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A simple relation is developed between the elastic collisions of freely moving particles in one
dimension and a corresponding billiard system. For two particles with massesd m, on the
half-line x>0 that approach an elastic barrieryat 0, the corresponding billiard system is an
infinite wedge. The collision history of the two particles can be easily inferred from the
corresponding billiard trajectory. This connection explains the classic demonstrations of the “dime
on the superball” and the “baseball on the basketball” that are a staple in elementary physics
courses. It also is shown that three elastic particles on an infinite line and three particles on a finite
ring correspond, respectively, to the motion of a billiard ball in an infinite wedge and on a triangular
billiard table. It is shown how to determine the angles of these two sets in terms of the particle
masses. ©2004 American Association of Physics Teachers.
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[. INTRODUCTION billiard ball moves in a two-dimensional wedge-shaped bil-
o ) . liard table with elastic and specular reflection each time the

A standard topic in introductory mechanics courses is elaspa|| hits the boundary of the table® Specular means that
tic collisions. The_re are two very nice Iectur_e demonstrationghe angle of incidence equals the angle of reflection. This
to accompany this topit.The first is the “dime on the su- gescription can be greatly simplified by recognizing that
perball.” Here one carefully places a dime on top of a superspecular reflection at a boundary is geometrically identical to
ba!l and drops_, this composite system on a hard floor. Bf?for%assing straight through the boundary, where on the other
do!ng so, the m_structor asks the class to guess thg maximuBide of the boundary there is an identical image of the
height of the dimeh,,, compared to the initial heighty.  \wedge. By repeating this construction, the end result is that
For perfectly elastic collisions and in the limit where the pilliard motion in the wedge is equivalent to a straight tra-
mass of the dime is vanishingly small, it is easy to show tha}ectory in a plane that is “tiled” by a fan of wedges. By
hmax=9M0!? Although this theoretical limit cannot be using this equivalence, it is easy to completely solve the
achieved, the dime can easily hit the ceiling of a normalcollision history of the original two-particle and barrier sys-
classroom when the superball is dropped from chest level. tem.

Another demonstration of this genre is to carefully place a e then extend this approach to treat three elastically col-
baseballhardbal) of massm on top of a basketball of mass liding particles of arbitrary masses on an infinite one-
M and then drop the two together. The question for the clasdimensional line. We ask the question: how many collisions
is how high does the basketball rise after a collision with theoccur when two cannonballs are approaching, with an inter-
floor? It turns out that fom=M/3 (which is close to the vening elastic ping-pong ball that is rattling between them?
actual mass ratio for a baseball and a basketlaltl again  This system can again be mapped onto the motion of a bil-
for perfectly elastic collisions, the basketball hits the floorliard ball in an infinite wedge whose opening angle depends
and stays there. However, be sure to warn the class to bewa®@ the three masses. Finally, we discuss the motion of three
of the rapidly moving baseball. In the theoretically ideal situ-particles on a finite rin§:° This system can be mapped onto
ation, it rises to a heigh,,,,=4h,. Working out these two the motion of a billiard ball on a triangular table. From this
examples are left as exercises for the reader. connection, we can gain many insights about the collisional

The extension of this simple two-particle system to arbi-Properties of the three particle on the ring.
trary mass ratios presents many interesting and unexpected These exactly soluble few-body systems naturally open
challenges. In what follows, we generally ignore gravity be-new issues. For example, what happens when the number of
cause it plays a negligible role during the collisions. If theparticles,N, becomes large? In one dimension, the momen-
upper mass is much larger than the lower mass, then for twim distribution of a polydisperse system of elastic particles
separated masses that approach an elastic barrier, there wittnverges to a finitéd version of the Gaussian
be a large number of collisions before the two masses didistribution® However, the transport properties appear to be
verge and ultimately recede from the barrier. This dynamic&nomalous. In particular, there is a lingering controversy
can, in principle, be analyzed by applying momentum con-about the nature of heat flow through such a systeand
servation to map out the particle trajectories. This approackhe nature of the thermodynamic limit of this system is not
is tedious, however, and does not provide physical insighyet fully understood.

(see the Appendix More generally, it is natural to inquire about the roles of

The goal of this article is to present a simple connectioninelastic collisions and the spatial dimension on the dynam-
between the motion of few-particle elastically colliding sys-ics. This question is a natural entry to the burgeoning field of
tems in one dimension and a corresponding billiard systergranular media? Although this area is beyond the scope of
For two particles and an elastic barrier, the correspondinghis letter, it is worth mentioning a few relevant topics. A
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’ For the baseball on top of the basketball, the same analysis

now gives the following collision sequenc€again assuming
o ° ’ perfectly elastic collisions
° 1 ° \ (i)—(ii) The basketball hits the ground with velocityv
©¢ Q‘r Q Q ©¢ and reverses direction so that its velocitytig .
(iii ) Form/M = 1/3, the center-of-mass has velocity /2.
(i) (ii) (iii) @iv) W) In the center-of-mass reference frame, the baseball has ve-

) . ) locity —3v/2, while the basketball has velocityv/2.
Fig. 1. Collision sequence for the dime-superball system. The armows ;) After the collision between the two balls in the center-
(drawn to scaledenote the velocities at each collision stage. . .
of-mass frame, their velocities are reversed.
(v) In the original lab frame, the baseball has velocity
+2v, while the basketball is at rest.

particularly intriguing feature of inelastic systems is the phe- In both these cases, there are just two collisions—an initial
nomenon of “inelastic collapse,” where clumps of particles collision of the lower ball with the floor and a second colli-
with negligible relative motion form. This collapse occurs sion between the two balls. Subsequently, the upper ball
when the number of particles is sufficiently large or when themoves faster than the lower ball and there would be no more
collisions are sufficiently inelastf¢'*Some of the methods collisions in the absence of gravity. However, if the upper
described here may be useful for understanding these syball is heavier than the lower ball, there will be many colli-
tems. The inclusion of other parameters also leads to aions before the two balls recede from the floor and from
wealth of new effects. For example, a variety of collisionaleach other. How many total collisions occur for this system?
transitions occur when inelastic particles are pushed by &Vhat are the details of the collision sequence? These ques-
massive wall® while the presence of gravity in an elastic tions should be simple to answer, because only energy and
system of two particles and a wall leads to both quasiperimomentum conservation are involved. However, when the
odic and chaotic behavidf.Again, a billiard-theoretic per- upper ball is much heavier than the lower ball, the number of
spective may provide helpful insights into these systems. collisions is large and a direct solution is tedious. As we

In the next section, we discuss the dime on the superbatliscuss in Sec. Ill there is an elegant mapping of this colli-
and the baseball on the basketball problems by elementasion problem to an equivalent billiard system that provides a
means. Then in Sec. Il we show how to map these system®&markable simplification.
onto the motion of a billiard ball in a wedge domain. The
same approach is used in Sec. IV to show the equivalence of
three particles on an infinite line to a billiard ball in an infi-
nite wedge. In Sec. V the equivalence of three particles on 4I. BILLIARD MAPPING
ring to a triangular billiard is discussed. A brief discussion is

given in Sec. VI We now map the problem of two colliding particles and an

elastic barrier into an equivalent billiard system. From this
approach, the entire particle collision history can be inferred
in a simple geometric manner. To be general, suppose that
Il. DIME ON A SUPERBALL AND A BASEBALL ON the particles have masses andm, and are located, respec-

A BASKETBALL tively, atx, andx,, with X;<X, (andx; ,x,>0). The trajec-
tories of the two particles in one dimension are equivalent to

To aid in the analysis of the dime on the superball, it is : ; o .
helpful to imagine that the two particles are separated. Agair{c,e t;gjector){xll(t()j,xz(t)] gf ?n edffectlve b||(|)|ard dball in the
gravity is neglected throughout the collisions; its only role is_l_ho' bl'rlFendSIkgml?h' Qmalrr]] : |ned bM'_X(2)> an XlEXZ'
to give the final height of the dime in terms of its velocity Th€ billiard ball hitting the boundary, =0 corresponds to a

immediately after the last collision. Figure 1 shows the ve-collision between the lower particle and the floor, while the
locities of the dime and superball given the assumption thapall hitting the boundary;=x, corresponds to a collision
the massn of the dime is negligible compared to that of the between the two particles. s

superballM: all collisions are assumed to be perfectly elas- Now define the following billiard rescaling:

tic. The following collision sequence occurs: yi=xym  w;=v;y/m;, (1)

(i) The dime and the superball both approach the ground ) )
with velocity —v. for i=1 and 2. In these coordinates, the constraift x,

(i) The superball hits the ground and reverses directio?€comes

so that its velocity istv. [m,
(iil) For m/M —0, the center-of-mass coincides with the yo> P Y- (2

center of the superball. In this reference frame, the 1

dime approaches the superball with velocit2v. Thus the allowed region is now a wedge-shaped dortssa
(iv) After the dime—superball collision in the center-of- Fig. 2) with opening angle

mass frame, the dime moves with velocity2v, m

while the superball remains at rest. a=tan 1 \/— 3
(v) Returning to the original lab frame, the superball 2

moves with velocity+v, while the dime moves at The crucial feature of this rescaling is that it ensures that all
velocity +3v. This velocity of+ 3v leads to the dime  collisions of the billiard ball with the boundary of the do-
rising to a final height that is nine times that of the main are specular. To demonstrate this point, we take the
superball in the presence of gravity. energy and momentum conservation statements:
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Fig. 2. Allowed wedge iry; coordinates. A sample billiard ball trajectory is pw

shown. Hitting they, axis corresponds to a particle-wall collisi¢tenoted PP
by pw), while hitting the liney,=y,;ym,/m; corresponds to a particle—
particle collision(denoted bypp).

Fig. 3. Periodic extension of the allowed wedge. The trajectory in the origi-
nal wedge is equivalent to the straight trajectory shqdashedl

1 , 1 , 1 L, 1 ' the maximum number of collisiond\ .y, possible in the
5 M1+ 5Meve=5Myuy "+ 5 mMyv5”, (43 two-particle system. In the limit whem, <m,, we thereby
find (using Eq.(3))
myv,+ m2v2=mlvi+ mzvé y (4b) m,
where the prime denotes a particle velocity after a collision, Ninax™ m_l ©®)
and rewrite these conservation laws in rescaled coordinates . . - .
to give Thus the total number of coII|S|on§ in the orlglngl partu_:le
system emerges from extremely simple geometric consider-
Wi +wi=w}2+w,?, (58  ations of the equivalent billiard.
From Fig. 3, the incidence angle of the billiard ball at each
\/EWH' \/szzz \/EWH \/EWE- (5b) boundary ?ncreases by a facta?after each collision. Fur-

thermore, using the constancy of the rescaled velagjtyve
also can deduce the particle velocities at every collision
stage. We now illustrate this approach by reconsidering our
initial examples from this billiard-theoretic perspective.

Equation(5a) states that the speed of the billiard ball is un-
changed by a collision. Equatiofbb) can be rewritten as

(Vmq,Vm,) - (wq,w,) remains constant in a collision. Be-
cause the vectorm,, /m,) is tangent to the constraint line

yo=Y1yMy/my, the projection of the rescaled velocity onto

this line is constant in a particle—particle collision. It also is!V. DIME ON A SUPERBALL AND A BASEBALL ON

intuitively clear that in a particle—wall collision, the rescaled A BASKETBALL: A SECOND LOOK

velocity is preserved. As a result, the collision sequence of . .

two elastically colliding particles and an elastic barrier in one For the dime on the superball, the opening angle of the

dimension is completely equivalent to the trajectory of a bil-Wedge has the limiting behaviow= 7/2—6, with &

liard ball in a two-dimensional wedge of opening angle ~Vm,/m; asm,/m;—0. In Fig. 4 the trajectory of the cor-

given by Eq.(3) in which each collision with the boundary is responding billiard ball is shown in the;—y, coordinate

specular. system. Because the dime and the superball have the same
A more dramatic simplification arises in tiygcoordinates initial velocities, the incoming trajectory in the wedge is par-

by recognizing that because each reflection is specular, thalel to the initial pp boundary. The distance to thep

trajectory in the wedge is the same as a straight trajectory in

the periodic extension of the wedgsee Fig. 3. Each colli-

sion is alternately a particle—particle or a particle-wall colli- y

sion, so that the identity of each barrier alternates between 2 pw B

pp and pw. From this description, we immediately deduce PP 38

that the collision sequence of the two-particle system ends S T S pp
1

when the trajectory of the billiard ball no longer crosses any %25 y
wedge boundary. As shown in Fig. 3, when the original tra- e

jectory is extended in this manner, it will ultimately pass
through six wedges. Thus five collisiofgarticle—wall and

partlcle—pa_rtlclae occur in total. . Fig. 4. Allowed wedge iny; coordinates for the dime and superball. A

The maX|ml1'm number ,Of Wques that can b,e, packed Irt‘rajectory corresponding to the dime and the superball approaching the wall
the half plane is7/a. A straight trajectory of the billiard ball 4t the same velocity is shown. The dashed line shows the trajectory in the
typically passes through all these wedges. This is thereforgeriodic extension of the wedges.

pw
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Fig. 5. Allowed wedge iry; coordinates for the baseball-basketball system

with m;=3m,. The dashed line again shows the billiard trajectory in the Fig. 6. Space-time diagram of the typical evolution of two cannonballs
periodic extension of the wedges. (heavy line$ approaching an initially stationary ping-pong bdight line).

The cannonballs each have madgl=1 and initial conditions
[%1(0),v1(0)]=(0,1) and[x3(0),v3(0)]=(2,—1). A ping-pong ball of
massm=0.005 is initially atx,(0)=1/2. There are 31 collisions in total

boundary IS proportlonal to the initial separation of the dlmebefore the three particles recede. The first 30 collisions are shown.

and the superball.(If, initially, x,=x;+e€, then y,
=y My /my+ mse.)

After the superball collides with the wall, the billiard tra-
jectory is incident on th@p boundary with inclination angle an infinite line that consists of two approaching cannonballs,
26 (see Fig. 4 After specular reflection from this boundary, each of mass. Between then{and nonsymmetrically lo-
the final outgoing trajectory is then inclined at an angt 3 cated lies a ping-pong ball of mass<M. Due to the col-
with respect to the horizontal. This inclination angle meanyisions between the cannonballs and the intervening ping_
that the final velocity of the dime is three times that of thepong ball, the latter rattles back and forth with rap|d|y
superball. Thus in the presence of gravity, an ideal dime wilincreasing speed until its momentum is sufficient to drive the
rise to nine times its initial height. _ cannonballs apartsee Fig. 6. In the final state, the three

This same result can be obtained even more simply byarticles are receding from each other. How many collisions
drawing a straight trajectory through the periodic extensioryccur before this final state is reached?
of the WedgeS. In this case, the final trajectory is inclined at By using energy and momentum Conservation' we can de-
an angle ofw/2—34 with respect to the last periodically termine the state of the system after each collision and
extendedpw boundary. This construction again implies that thereby find the number of collisions before the three par-
the outgoing trajectory is inclined at an angle of ®ith  ticles mutually recede. However, this approach is compli-
respect to the initiap p boundary. cated and provides minimal physical insighee the appen-

For a basketball of mags; =3m and a baseball of mass dix and Refs. 14, 15, 18, and 19\e now present a much
m,=m, the opening angle of the wedgeds=60° (see Fig. ~Simpler solution by mapping the original three-particle sys-
5). Again, there are two collisions in total and by simple €M onto a billiard in an appropriately defined domain.
geometry it easily follows that the final outgoing billiard ~ We let the coordinates of the particles bg x;, andxs,
trajectory is vertical, that ig;; =0 andv5>0. We can obtain  With X;<x,<Xx3. This order between the particles again

the final speed, by exploiting the constancy of the rescaled translates to a geometrical constraint on the accessible region
2 for the billiard ball in the three-dimensiona] space. Simi-

larly, the trajectories of the particles on the line translate to

|s,the |n|t!al speed. In t’he final st:’:lte, the rescaled speed Be trajectory[ x,(t),X»(t),Xs(t)] of a billiard ball in the al-
w,=mv). Thereforep;=0 andv}=2v. lowed region.

As a byproduct of the billiards approach, notice that as ag in the previous examples, we introduce the rescaled
soon asm;/m,<3, the total angle of three wedges is Iesscoordinatesyizxi Jm.. These coordinates satisfy the con-

speed. Initially, /w2 +w3=\m;v?+ m,v?=2mv, wherev

than 180°, and there necessarily must be one meveol-  girqints

lision. Whenever the final trajectory is tangent to eithgrpma

or apw line, a critical point is defined where the total num- V1 Yo Y2 Y3

ber of collisions changes by one. As; continues to de- \/_ﬁ <\/_ﬁ' \/_5 <\/_M' @)

crease, a sequence of transitions arises. Each transition oc-

curs when the wedge angle decreases betdw, with n an  (The generalization to arbitrary masses is straightforward
integer. At this point the total number of collisions increasesand is made in the next sectiphn y; space, the constraints
from n—1 to n. We therefore find that three collisions first correspond, respectively, to the effective billiard ball being
occur whenm;<3m,, four whenm;<m,, five whenm;  confined to the half-space to the right of the plané VM

<0.5278n,, six whenm;<<m,/3, etc. =y,/m and to the half-space to the left of the plane
y»/m=y3/\M (see Fig. 7. These constraints define the
V. THREE PARTICLES ON AN INEINITE LINE allowed region as an infinite wedge of opening angle

The use of rescaled coordinates ensures that all collisions
The billiards approach gives an extremely simple way tobetween the effective billiard particle and these constraint
solve the classic elastic collision problem that apparentlyplanes are specular. Furthermore, momentum conservation
was first posed by SindiConsider a three-particle system on gives
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Fig. 8. Allowed region in they; coordinates for three particles of arbitrary

Fig. 7. Allowed wedge in they; coordinate system for & system of tWo  masses on a ring of circumferente The triangular billiard with angles,
cannonballs and an intervening ping-pong ball on an infinite line. The Wedg%’ andy is defined by the thick solid lines.

is the region where the vectoes, ande,; point toward.

lesser coordinate also means that the billiard ball is confined
Muvq+mu,+Mog=VMw;+Vymw,+Mw;=0, (8 to the near side of this constraint plane. Thus the billiard ball

where, without loss of generality, we take the total momen-mhL:)St nr_er:nlz:i_ln ;‘”th'n a triangular bar whose outlines are
tum to be zero. In this zero momentrum reference frame, th& IfW'[h(IB toltgail ﬁwomentum of the svstem is zero. then
trajectory of the billiard ball is always perpendicular to the Jme T 0 and yh . f h
diagonald= (yM,+m,M). Thus we may reduce the three- (. My, VMa, m3)'.(W1’W2'.W3)_ ), and the trajectory of the
dimensional billiard to a two-dimensional system in thePiliard ball remains within a triangle perpendicular to the
plane perpendicular td long axis of the bar, with angles, 8, and y. We compute

To complete this picture, we need to find the wedge angléhese angles by the same approach given in&qThus, for

. B éxample,
a. The normals to the two constraint planes a&g=
(- 1YM, 1/Jym,0) and e,z=(0,— 1/yJm, 1/y/M). Conse- 4| Ewrex
quently, the angle between these planes is given by a=Ccos 7 ~ ler|ex
a=cos 1| — ﬂ) =cos ! 1 ] (9) _ COSl( \/ my;Mmg (12)
|elz||e23| 1+$ (my+my)(my+mg) /-

The anglesB and y can be obtained by cyclic permutations

In the limit m/M — 0, Eq.(9) givesa~2m/M. Finally, the  of this formula.

maximum number of possible collisions is determined by the Therefore the elastic collisions of three particles on a finite
number of wedges that fit into the half plane. This conditionring can be mapped onto the motion of a billiard ball within

gives a triangular billiard table. One can then exploit the wealth of
knowledge about triangular billiart&® to infer basic colli-

N :Z%W /M (10) sional properties of the three-particle system. For example,

max o 2m’ periodic or ergodic behavior of the billiard translates to pe-

riodic or nonperiodic behavior in the three-particle collision

For m/M —0, the opening angle of the wedge goes to Zerosequence.

and correspondingly, the number of collisions diverges.

VIl. DISCUSSION
VI. THREE PARTICLES ON A RING AND THE

TRIANGULAR BILLIARD We have shown how to recast the elastic collisions of
) ] ] o ) point particles in one dimension into the motion of a billiard
Finally, let us consider three elastically colliding particles

of arbitrary masses;, m,, andms; on a finite ring of length
L.8° If we make an imaginary cut in the ring between par- z,
ticles 1 and 3, we can write the order constraints of the three
particles as

V-
X1<Xy, Xp<Xz, Xg<X;+L. (11) 23T V,3>0 \

As usual, we employ the rescaled coordinates x;/m; to
ensure that all collisions of the billiard ball with the domain A\ V<0
boundaries in the,; coordinates are specular. In these coor- 23
dinates, the first two constraints again confine the particle to

be between the planes defined by the normal veaprs

(— 1my, 13/m,,0) andeys=(0,— 1/J/m,, 1/\/ms). With-

out the offset ofL, the constraink;<x;+L corresponds to o _ _ _

a plane that slices thy, ~ys plane and passes through the |18 2 fEd LRI T 0 Cime T one of the bilara ball wih
origin. The offset ofL_means that we must translate this the boundary are shown for 12 collisions whep>0 andv,3<0 [see Eqg.
plane by a distancem; alongys. The fact thatxs is the  (A1)]. A similar picture arises for 23 collisions.
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ball that moves at constant speed in a confined region of a It is convenient to characterize a trajectory by its polar
higher-dimensional space. A crucial step in this reformula-angle tar¥=v,3/v1,. Then the above collision rules can be
tion is the introduction of the rescaled coordinatgs written as

=x;\/m;. This rescaling ensures that all collisions of the bil- _ -

liard ball with the boundaries of its accessible region are tandh=—Ayo—tand,_;, (12 collision, (A3a)
specular. For the examples of two particles on a semi-infinite N S i

line and a reflecting wall and for three particles on an infinite Cotbn—1 Nag —COln—2, (23 collision,  (A3b)

line, the allowed region for the billiard ball is an infinite where g, is the angle after thath collision with the bound-
wedge. For three particles on a ring, the allowed region is @&ry. In writing these recursion relations, we use the fact that
triangular billiard. The shape of the associated wedge or trithe 12 and 23 collisions alternate. Initially, the billiard ball is
angle is readily calculable in terms of the particle masses imeading toward the corner, but eventually it “escapes” by
the original system. having a trajectory with its polar angle in the rarige3=/2).

If these masses are widely disparate, the opening angle afhis condition means that the three particles are all receding
the wedge or one angle in the triangle becomes small. If &om each other. For a 12 collision, the incidence angle is in
billiard ball enters such an acute corner, a large number ofe range— 7/2< §< /2, while the outgoing angle is in the
bounces occurs before the ball recedes from this cornefgnge 7r/2< 9<37/2. In this case, escape means thatétan
These frequent bounces are completely equivalent 10 & gimjjarly, for a 23 collision, the incidence angle is in the
straight line trajectory passing close to the tips of a larg ange 0< 6< 7, while the outgoing angle is in the range
number of periodic extensions of the wedge over a shor . .

< §<2. For this case, escape means thatéced:

distance. In the original system, either picture corresponds to ) ) . )
a large number of collisions between neighboring particles. 10 Solve EQ.(A3), we first write 6, in terms of 0, _,:

The mapping onto a billiard system can, in principle, be

generalized to an arbitrary number of partidésThe spatial tan6,=— N+ 4 1 (A4)
dimension of the accessible region in the corresponding bil- i
liard is now N—1) dimensional. Although less is known Aoz tanb,_,

about such high dimensional billiards, this mapping provide

a useful perspective to deal with the elastic collisions ofﬁ\leXt' lett,=tan,/VA12h 23 which simplifies Eq(A4) to

many particles in one dimension. 1

Finally, it is worth mentioning that a similar wedge map- th=—p+—5—, (A5)
ping has been applied to determine the probability that three et 1
diffusing particles on the line satisfy various constraints on th-o

their relative positioné® In both the collisional and diffusive _ _
systems, the order constraint leads to nearly identical wedg¥nere «=\A1p/A23 Equation (AS) can be written even

constructions, and these provide elegant solutions to thBlore simply as
original respective problems. 1
th=—u— . (AB6)
n—-1
ACKNOWLEDGMENTS To solve this recursion formula, we defihg=g,,/h,, and
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The general solution ig,=A,a'l +A_a" , whereA. are
APPENDIX A: PING —PONG BALL BETWEEN TWO constants andr. = (— u*\u?—4)/2. To complete the so-
CANNONBALLS: DIRECT SOLUTION lution, we need an initial condition. For simplicity, we start
with a billiard with incidence angl@=0 that has undergone
We consider three particles with masses positionsx; , a single 12 collision. This situation corresponds to the initial

and velocities; for i=1, 2, and 3. Define the relative coor- conditiont;=— x. Imposing this condition, and after some
dinatesz;=x;—x;;1<0 and the relative velocities;;,,  simple algebra, we find
=X;—X;;1. From elementary mechanics, these relative ve- N+l n+i

locities transform as followsgsee Fig. % t o= @+ “- _ (A8)
, "oal-a"
12 collision: , 2 % (A1) gt i i i
" U=Vt NiU12, It is more convenient to write EA8) in complex form by

defininga. =A e*'¢, which leads to
!
V15~ V12t N3

23 collision: , A2 sin(n+1
U23= ~ V23 (A2) n:niiqu)(ﬁ, (A9)
with N 1,=2my/(m;+m,) and \,3=2m3/(m,+ms;). Once
again, we can view the particle collisions as equivalent to thevherep=tan ' /(4— ,uz)/,uz.
motion of a billiard ball in the third quadrant of tleplane, The particles are all receding whépfirst becomes nega-
but with nonspecular reflections at each boundary. tive. The maximum number of collisions until this occurs is

1497 Am. J. Phys., Vol. 72, No. 12, December 2004 S. Redner 1497



thus given by the condition,,=0, which gives (+1)¢
= or n=m/¢. In the limit my/m;=¢;—0 andm,/m;
=¢e3—0, we have

4
e —4(l-€—€y).

K 1+ e)(1+es) (AL0)

Finally ¢=tan ! (4— u?)/u?~ e, + €3, which gives

N K ’ m1m3
~ = 7T .
" et es mMy( My +m)

In the special case ah;=m;=M and m,=m, Eq. (All)
reduces to Eq(10).

(A11)
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