Novel behavior of biased correlated walks in one dimension

K. Kang and S. Redner

Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215

(Received 29 August 1983; accepted 7 December 1983)

The asymptotic properties of a biased correlated walk model in one dimension are treated
analytically. In this model, a weight factor p is associated with the walk each time it visits a new
site, and different fugacities are assigned for steps to the left and to the right. The range 0 <p < 1
corresponds to attractive correlations, and this case describes aspects of biased diffusion on a
lattice with randomly distributed static traps. A generating function for the correlated walk
model is defined which equals the configurational averaged survival probability for biased
diffusion in the presence of traps. The quantity is found to decay exponentially with N, the number
of steps in the walk. We find an interesting transition in the average number of visited sites. For
weak bias, this quantity varies as N '/?, suggesting a zero drift velocity; for strong bias it varies
linearly with ¥, indicating a transition to a finite drift velocity.

I. INTRODUCTION

Recently, a correlated walk model was introduced’ in
which a single parameter may be varied to yield either attrac-
tive or repulsive correlations. In this model, a weight factor
of p is associated with the walk each time it visits a new site,
so that a walk which visits s distinct sites has a statistical
weight of p°. For 0 < p < 1, a walk which returns to previous-
ly visited sites is more likely to occur, while for p > 1, a walk
is more likely to visit new sites at each additional step. These
two cases correspond to a self-attracting or a self-repelling
walk, respectively, while the special case p = 1 is an uncorre-
lated random walk.

This correlated walk model is of interest because it de-
scribes aspects of self-interacting polymer chains and be-
cause it appears to exhibit some of the intriguing features of
diffusion on a medium with randomly distributed static
traps.>”” The correlation in our model can be thought of as
the result of performing a configurational average over static
disorder. This approach has the advantage of casting a diffu-
sion problem on a random medium in terms of a correlated
diffuison process on a homogeneous lattice.

A precise connection between correlated walks and dif-
fusion in random media can be formulated in terms of the
following generating function'>:

N+ 1
Z(Np) =g " Y C(Nsp', (1.1)

s=2
where C(N,s) is the number of walks of N steps that visit s
distinct sites, and it is convenient to include a normalization
factor of ¢~ N where q is the lattice coordination number.
This generating function equals the exact probability, aver-
aged over all possible configurations of traps, that a diffusing
particle will survive until N steps when placed on a lattice
containing static traps randomly distributed at density
1 — p. This equivalence rests on the fact that for a walk to
survive when traps are present, each visited site must be a
nontrap, while the remaining lattice sites may be either traps
or nontraps.' Consequently, a walk which has visited s dis-
tinct sites survives with probability p°. Upon averaging over
all walks of NN steps, one arrives at Eq. (1.1). We recently
derived an analytical solution of this model in one dimension
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for the case of spatial isotropy and a number of interesting
properties were found.? For Z(N,p), we obtained

Z(Np) =1, p=1,
~eN, p>1, (1.2)
~N—1/3e—bN”3, p<1

valid asymptotically in the limit s, N— 0. The last result
agrees with previous approximate predictions for diffusion
in the presence of static traps,*® except that a power law
prefactor is predicted as well. We also found that the mean
number of sites visited after N steps (sx(p}) plays a central
role in characterizing correlated walks. We obtained

<SN(p)> ~N1/29 pP= |
~N, p>1, (1.3)
~N l/3, p< 1.

In this article, we study the behavior of this correlated
walk model in one dimension with the added influence of an
external bias. We employ the recently introduced transfer
matrix method,> exact enumeration, and steepest descents to
obtain the physical quantities of interest in the model. We
find that for any bias, Z (N,p) decays exponentially with N
for all p < 1. Following the same line of reasoning as outlined
for the isotropic case,’ it may be readily verified that the
generating function in the biased case equals the configura-
tional averaged survival probability for a biased random
walker to survive until N steps on a lattice with static traps at
density 1 — p. Due to this equivalence, we predict an expo-
nential decay in the survival probability as a natural byprod-
uct of our calculation. This is in agreement with the recent
work of Grassberger and Procaccia’ on diffusion and drift in
a continuous medium with randomly distributed static
traps. However, we also find a transition in (sy(p)) from an
N '3 behavior to a linear dependence on N as a function of
the correlation parameter p. Alternatively, for a fixed value
of p, the situation may be regarded as a transition from zero
velocity ({sy(p)) ~ N /) for sufficiently weak bias, to a finite
velocity ({sy(p)) ~ N ) for strong bias. There is also a corre-
sponding change in the rate constant of the exponential de-
cay law which was not predicted in Ref. 7.

In Sec. II, we calculate the distribution of visited sites
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C (N,s) for biased walks by using a transfer matrix method in
combination with an exact enumeration approach. This dis-
tribution is the basic ingredient in our solution. It has been
obtained previously for the unbiased case,>*~'? but the more
formal solutions®'? are not suitable for extracting the
asymptotic behavior required for our solution of correlated
walks. In Sec. I11, this asymptotic distribution and the steep-
est descent approach are used to calculate the generating
funtion and the mean number of visited sites. We also com-
pare our results with the predictions of Grassberger and Pro-
caccia.” Finally in Sec. IV, we summarize the main results of
our approach and calculation.

Il. DISTRIBUTION OF VISITED SITES

We showed previously® that in one dimension, the
asymptotic form of the distribution of visited sites C (¥,s) can
be expressed as a product of the asymptotic forms for C (V,s)
in the two limits s/N—0 and s/N— 1. This approach yielded

C (N,s)=A [2 cos(w/(s + 1))]¥e —="?¥, (2.1)

where 4 is a normalization coefficient.

We now extend this result for C (V,s) to biased walks. To
introduce a bias, we associate a fugacity a for a step to the
right, and a different fugacity b for a step to the left. A walk
which contains 7 steps to the right after N total steps will now
be weighted by a factor a"b" ~”. For the biased case, the
definition of C(N,s) may now be generalized to account for
the combinations of left- and right-hand steps that lead to s
distinct sites being visited. We write

C(Ns) = ﬁ D(Nsrab™-", (2.2)

where D {N,s,r) is the number of N step walks which visit s
distinct sites and take r steps to the right.

To calculate the asymptotic form of C (V,s) for s/N—0,
we consider the s Xs transfer matrix 7:

0 a

b 0, a 0
bo

(2.3a)

a
0,
The matrix T, moves a random walker either one step to the
left, with weight b, or one step to the right, with weight g, on

a one-dimensional chain consisting of s sites. Therefore, the
product

1

(L1,..,.)T¥ (2.3b)

1
generates all biased walks of NV steps on this chain, and the

largest eigenvalue of T, determines the properties of C (N,s)
in the limit s/N—0.> To calculate this largest eigenvalue,

note that the matrix elements of 7, depend on the row index i
and the column index j simply through i/ — j. Therefore, we
may Fourier transform'*> on the variable i—j, to find the
eigenvalue spectrum

AR =2/ab cos(mk /(s + 1)), k= 1,2,...,5.

Therefore in the limit s/N—0, the asymptotic form of C (N,s)
can be written as

/13& C(N,s)=[2Jab cos(m/(s + 1))]%, (2.4)

where the symbol = indicates that only the dominant behav-
ior arising from the largest eigenvalue of T, is being kept.
To calculate the asymptotic form of C (¥,s) for s/N—1,
we use an exact enumeration approach. When s=N + 1,
there are only two possible walks as shown in Fig. 1(a). Thus,
C(N,N + 1) equals (@ + b"). When s = N, there are four
possible walks as shown in Fig. 1(b), and C(N,N ) is simply

2@~ +ab™ 1)

By continuing this procedure for a range of values of sS N,
we find the dominant contribution to C (¥,s) in the s—N lim-
it,

C(N’s)g(IZ)[aN-k— lbk+ 1 +ak+ le—k— l] + v,
(2.5)
where the correction terms are lower-order in N, and
k= (N —s)/2foreven N —s,and k = (N — s — 1)/2for odd
N — 5. By changing variables from k to s and neglecting the
constant coefficient, we then find

C(N,s)g(

[a‘N +8/2p (N —5)/2

")
(VN —s)/2
+ gV 2N s2], (2.6)

For an asymptotic analysis, the even—odd oscillation in
C (N,s) is not important, and we therefore consider only the

{b)

FIG. 1. Configurations of walks of N steps which (a) visit s = N + 1 sites,
and (b) visit s = Nsites. The symbol @ denotes the origin of the walk, and —
the endpoint of the walk. For simplicity, intermediate sites are not shown.
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even terms. Using Stirling’s approximation, we have

lim N N | 2 _enn
((N - s)/2) =2\~ @7
Therefore, we write the following expression for C (NV,s) un-
der the assumption that it is the product of the two asympto-
tic forms in the limits s/N—0, and s/N—1:

N—w

C(N,s)=A [2yab cos(m/(s + 1))]Ye /¥
X [a(N +51/2p (N —5)/2 + av - s)/zb (N + s)/2] , (2.8)

where A is the normalization factor which will be deter-
mined from the condition
N+1

Y C(Ns)=(a+b)"

s=2

lli. STEEPEST DESCENT APPROACH

Without loss of generality, we may set a + b = 2 and
also assume a > b. To find the normalization constant A4 in
Eq. (2.8), we require

JN+ lC(N,s)ds, (3.1)
where

C(N,s)=A {exp[f(5)] + explg(s)]} (3.2)
with

f(s) = N1Inyab + Nln[2 cos(m/(s + 1))] + % Ina/b
(3.3a)

and

gls) = Nlnyab + NIn[2 cos(m/(s + 1))] + % Inb/a.
(3.3b)

If a > b and s is sufficiently large, the second exponential in
Eq. (3.2) may be neglected. Then by setting the derivative f(s)
equal to zero, we find the following value of 5., which gives
the maximum value of the distribution, C (¥,s), in the limit
S$,N—o0:

Simax g% In a/b. (3.4)

By expanding f(s) about s,,,,

f(s) gf‘(smm() + 1/2(S — Smax )zf”(smax) + sery
one may write Eq. (3.1) as a simple Gaussian integral, and we
find

1 1
A=_ [ expl = N[ Linasey +1 b” 3.5
277_Nexp{ [S(na +Ina (3.5)
We now calculate the normalized generating function

for p#1 by evaluating #
Z(N,p)=A 2‘”J explf(s) +sInplds (3.6)
0

by steepest descents. The value of s which maximizes the
integrand now depends on the value of p, and it is found from
the condition’f’(s) + In p = 0. The competition between at-
traction and bias plays a crucial role in determining asymp-

totic behavior. For 0 < p <+/b /a (strong attraction or weak
bias limit) we obtain

Smax = [ — 7N /(}In a/b + 1n p)]'/>. (3.7)

Thus, the effect of the bias can be suppressed by a sufficiently
strong attractive interaction and s,,, has essentially the

same behavior as when no bias is present.” For p>+b/a
(weak attraction or strong bias limit), we find

Smax =N (Y Ina/b + In p). (3.8)
Thus, for sufficiently strong bias, the number of visited sites
scales linearly with N, indicating that there is a superim-
posed drift on the diffusion. Finally, for p = b /a,

Span = (TN )2, (3.9)

At this value of p, the effect of the attractive interaction and
the bias balance to yield a diffusion process where s,,,,, varies
with ¥ as in the uncorrelated random walk.

We may also calculate the generating function in Eq.
(3.6) by writing the integrand as a Gaussian, and following

the steps that led to Eq. (3.5). For 0 <p <+/b /a, we find
Z(Np)=N ~'"?exp| — %(m a/b) — aN”3] (3.10)

where

a=[—{Ina/b+Inp)l?*(1 + 73/2).
Surprisingly, the decay remains exponential even though
Smax 1S proportional to N''/3, For p > /b /a we find

Z(N,p) gexp[% In plin /b + In p)]. (3.11)

Thus, exponential decay is also predicted for yb/a <p <1,

and exponential growth for p> 1. At p = b /a, we find an
exponential decay with a different power law prefactor than

in Eq. (3.10),

Z(Np)=N " exp[ —%(m a/b )2]. (3.12)

Due to the connection with diffusion in the presence of
traps, we predict that in one dimension the survival probabil-
ity for biased diffusion decays exponentially,’

Z(N,p)~exp( — kN),

for all values of p. However, the rate constant k undergoes a
sharp transition. We have

k~—1Inp(lna/b+inp), b/a<p<]l,
~ +}3(lna/b)2, O<p<,lb/a.

For small bias, one may interpret the quantity In a/b as the
drift velocity in biased diffusion. This then gives k ~ v}, for
small bias, and k ~ v, for large bias. This transition for the
rate constant was predicted by Grassberger and Procaccia’
in their investigation of a continuum model, but only for
dimensions greater than one. It would therefore be of inter-
est to test our predictions for one dimension by numerical
simulations.

Finally, the mean number of visited sites (s (p)) can be
calculated directly from the generating function by using’

(syP)) =3 In Z(Np)/d1n p. (3.14)

(3.13)
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We find (sy(p))~N for p>+b/a, (sylp))~N'? at
p=+b/a, and (sy(p)) ~N ' for 0 <p </b /a, thereby re-
flecting the properties of s,,,, found in Egs. (3.7]H3.9). We
also expect that in one dimension, the rms displacement
should also scale as (s (p)). Thus, for a weak bias, a diffusing
particle is effectively localized, while for a strong bias, the
particle has a finite drift velocity.

IV. CONCLUSIONS

We have found interesting behavior for biased, correlat-
ed diffusion in one dimension by calculating the distribution
of visited sites C(N,s). In our approach, the competition
between the attractive interaction and the bias determines
the long-time properties of the walk. A transition occurs
when the decay length associated with the attraction,
(—Inp)~", equals the “barometric” length (} Ina/b)~" as-
sociated with the biased chain. We find an exponential decay
for the generating function for all p < 1, although the rate
constant of the decay changes at the transition. Due to the
exact correspondence between the generating function of
our model and the survival probability for diffusion in the
presence of static traps, our approach also predicts an expo-
nential decay for the particle density in the latter process. We
also found that considerable insight on the nature of the
transition is gained by studying the behavior of the mean
number of visited sites (sy (p)). We found (s (p)) ~N /3 for
weak bias, while (s (p)) ~ N for strong bias. This indicates a
transition from zero drift velocity to a finite drift velocity as a
function of the bias.

2755

Our approach has the advantage of casting a diffusion
problem on a random medium in terms of a correlated diffu-
sion process on a homogeneous lattice. Transition phenom-
ena are then found simply in terms of the strength and sign of
the correlation. It will be of great interest to try to extend the
present approach to higher dimensions in order to gain-a
better understanding of the nonexponential decay processes
recently predicted® for diffusion in the presence of ran-
domly distributed traps.
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