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Abstract. The kinetics of annihilating random walks in one dimension, with the half-line
x > 0 initially filled, is investigated. The survival probability of thenth particle from the
interface exhibits power-law decay,Sn(t) ∼ t−αn , with αn ≈ 0.225 for n = 1 and all odd
values ofn; for all n even, a faster decay withαn ≈ 0.865 is observed. From consideration of
the eventual survival probability in a finite cluster of particles, the rigorous boundα1 6 1

4 is

derived, while a heuristic argument givesα1 ≈ 3
√

3/8π = 0.2067. . .. Numerically, this latter
value appears to be a lower bound forα1. The average position of the first particle moves to the
right approximately as 1.7t1/2, with a relatively sharp and asymmetric probability distribution.

Annihilating random walks (ARWs) represent a simple but ubiquitous reaction process in
which particles diffuse and annihilate whenever they meet [1]. In addition to providing
general insights into non-equilibrium phenomena, ARWs underlie a variety of basic kinetic
processes ranging from the voter model [2] and the kinetic Ising–Glauber model [3], to
reaction–diffusion systems [4] and wetting phenomena [5]. In one dimension, powerful exact
solution methods have been developed to understand many kinetic and spatial properties of
ARWs [6–11].

While much is known about ARWs under homogeneous conditions, the role of spatial
heterogeneity in such non-equilibrium systems is less well explored. For critical equilibrium
systems, the presence of a free interface gives rise to well-understood surface critical
behaviour which is characterized by associated surface critical exponents [12, 13]. For
reactive systems, some insights have been gained about the influence of heterogeneity in
the intrinsic properties of the reactants [14–19]. The aim of this work is to understand
the influence of a free interface on the asymptotic behaviour of ARWs. Previous work
has determined the exact density profile near the interface for ARWs [20]. (In the related
problem of coalescing random walks, the density profile in a one-dimensional semi-infinite
system has also been computed exactly [21].) Our particular interest is to quantify the
spatial extreme of the reactant distribution near the interface, as well as the unusual time
dependence of the particle densities which initially reside near the interface.

We consider a linear chain in which one particle initially occupies each lattice siten

for n > 0, while the system is empty forn 6 0. Each particle undergoes an isotropic
nearest-neighbour random walk with annihilation when two particles happen to occupy
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the same lattice site. Far from the interface, the behaviour should coincide with that of
the homogeneous system. However, the interfacial region is a less reactive environment
because one side of the system is initially empty. One might thus anticipate that particles
near the interface should exhibit slower kinetics and different spatial properties than bulk
particles. This expectation is only partly correct; in fact, every other particle near the
interface exhibits faster kinetics compared with bulk particles. Our work further indicates
that there are only two apparently independent ‘surface’ exponents which characterize the
asymptotic particle survival probabilities. This surface behaviour eventually governs the
entire system, although it penetrates slowly into the bulk by diffusion.

To quantify the phenomena that are governed by the existence of the interface in the
semi-infinite ARW system, our work is organized around the following basic questions.
• What is the probability that the first particle survives until timet , S1(t)? More

generally, what is the survival probability for thenth particle from the interface,Sn(t)?
• What is the probability that particlesi andj react as a function of|i− j | (with i = 1

or 2 andj arbitrary)?
• What is the spatial density distribution near the interface?
To answer the first question, let us introduce the exponentsαn to characterize the

probability that thenth particle survives until timet , Sn(t) ∼ t−αn . We first argue that there
are only two independent exponents—one forn odd and a second forn even. To support this
assertion, it is instructive to examine finite particle systems. For three particles, the first and
third particles have a finite probability to survive indefinitely (for example, for symmetric
initial particle positions, the eventual survival probabilities of particles 1 and 3 are both
equal to 1

2), while the second certainly dies, with a survival probability which decays as
t−3/2 [10, 22, 23]. A similar asymptotic behaviour can be anticipated for all finite systems
with an odd number of particles. In such cases, the asymptotically dominant contribution to
Sn(t) for n even will come from 3-particle configurations where an even particle is between
two odd particles, with all other particles already annihilated. Conversely, particles with
odd labels have a finite probability of surviving indefinitely. Thus, for the finite-particle
systemαn = 0 for n odd andαn = 3

2 for n even. On this basis, we anticipate that just two
exponents also characterize the individual particle survival probabilities in the semi-infinite
system.

To test these predictions, we performed numerical simulations using two complementary
methods. The first (naive) approach is to simulate a suitably sized system with the initial
condition that the right half-line is completely occupied while the left half-line is empty.
Reflecting boundary conditions are employed at the edges of the system. The system size
L is chosen to be much larger than

√
t , so that the effect of the boundaries is negligible

over the timescale of the simulation. In the second approach, particles are created at the
right boundary at a rate equal to the exact time-dependent density of the homogeneous
system,c(t) ' (4πt)−1/2 [6, 10], to mimic the effect of a semi-infinite system. This is a
computationally more efficient approach, as relatively long-time simulations can be run on a
small systems without being influenced by boundary effects. For the survival probability of
the first particle our simulations giveS1(t) ∼ t−α1, with α1 = 0.225± 0.005. On the other
hand, for the second particle,S2(t) ∼ t−α2 with α2 = 0.865± 0.015. As anticipated, the
survival probability of the first particle (n = 1) decays more slowly thant−1/2, the particle
survival probability in the bulk. However, the second particle is much less likely to survive
than a bulk particle. This arises because the second particle always has a unique potential
left reaction partner, as well as a right reaction partner.

To determine whether the survival probabilitiesSn(t) are characterized by only two
exponents, we perform a scaling analysis. Particles far from the interface initially exhibit
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Figure 1. Simulation results forS1(t) (◦) and S2(t)

(M). The quoted exponents are based on the best-fit
straight lines to the data given in the figure.

Figure 2. Simulation results for the time dependence
of the survival probability of thenth particle,Sn(t), for
1 6 n 6 100. Shown are the scaling functionsFodd(z)

(upper curve) andFeven(z) (lower) versusz = nt−1/2

at t = 16 (◦), 256 (�), and 4096 (M). For large
z, both scaling functions approach the limiting value
(4π)−1/2 ≈ 0.2821.

bulk behaviour, whereSn(t) ∼ t−1/2 for all n. After a time tn ∼ n2, the nth particle
‘senses’ the interface, and crossover from bulk to surface kinetics should occur. Based on
the observed asymptotic behaviour ofS1(t) and S2(t), together with the above crossover
picture, we expect thatSn(t) should exhibit the two distinct scaling forms for odd and even
n respectively,

S2n−1(t) ' t−1/2Fodd(z) S2n(t) ' t−1/2Feven(z) (1)

for t →∞ andn→∞, with z = nt−1/2 finite. Large values ofz correspond to particles
sufficiently deep in the bulk that are not yet influenced by the heterogeneous initial condition.
Thus, the large argument behaviour of the scaling functions is determined by the survival
probability of the homogeneous system. SinceS(t) = c(t) ' (4πt)−1/2 [6, 10], this gives
Fodd(∞) = Feven(∞) = 1/

√
4π . Conversely, forz� 1

Fodd(z) ∼ zµ1 Feven(z) ∼ zµ2 (2)

with µ1 = 2α1 − 1 andµ2 = 2α2 − 1 to match with the long time behaviour ofS1(t) and
S2(t). As figure 2 shows,Sn(t) follows this general description.

We can provide a relatively tight rigorous upper bound for the exponentα1. We will
also present a heuristic argument, based on an uncontrolled approximation, which turns out
to give a relatively stringent lower bound forα1. For both situations, our approach is based
on first finding theultimatesurvival probability of the first particle in a finite-particle system
on an infinite lattice and then using scaling to infer time dependence, from which bounds
on α1 can be inferred. Let the particles be initially distributed onN adjacent lattice sites,
with N odd. Ultimately, a unique particle survives which could be the first, the third, the
fifth, etc, in the initial sequence. LetS1(N) be the probability that the first particle is this
unique survivor. ForN →∞, we shall show that this probability scales as

S1(N) ∼ 1

N2β1
. (3)
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On the other hand, fort < N2, the finiteness of the system is immaterial and the survival
probability of the first particle should coincide withS1(t) in the semi-infinite system. When
t becomes of the order ofN2, the number of particles remaining will be of the order of unity
andS1(t) should ‘stick’ at the valueS1(N). Thus, substitutingt1/2 for N into equation (3)
and equating toS1(t) givesβ1 = α1.

First consider an upper bound forα1. A naive approximation is to suppose that every
collision between nearest neighbours has the same probability to occur. For the initialN

particles there areN−1 collisions possible and the probability that the first particle survives
after the first collision is(N − 2)/(N − 1). This leavesN − 2 particles andN − 3 possible
collisions, and the probability that the first particle survives after this second collision is
(N − 4)/(N − 3). The ultimate survival probability of the first particle in this ‘democratic’
approximation is

SD1 (N) =
(N − 2)(N − 4) . . .3× 1

(N − 1)(N − 3) . . .4× 2

∼
√

2

πN
N →∞. (4)

However,S1(N) > SD1 (N), because the first particle has the possibility to ‘escape’ on its
empty side, and therefore collisions involving this particle are relatively less likely. Thus,
we conclude†

α1 6 1
4. (5)

While we are unable to obtain a rigorous lower bound forα1, we have a heuristic
approach that givesS1(N) ∼ N−γ , with γ = 3

√
3/4π . This approach is based on

first recasting the annihilation problem into an equivalent aggregation process [10]. In
aggregation, point-likek-mers perform random walks with a mass-independent diffusion
coefficient. When two polymers of massesi and j happen to occupy the same site, they
irreversibly aggregate into a heavier but still point-like polymer of massi+j , as represented
by the reaction scheme

Ai + Aj → Ai+j . (6)

To make the connection with annihilation, we categorize polymers according to whether
their mass is odd,Ao = {A1, A3, . . .}, or even,Ae = {A2, A4, . . .}, respectively. These two
classes of polymers react according to

Ae+ Ae→ Ae

Ao+ Ae→ Ao

Ao+ Ao→ Ae.

(7)

In particular, the parity of odd-mass polymers is not influenced by even-mass polymers.
Thus by considering only odd-mass polymers, aggregation is completely equivalent to ARW
[10].

If one associates the initial particles in ARW with monomers in aggregation, then the first
particle survives in the ARW process if the mass of the leftmost polymer in the corresponding
aggregation process remains odd throughout the evolution. With this equivalence, we now
postulate, in the spirit of a Kirkwood approximation, thatS1(N) obeys the recursion relation

S1(N + 2) ≈ S1(N)F (N + 2) ≈
N+2∏
k=1
k odd

F(k). (8)

† The exponentα1 was previously considered in a somewhat different context. Reference [24] has erroneously
reported the valueα1 = 1

4 .
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Figure 3. Simulation results for the probability that the first
particle ultimately survives from among an initial group of
N adjacent particles (withN odd) on an infinite chain.
The lower curve represents the rigorous bound given in
equation (4), and the upper curve represents the heuristic
bound from equations (8) and (11).

HereF(k) is the probability that the first collision between three random walks, which are
initially at x0 = 1, y0 = k − 1, andz0 = k, occurs between the particles atk − 1 andk.
While this approximation is uncontrolled, it turns out to give a relatively stringent upper
bound for the true behaviour ofS1(N) (see figure 3).

To computeF(k), we map the problem of three random walks, initially atx0, y0, and
z0 in one dimension, onto a single equivalent isotropic random walk in three dimensions
[22, 23]. A collision between particles 1 and 2, and between 2 and 3 imposes the boundary
conditions that the probability distribution vanishes whenx = y and y = z, respectively.
This implies that the three-dimensional walk is confined to the unbounded three-dimensional
wedge-shaped region defined byx 6 y andy 6 z with opening angle� = π/3 [22, 23].
The coordinate parallel to the axis of the wedge (the linex = y = z) specifies the absolute
positions of the particles on the line, while the coordinate perpendicular to the wedge
axis specifies their relative positions. It is only the latter coordinate which is relevant in
computing the survival probability. Thus, diffusion along the wedge axis is irrelevant and
we may project the three-dimensional random walk onto a two-dimensional random walk in
the planar region perpendicular to the wedge axis. Using image techniques, the probability
distribution in the continuum limit can be written down, from which the desired eventual
collision probability follows after some tedious calculation.

For simplicity, we give an alternative derivation which exploits the isomorphism
between the eventual collision probability of anisotropically diffusing particle and
electrostatics [25]. Any initial state of three random walks maps to a point in this two-
dimensional domain. To determine the coordinates of this initial point, we need to define
a two-dimensional coordinate system which is perpendicular to the axisê1 = (1, 1, 1)/

√
3

generated by the intersection of the planesx = y and y = z. A convenient basis is
ê2 = (0,−1, 1)/

√
2 and ê3 = (−2, 1, 1)/

√
6. The initial conditionr0 = (x0, y0, z0) has

componentsd2 = r0 · ê2 = (z0 − y0)/
√

2 andd3 = r0 · ê3 = (−2x0 + y0 + z0)/
√

6 in the
ê2 ande3 basis. Within the two-dimensional wedge, with the horizontal axis defined as the
locus wherey = z, an arbitrary initial condition corresponds to a horizontal displacement
of (z0+ y0− 2x0)/

√
6 and a vertical displacement of(z0− y0)/

√
2. Thus, the initial point

is inclined at an angle

θ = tan−1 d2

d3
= tan−1

[√
3

(
z0− y0

z0+ y0− 2x0

)]
(9)

with respect to the horizontal.
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We want to compute the probability that the random walk eventually hits the horizontal
axis, corresponding to particles 2 and 3 colliding. From the isomorphism with electrostatics,
this probability equals the integral of the electric field over the horizontal axis, which is
generated by the unit charge at the initial position of the random walk [25]. To simplify
computation of this integral, perform the conformal transformationw = z3 to open the
wedge onto the upper half plane, so that the initial point is now inclined at an angle 3θ

with respect to the positive real axis. In real coordinates, for an initial point at(x0, y0) with
a grounded plane aty = 0, the electric field at(x, 0) equals

y0

π

1

(x − x0)2+ y2
0

. (10)

The integral of this field over any interval on thex-axis gives the probability that a random
walk which starts at (x0, y0) eventually hits this interval. This givesφ/π , whereφ is
the angular size of the interval as seen from the location of the charge. In our case the
appropriate intervalx = (0,∞) has angular sizeφ = π − 3θ , so that

F(k) = 1− 3θ

π

= 1− 3

π
tan−1

√
3

2k − 3

→ 1− 3
√

3

2πk
k→∞ (11)

where the second line is obtained by the substitution of the initial conditionx0 = 1,
y0 = k − 1, and z0 = k, as specified by the definition ofF(k). Note that this result
is easily generalizable to the case where the three particles have distinct diffusivities.

Using equation (8), we obtain

S1(N) ≈
N∏
k=1
k odd

(
1− 3

√
3

2πk

)
∼ N−3

√
3/4π . (12)

Thus, we arrive at the following approximate expression forα1

α1 = 3
√

3

8π
' 0.2067. . . . (13)

Let us now consider the exponentα2. We write the survival probability of the second
particle asS2(t) = P(t)SR(t), whereP(t) ∼ t−1/2 is the probability that the particle has
not been annihilated by its single left neighbour andSR(t) is the probability that the particle
has not been annihilated by any particle to its right. This latter probability decays ast−1/4,
since in the bulk the survival probabilityS(t) = SL(t)SR(t) = SR(t)2 varies ast−1/2. This
approximation immediately leads toα2 = 3

4 which can be expected to be the lower bound.
Unfortunately, we have been unable to construct a non-trivial upper bound forα2. A trivial
upper bound, however, is provided by the survival probability of the central particle in a
3-particle system. Consequently, we have the bounds

3
4 < α2 <

3
2. (14)

We now turn to a related and useful microscopic characterization of the reaction process,
namely, the probability that a particle is eventually annihilated by itsnth nearest neighbour,
P(n)†. For homogeneous reaction processes,P(n) typically decays as a power law in

† The eventual annihilation probabilityP(n) was apparently first introduced in [26].
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Figure 4. Simulation results for the annihilation
probabilitiesP1(n) (◦) andP2(n) (M). For reference, the
straight lines have slopes of−1.45 and−2.73.

n, P(n) ∼ n−ψ , and the exponentψ is related to the time dependence of the survival
probability. For homogeneous ARWs, for example, the particle survival probabilityS(t)

decaying ast−α (with α = 1
2) implies that the probability that a particle is annihilated at

time t is − dS(t)
dt ∼ t−α−1. The annihilation probabilities for givent and n can now be

related by [26]

− dS(t)

dt
dt = P(n) dn. (15)

For diffusive transport,n scales ast1/2 and equation (15), together with the defining relations
for α andψ , then givesψ = 1+ 2α.

We now apply the same line of reasoning for the semi-infinite system. Let us define
the probability that the first particle is annihilated by thenth particle asP1(n) ≡ n−ψ1; our
previous estimate forα1 givesψ1 = 1+ 2α1 ≈ 1.45. Similarly for the second particle,
P2(n) ≡ n−ψ2, with ψ2 = 1 + 2α2 ≈ 2.73. As shown in figure 4, these expectations
are consistent with our data. One additional interesting feature is that the second particle
annihilates with the first particle with probability≈ 0.5704, while it annihilates with any
other particle with probability≈ 0.4296.

Finally, we study the spatial distribution of the leftmost particle. This refers to the
extreme particle that currently exists and is not necessarily the initial particle that was
leftmost. To provide some perspective on the behaviour one might anticipate, first consider
this question for two simpler systems with the same semi-infinite concentration profile,
c(x, t = 0) = 2(x). For freely diffusing particles, the long time spatial distribution in
the continuum limit is the error function,c(x, t) = 1

2[1 + erf(x/
√

4t)]. From this, the
concentration atx = 0 remains fixed at the value12, while the typical position of the
leftmost particle isx− ≈ −

√
t ln t . Thus, freely diffusing particles substantially penetrate

the negative half-line. For coalescing random walks, where particles react byA+A→ A,
the leftmost particle simply undergoes free diffusion. Thus the concentration atx = 0
vanishes ast−1/2, while the typical position of the leftmost particle remains at the origin.

For ARWs, the concentration profile can be readily computed for arbitrary initial
conditions from the direct correspondence to the Glauber solution of the kinetic Ising model
[6], or by a free fermion calculation [20]. In the long-time limit, the exact expression can
be reduced to the scaling form

c(n, t) = t−1/2C(z) (16)
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Figure 5. Simulation data for the probability distribution
of the location of the leftmost particle. Shown is the
scaled distributiont1/2Pleft(x, t) versus scaled coordinate
x/t1/2 for t = 16 (◦), 256 (�), and 4096 (M).

with z = nt−1/2 and where the scaling functionC(z) is expressed in terms of the error
function [20]. This profile thus exhibits an overallt−1/2 decay of the density and a non-
trivial spatial dependence.

While the computation of the density profile requires the knowledge of the two-point
correlation function of the equivalent kinetic Ising model, the spatial distribution of the
leftmost particle would require the knowledge of all then-point correlation functions.
Although it is in principle possible to obtain such functions [7], this is a considerable
analytical task and we merely use simulations to provide numerical data for the spatial
distribution of the leftmost particle,Pleft(x, t) (figure 5). This distribution obeys the expected
scaling behaviour and is asymmetric in character, with the negative-z tail decaying as e−z

2

while the positive-z tail decays as e−z with z = xt−1/2. From this data, we find, for example,
that the average position of the leftmost particle varies asxleft(t) ≈ 1.7t1/2.

In summary, we studied basic properties of a semi-infinite population of annihilating
random walks near a free interface. Since particles near the interface have fewer potential
reaction partners than bulk particles, these interface particles should be more long-lived than
those in the bulk. This naive expectation turns out to be only partially correct. For the
nth particle from the interface (withn = 1 corresponding to the particle at the interface),
the survival probabilitySn(t) decays ast−αn , with αn ≈ 0.225 for all odd values ofn, but
αn ≈ 0.865 for all even values ofn. These exponents can be viewed as characterizing the
surface critical behaviour of ARWs in one dimension.

This alternating behaviour stems from the fact that an odd particle can eventually become
the leftmost particle in the system and hence be long-lived. Conversely, an even particle
will always have potential reaction partners on both sides and therefore has a relatively
shorter lifetime. For the odd particles, the bounds 3

√
3/8π 6 α1 6 1

4 were derived, with
the lower bound non-rigorous but numerically accurate, by considering the eventual survival
probability in a finite group ofN particles, withN odd.

The relative longevity of the interface particle is also reflected in the fact that the mean
position of its reaction partner drifts slowly to the right as 1.7t1/2. The functional form
of the probability distribution ofxleft could be obtained, in principle, from then-point
correlation functions of the equivalent kinetic Ising model; this appears to be a formidable
and unenlightening task. The numerical data forPleft(x, t) clearly exhibits scaling and
shows that the position of the leftmost particle is described by a single length scale which
varies as

√
t .
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