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We investigate the kinetics of generic single-species reaction processes when the reactants move ballistically, 
namely ballistic annihilation, A + A - 0, and a ballistic aggregation process which mimics traffic flow on a 
single-lane roadway. For ballistic annihilation, dimensional analysis shows that the concentration and root 
means square velocity decay as c - P and u N r-6, respectively, with a + fl = 1 in any spatial dimension. 
Analysis of the Boltzmann equation for the evolution of the velocity distribution predicts CY = (2 + 2 p ) / ( 3  + 
2p) and fl = 1 / ( 3  + 2p) for an initial velocity distribution P(v,r=O) - u@ as u - 0. New phenomena associated 
with discrete initial velocity distributions and with mixed ballistic and diffusive reactant motion are also discussed. 
In the aggregation process, each “car” moves at  its initial velocity until the preceding car or cluster is overtaken 
after which the incident car assumes the velocity of the cluster which it has just joined. For PO@) - ufi as v - 0, the average cluster size grows as n N t(@+1)/(F+2) and the average velocity decays as u - t1/b+2). We 
also derive an asymptotic expression for the joint distribution function for the cluster mass and velocity. 

1. Introduction 
In irreversible diffusion-controlled reactions, it is well-known 

that the density decays slower than the predictions of mean-field 
theory in sufficiently low spatial dimension. For example, in 
single species annihilation,’ A + A --c 0, the density decays as 
t@ for spatial dimension d < 2, while for d 1 2, the density 
decays according to the mean-field prediction of t-1. The 
contrasting situation where the reactants move ballistically has 
received much less attention, however, and thescope of established 
of results is correspondingly sparser. Here, we present several 
new results for the kinetics of simple reactions when the rate 
limiting step of the process is the ballistic transport of reactants. 
Such ballistically-controlled reactions appear simpler than their 
diffusion-controlled counterparts, since the only stochasticity is 
the initial velocity distribution of the reactants. However, 
unanticipated phenomena occur which depend on the form of the 
initial velocity distribution. 

Two general results have been established for ballistic reactions. 
Elskens and Frisch2 introduced single species annihilation, A + 
A - 0 in one dimension, where each particle velocity is fuo;  i.e., 
the initial velocity distribution P(v,t=O) = p6(u - ug)  + q6(u + 
UO), with q = 1 - p .  From probablistic arguments, the density 
was found to decay as 

in the interesting case of p = q = 112. Elskens and Frisch also 
argued that this result can be understood qualitatively by 
considering density fluctuations in a linear domain of length 1 
where there will typically be an imbalance in the number of right- 
moving and left-moving particles of magnitude 6n = (c(O)l)1/2. 
After a time t = l / u ,  only this residual fluctuation will remain 
inside the domain. Thus the concentration will be of order ~ ( t )  
= 6 n l l .  By expressing 1 in terms of t ,  eq 1 follows. 

In a complementary direction, Carnevale et al.3 and Jiang and 
Leyvraz4 investigated irreversible aggregation, At + A, - Ai+j, 
with ballistic trajectories for the aggregates and with momentum 
conserving collisions. Here the subscript refers to the (conserved) 
mass of the aggregates. From a scaling approach, Carnevale et 
al. showed that the cluster concentration c( t )  decayed as 
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c(r)  - r*, with CY = 2 d / ( d  + 2)  (2) 

It is instructive to reproduce this result by a mean-free-path 
argument. For simplicity, consider a monomer-only initial 
condition in which each particle has the same speed but with a 
random direction. Consequently the momentum of an aggregate 
of mass m is proportional to m1/2, since it is the sum of m random 
momenta, and the corresponding aggregate velocity is u = p / m  
a m+. From kinetic theory, the time between collisions at any 
stage of the reaction is T N 1 /(cuu), where cis the concentration, 
u is the typical velocity, and u is the cross-section. In this time 
interval, each aggregate typically undergoes a collision, leading 
to a change in concentration 6c - -c. Thus 

dc 6c C - =-E-- 

dt 7 l / (cuu) ( 3 )  

For a typical aggregate mass is m 0: l/c, the right-hand side can 
be written in terms of the concentration only, using u - c1i2 and 
u - dd- l ) /d ,  from which eq 2 follows. 

Our investigations are motivated by the above interesting 
results. In the next section, we consider ballistic single-species 
annihilation, A + A - 0, with arbitrary initial velocity 
distributions. We have previously found5 that the exponent CY 

depends on the form of the initial velocity distribution and on d, 
while radically different behavior occurs for discrete initial velocity 
distributions. We will also discuss intriguing results for the case 
where there is superimposed diffusion on the primary ballistic 
motion. In the following section, we investigate a ballistic 
aggregation process which is an idealized description of traffic 
flow on a one-dimensional roadway.6 Our modeling is comple- 
mentary to traditional continuum descriptions of traffic flows.’ 
In our model, “cars” move ballistically in one direction (to the 
right) according to an initial velocity distribution. Clusters form 
whenever a faster car overtakes a slower car or cluster and is then 
obliged to assume the velocity of the lead car in the cluster. For 
an initial velocity distribution that varies as w as u - 0, we 
determine the average size and velocity of clusters, as well as the 
form of the joint velocity and mass distribution. 

2. Ballistic Single Species Amhilation 
(a) Continuous Velocity Distributions. Consider a system of 

identical particles with a zero mean initial velocity distribution, 
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P(u,t=O). (For simplicity, we consider a random initial spatial 
distribution.) Particles move at their initial velocity until a 
collision occurs, which results in the annihilation of both particles. 
We wish to determine the time dependence of the concentration, 
c(t )  = J du P(u,t) - P, and the root mean square (rms) (or 
typical) velocity, u, = (J du u2P(u,t)/c(t))1/2 - t-@. 

From mean-free path considerations, the time between collisions 
for this system with particles of radius rand typical velocity u, 
at concentration c is r - 1/cum#-I, or cum 0: +I. Thus the 
relation a + /3 = 1, which should hold for all spatial dimension 
d, follows. Since the lifetime of particles with velocity u is 
proportional to l / v ,  faster particles tend to annihilate more 
quickly, and the typical velocity should decay in time. Conse- 
quently a should typically be less than unity, and as shown below, 
its value depends on the form of the initial velocity distribution. 
To determine the evolution of the velocity distribution in one 

dimension, we analyze the Boltzmann equation. Let P(x,u,t) be 
the density of particles with velocity u at position x and at time 
t. At time t + At, the velocity distribution changes both because 
particles move and because of reactions. We treat the reaction 
term in a mean-field approximation by assuming that a particle 
of x’ < x and velocity v’ > v necessarily reacts with the target 
particle at (x,u) when x - x’ < (u’ - u)At. There is a 
complementary contribution due to collisions between the target 
andaparticlelocatedatx’>xwithu’<u. Thesetwocontributions 
lead to5 

P(~+v&,v, t+At)  - P(x,u,~) = 

-kP(x,u,t) [Jmdu’ Jx:u+)ar dx’P(x’,u’,t) + 

where k is a dimensionless reaction constant. This approximate 
equation overcounts collisions, since the incident particle at x’ 
may react with a third particle rather than with the target particle. 
We assume that the contributions of these three-body effects are 
negligible. 

This Boltzmann equation can be simplified by expanding the 
first order in At and also assuming spatial homogeneity, so that 
the spatial derivative can be set to zero. This yields, for the 
concentration of particles with velocity u 

where the 10 - V I  dependence of the integral kernel controls the 
reaction rate. Although there are uncontrolled approximations 
underlying eq 5, this formulation gives a useful quantitative 
description of the decay kinetics. 

This integral equation can be analyzed by scaling. We assume 
that the velocity distribution has the scaled form 

P(u,t) = ”( L)kj(z), with z = -( u t @  -) (6)  
00 10 uo to 

where z is the dimensionless velocity, to = l/(kc@o) the initial 
time between reactions, k the dimensionless reaction constant, co 
the initial concentration, and vo an initial typical velocity. 
Substituting this scaling form into eq 5 ,  the exponent relation a 
+ /3 = 1 follows. Additionally, we obtain an equation for the 
scaling function 

(28 - l)f(z) + @zf’(z) = - - z )  dz’lz - zlf(z’) (7) 

By examining separately the large-z and small-z behavior of this 
equation, one can verify that an initial velocity distribution with 
a power-law tail at small velocities leads to a scaling form for the 
time-dependent velocity distribution. Namely, if the initial 

velocity distribution has the form P(u,t=O) a I U ~ ( U O  - M), where 
8 is the Heaviside step function, then it is possible to derive that 
f(z) has the asymptotic formsf(z) - zfi as z - 0 andf(z) - eM/@ 
as z - QD. If we then make that ansatz that the full scaling 
function has the product form I$&/@, we then find /3 = 1/(3 + 

Thus a scaling analysis of the Boltzmann equation predicts 
that a and @can take on any value between 0 and 1 as p is varied, 
subject to the condition a + /3 = 1. Notice that when the 
concentration decays relatively quickly, a cz 1. the typicalvelocity 
decays slowly, and vice uersa. The generalization of this scaling 
analysis to higher spatial dimensions yields /3 = 1/( 1 + 2d + 2p). 
The agreement between the numerical integration of the Boltz- 
mann equation, eq 5 ,  and Monte Carlo simulations is quite good. 
Notice that as the spatial dimension increases, the limiting value 
a = 1 ,  corresponding to the transparent limit, i. = -k$, is 
approached but never reached. Only in thed = QD limit are particle 
trajectories sufficiently independent that the typical velocitydoes 
not decrease. This is in contrast to many diffusion-controlled 
reactions for which transparent behavior occurs when d 2 dc with 
dc finite.‘ 

(b) Discrete Velocity Distributions. Unusual and thus far 
unexplained features occur for discrete initial velocity distribu- 
tions. In this case, the Boltzmann equation discussed above 
reduces to a finite set of (mean-field) rate equations. For many 
situations of interest, these equations can be solved in closed form. 
However, while the Boltzmann equation solutions and simulation 
results in one dimension are in good agreement for continuous 
velocity distributions, there are basic discrepancies in the 
corresponding results for discrete distributions. The apparent 
success of the Boltzmann approach for continuous distributions 
stems from the fact that the velocities of nearby particles remain 
nearly uncorrelatedat long times. In contrast, for discretevelocity 
distributions, long-range velocity correlations build up as the 
reaction proceeds. Thus it is to be anticipated that the rate 
equations approach may not accurately describe the asymptotic 
behavior of one-dimensional systems with discrete initial velocity 
distributions. 

To appreciate this situation in a generic system with a discrete 
velocity distribution, consider, for example, the trimodal case 
where P(u,t=O) = p+6(u-1) + pd(u)  + pJ(u+l) ,  with p+ + po 
+ p- = 1 .  For the symmetric case of p+ = p-, the Boltzmann 
equation for the concentrations of the stationary and mobile 
species, co(t) and c*(t), respectively, reduces to the rate equations 

2p1.5 

bo = -2c0c, 

ti= -Coca - 2c, (8) 2 

The numerical factors of 2 are critical in the qualitative results. 
Whiletheexactsolutioncanbewrittenin termsoftheexponential 
integral, it is more instructive to write only the asymptotic 
behaviors 

where CO(QD) = co(t=0)e21+(0)/do). According to the rate 
equations, the concentration of mobile particles decays expo- 
nentially in time, while a residue of stationary particles always 
remains whose concentration is vanishingly small if the initial 
concentration is relatively small. 

Numerical simulations of this process indicate a rather different 
behavior. Because of subtle crossover effects, a direct simulation 
turns out to be inadequate to yield accurate results. We therefore 
developed an alternative approach in which all collision partners 
and the corresponding collision times are identified at the outset. 
With this method we can simulate 5 X lo5 particles to lo5 time 
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steps in of the order of 30 cpu seconds on a DEC/AXP 3000/400 
workstation. These simulations reveal the following: For co(0) 
< 1/4, co(t) - l / t ,  and ct(t) - t 1 i 2 ,  but with the asymptotic 
behavior setting in more slowly as co(0) is increased. (This slow 
crossover was erroneously reported as nonuniversal behavior in 
ref 5.) Whenco(0) = 1/4, co(t) = ct(t) - t 2 P .  For co(0) > 1/4, 
co(t) saturates to a finite limiting value which appears to be 
proportional to (co(0) - (1/4)2, while c+(t) decays faster than a 
power law. 

It is worth noting that the two different exponent values for 
the case co(0) < 1/4 can be understood in the limit of co(0) - 
0. In this limit, c+(t) - t 1 / 2 ,  because the system reduces to the 
Elskens-Frisch model. On the other hand, a stationary particle 
survives only if it is not annihilated by particles incident from 
either direction. Since the probabilities of each of these two 
events is independent, it follows that co(t) - ~ + ( t ) ~  - tl. 
However, a similar qualitative argument has not yet been found 
for the other qualitative behaviors in the trimodal system. 

(c) Mixed Ballistic and Diffusive Motion. For a discrete initial 
velocity distribution, particles with the same velocity never meet. 
However, a superimposed diffusion provides a mechanism for 
same-velocity particles to annihilate, a feature which leads to 
interesting behavior. Thus consider the Elskens and Frisch 
bimodal velocity model,2 in which each particle undergoes 
superimposed diffusion, with diffusion coefficient D, in addition 
to the &u0 ballistic motion. The resulting kinetics can be treated 
by dimensional analysis. From the parameters of the system, the 
initial concentration CO, UO, and D, the only variable combinations 
with the dimensions of concentration are, CO, l/uot, and 1 / ( D t ) 1 / 2 .  
Accordingly, the time-dependent concentration must have the 
form 

We determine p and u by requiring that c(t)  matches with the 
known limiting behaviors in the cases of negligible drift’ and 
negligible diffusion2 at the appropriate crossover times. In the 
former case eq 10 should reduce to the diffusion-limited result 
c(t) - (Dt)-l/2 when t < T~ D/u02, the crossover time below 
which drift effects can be ignored. Conversely, in the limit of 
small D, eq 10 should reduce to c(t )  - (co/uot)1/2 for t < ~d 
l/(Dco2), which is the time for adjacent particles to meet by 
diffusion. By matching the general result eq 10 to the limiting 
behaviors at the appropriate crossover times, we find 

Interestingly, the density decays as t 1 / 2  for both the diffusion- 
limited and the ballistically-limited reactions, but if both effects 
occur the density decays as t3/4. 

3. Aggregation Model for One-Dimensional Traffic Flow 
Our traffic flow model is (unidirectional) ballistic aggregation 

in which the product takes on the velocity of the slower of the 
two incident particles, i.e. 

where A,,,, denotes of cluster with nf cars and velocity ut. We 
first apply scaling, together with the statistical properties of the 
minimal random variable in a large sample, to determine the 
decay of the velocity and the cluster concentration. We then 
solve for the distribution of cluster velocities by consideration of 
a reduced problem where the cluster mass is ignored. Finally, 
we give the asymptotic distribution for the joint mass and velocity 
distribution. 

(a) Scaling Analysis. Consider the initial condition of isolated 
cars (Ymonomers”) which are randomly distributed on the line 
at time t = 0, and initial velocity distributions which can be 
written in the scaling form 

P(u,t=O) = 2 Po( 5) u > 0 (13) 
UO 

with JO- Po(z) dz = 1. Here we subtract the finite value of the 
velocity of the slowest car from all velocities. We also consider 
zero-size cars, appropriate for describing the low-density limit. 

Let m and u be the typical cluster mass (equivalently, the 
number of cars in the cluster) and cluster velocity at timet. Thus, 
the typical distance, I ,  between clusters grows with time as I - 
ut. Since the typical number of particles in a cluster is proportional 
to the typical distance between clusters, one has m - 1 - ut. To 
find the typical velocity, one has to relate the size of a cluster to 
its velocity. Such a relation may be found exactly for an auxiliary 
“one-sided” problem in which particles are placed with a fixed 
density co to the left of a given particle and no particles are placed 
to the right. Eventually, this particle moving with velocity u will 
form a cluster that includes all consecutive particles to its left 
whose initial velocities larger than u. The probability that there 
are exactly k such particles is equal to PP+k, with P+(u) (P-(u)) 
defined as the probability that a particle has velocity larger 
(smaller) thanu, i.e., P+(u) = J,”Po(u’)du’, Thereforetheaverage 
number of particles in the cluster that ultimately forms is given 
by 

(il 

(m(u)) = kP-P+k = P+/P- (14) 
k= 1 

For a power-law behavior of the initial velocity distribution for 
small velocities, Po(u) 0: u’ for u << 1 (with p > -1 for 
normalizability), we find 

for sufficiently low velocities. For a particle moving with the 
typical velocity, it is reasonable to expect that this “one-sided” 
result gives a correct estimate for theoriginal “two-sided” problem. 
Combining eq 15 with our previous estimate m - ut yields the 
following asymptotic relations 

P + l  m - c-‘ - ta, with ci = - 
P + 2  

1 u - t”, with /3 = - 
P + 2  

This qualitative dependence of a and @ on the form of the 
initial velocity distribution is reminiscent of the behavior in ballistic 
annihilati~n.~ In both processes, the decay exponents obey a + 
@ = 1 as a consequence of the relation c - l/ut. However the 
actual values of the decay exponents are different for the two 
processes. For example, for a flat distribution of initial velocities 
(corresponding to 1.1 = 0), one obtains a = 1/2 for the traffic 
model while ci r 0.76 is found in simulations of the annihilation 
process. 

Since both the mean size and velocity scale as power laws in 
time, the joint mass-velocity distribution P,(u,t) is expected to 
evolve toward a scaling distribution. Taking into account mass 
conservation, J du E,,, mP,(u,t) = const, we postulate the scaling 
form 
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by Pm(u,t) Qm(v,t) - Q,,,+l(u,t). Consider a cluster of velocity 
u which contains at least m particles. Number the consecutive 
particles in a cluster from right to left by the index i and denote 
the rightmast particle as i = 0. Denote the initial distance between 
the ith and (i - 1)th particle as XI.  We first solve for Q2(u,t) and 
then generalize to any m. Since Q2(u,t) is the probability that 
a cluster of velocity u has at least two particles at time t ,  it is equal 
to the product of the probability that the particle i = 0 has survived 
up to time 1, P(u,t), and the probability that the cluster i = 1 
(whose mass may be larger than unity) collides with the particle 
i = 0 prior to time t .  

To calculate this collision probability, note that it is necessary 
that the collision partner from the left (i = 1) has a velocity larger 
than u and that the distance x1 is smaller than (u1 - u)?. Since 
the initial density of particles of velocity u1 is Po(ul), while the 
probability that an interval of length XI is empty is exp(-xl), the 
joint velocity-distance density function for the particle i = 1 is 
the productPo(u1) exp(-xl). Integration of this probabilitydensity 
over velocities larger than u and over the proper distance interval 
gives the collision probability 

for the joint distribution, with the scaled mass, M, and scaled 
velocity, V, defined by M = m / P  and Y = uB. 

Once the joint mass-velocity distribution function is found, 
the singlevariable mass and velocity distributions can beobtained 
by suitable integrations over the subsidiary variable. Thus we 
write the velocity distribution, P(u,t) = Em P,(u,ti, in its scaling 
form 

P(o,t) = tB"*JV) (18) 

with a0(V) = Jo" dM @(M,V), while the scaling form for the 
cluster-mass distribution, P,(t) = J du P,(u,t), is expected to be 

P,(t) = t-h cp,(M) (19) 

with cP,(M) = 50" dV @(M,V). 
(b) The Car Survival Probability. To solve the traffic model, 

consider first the survival probability of a given car. This is 
equivalent to ignoring the masses of each cluster and focusing 
only on the velocity distribution function P(u,t). The evolution 
of thisdistribution is governed by the "derived" coalescence process 

AUI + AU2 - & m ( U l , U J  (20) 

The density of particles with velocity uin this coalescence process 
is then identical to P(u,t), the cluster velocity distribution in the 
traffic aggregation model. 

Let S(u,t) be the survival probability of particles of velocity 
u at time t .  Here "survival" means that a car does not overtake 
any traffic, but an overtaken car is still defined as surviving. The 
survival probability can be found by considering the possible 
collisions of a particle with initial velocity u and initial position 
x with slower particles initially placed to its right. A collision 
with slower u'-particles does not occur up to time t if the interval 
[x,x+(v-o?t] does not include the u'-particle. Therefore for a 
continuous initial velocity distribution, PO@), and a Poissonian 
initial spatial distribution, the probability that the u'-particle is 
not in the interval [x, x + (u  - u?r] is e(ddpo(d)(D-d)'). 

To ensure that a particle will survive up to time t ,  one should 
account for these pair survival probabilities for every u'< u. One 
subtle point in this reasoning is that collisions between a v'-particle 
and other particles can be ignored. Namely, if a u-particle does 
not overtake a u'-particle, then overtaking will still not occur even 
if the &particle overtakes a still slower u"-particle. Hence, the 
survival probability is simply a product of exponential factors for 
all ut, with u' < u. Evaluating this product gives the survival 
probability 

S(u,t) = exp[-t s," du'(u - u?P0(u?] (21) 

from which the velocity distribution is P(u,t) = Po(u)S(u,t). 
For Po(u) - ur as u - 0, the asymptotic velocity distribution 

reaches a form that is independent of the details of the large- 
velocity tail of the initial distribution 

P(u,t) a d exp[-const x t z ~ + ~ ]  (22) 

This form validates the scaling assumption that the asymptotic 
decay and the shape of the limiting distribution are determined 
solely by the exponent p which characterizes the low-velocity tail 
of PO@). From the above velocity distribution, the total 
concentration, c(t) = Jo"duP(u,t), and theaveragecluster velocity 
( u ( t ) )  = J du uP(u,t)/J du P(u,t) are found to agree with eq 16. 

(c) The Joint Mass and Velocity Distribution. We can now 
determine the density of clusters of mass m and velocity u, P,(u,t), 
for the general traffic model. Consider the auxiliary quantity 
Qm(U,t), the distribution of clusters of velocity u, and mass greater 
than or equal to m. Once this is known, P,(u,t) can be obtained 

To derive the general expression for Qm(u,t), the same joint 
velocity distance distributions P&) exp(-xi) are integrated over 
the position and velocity of the ith particle for i = 1, ..., m - 1. 
All m - 1 particles have to move faster than the lead particle, and 
to ensure a collision it is required that the distance of the ith 
particle from the lead obeys x1 + + X I  I (u, - u)t. Imposing 
these constraints upon the integration over the velocity and 
distance of the m - 1 additional particles yields a cumbersome 
exact formal expression for the cumulative mass-velocity dis- 
tributiona6 For the case where the initial velocity distribution 
has the small velocity power-law tail ur, the asymptotic form of 
thejoint mass-velocitydistribution, P,(u,t) = Qm(u,t) - Q,+l(u,r) 
= 4 Q , / a m ,  is 

P,(u,t) a P" V(V+ exp[-const x (v+ M)'+~] 
(24) 

when written in the scaling variables M = m / P  and V = utB. 
Notice that for p = 0, the integration of the joint distribution over 
all velocity gives the mass distribution P,(t) - r1 exp(-M2/2) 
while the density of fued-sized clusters P,(t) = 50" du P,(u,t), 
decays as t-h in the long-time limit. 

4. summary 

Ballistically-controlled reactions exhibit a rich variety of decay 
kinetics which depend on the form of the initial velocity 
distribution. For ballistic annihilation, A + A - 0, analysis of 
the Boltzmann equation indicates that the time dependence of 
the concentration and the typical velocity are governed by 
exponents whose value depends on the small-velocity limit of the 
initial velocity distribution. Intriguingly, an initial velocity 
distribution with a large component of slower particles gives a 
weak decay of the concentration and relatively faster decay of 
the typical velocity. As the spatial dimension is increased, the 
"transparent" limit a! = 1 is approached but apparently never 
reached. While the Boltzmann equation provides a good 
phenomenological description of the kinetics, there is, as yet, no 
microscopic theory. Such a theory might help understand the 
unusual behavior exhibited by ballistic annihilation with discrete 
initial velocity distributions and with combined ballistic and 
diffusive motion. 

We also considered a ballistic aggregation model that mimics 
the kinetics of clustering in a single lane of traffic. By a 
probabilistic approach, the analytical forms of the cluster velocity 
distribution and the joint mass-velocity distribution have been 
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derived. For an initial velocity distribution with a power-law 
small-velocity limit, both the average velocity and the average 
mass of clusters vary algebraically in time with exponents that 
depend on the small-velocity tail of the initial velocity distribution. 
The qualitative asymptotic behavior is similar to that observed 
in the related ballistic annihilation model. 

The traffic model has the unrealistic feature of irreversibility, 
due to the lackof a passing mechanism. This leads to pathological 
traffic jams in which clusters of cars grow without bound. More 
realistically, some form of passing needs to be incorporated. For 
example, once cars are in a cluster, a faster car should be allowed 
to pass the slower car directly ahead at a rate which is some 
function of the velocity difference of the two cars. This would 
allow a fast car to traverse a cluster car-by-car and ultimately 
regain its intrinsic velocity once the cluster is completely passed. 
It may prove interesting to examine the steady-state transport 
properties for this class of models. 
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