follows~see Fig. 9!:

12 collision:
v128 52v12

v238 5v231l12v12,
~A1!

23 collision:
v128 5v121l23v23

v238 52v23,
~A2!

with l1252m1 /(m11m2) and l2352m3 /(m21m3). Once
again, we can view the particle collisions as equivalent to
motion of a billiard ball in the third quadrant of thez plane,
but with nonspecular reflections at each boundary.
1497 Am. J. Phys., Vol. 72, No. 12, December 2004
a
-

e
te

a
i-
in

of
a
of
r.
a

e
rt
to
.

il-

s
f

e
n

ge
e

P.
-

.

-

e

It is convenient to characterize a trajectory by its po
angle tanu5v23/v12. Then the above collision rules can b
written as

tanun52l122tanun21 , ~12 collision!, ~A3a!

cotun2152l23
212cotun22 , ~23 collision!, ~A3b!

whereun is the angle after thenth collision with the bound-
ary. In writing these recursion relations, we use the fact t
the 12 and 23 collisions alternate. Initially, the billiard ball
heading toward the corner, but eventually it ‘‘escapes’’
having a trajectory with its polar angle in the range~p,3p/2!.
This condition means that the three particles are all reced
from each other. For a 12 collision, the incidence angle is
the range2 p/2,u,p/2, while the outgoing angle is in the
rangep/2,u,3p/2. In this case, escape means that tau
.0. Similarly, for a 23 collision, the incidence angle is in th
range 0,u,p, while the outgoing angle is in the rangep
,u,2p. For this case, escape means that cotu.0:

To solve Eq.~A3!, we first writeun in terms ofun22 :

tanun52l121
1

1

l23
1

1

tanun22

. ~A4!

Next, let tn5tanun /Al12l23, which simplifies Eq.~A4! to

tn52m1
1

m1
1

tn22

, ~A5!

where m5Al12/l23. Equation ~A5! can be written even
more simply as

tn52m2
1

tn21
. ~A6!

To solve this recursion formula, we definetn[gn /hn and
find that Eq.~A6! is equivalent to the two first-order recu
sion relationshn5gn21 andgn52mgn212hn21 . These re-
lations are equivalent to the second-order recursion form

gn52mgn212gn22 . ~A7!

The general solution isgn5A1a1
n 1A2a2

n , whereA6 are
constants anda65(2m6Am224)/2. To complete the so
lution, we need an initial condition. For simplicity, we sta
with a billiard with incidence angleu50 that has undergone
a single 12 collision. This situation corresponds to the init
condition t152m. Imposing this condition, and after som
simple algebra, we find

tn5
a1

n112a2
n11

a1
n 2a2

n . ~A8!

It is more convenient to write Eq.~A8! in complex form by
defininga65A e6 if, which leads to

tn5
sin~n11!f

sinnf
, ~A9!

wheref5tan21A(42m2)/m2.
The particles are all receding whentn first becomes nega

tive. The maximum number of collisions until this occurs
1497S. Redner



,

s.

Y
-

la

es

a

Stat.

s of

i,
r’s

y,
ing
i,
l

ger,

a

s,’’
,
,’’

E.
the

s,’’

e-

n

ol-

e

’’ J.

ys.
thus given by the conditiontn50, which gives (n11)f
5p or n'p/f. In the limit m2 /m1[e1→0 and m2 /m3

[e3→0, we have

m25
4

~11e1!~11e3!
54~12e12e3!. ~A10!

Finally f5tan21A(42m2)/m2'Ae11e3, which gives

Nmax'
p

Ae11e3

5pA m1m3

m2~m11m3!
. ~A11!

In the special case ofm15m35M and m25m, Eq. ~A11!
reduces to Eq.~10!.
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