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An elementary discussion of the statistical properties of the product of N independent random
variables is given. The motivation is to emphasize the essential differences between the asymptotic
N — oo behavior of a random product and the asymptotic behavior of a sum of random variables—
a random additive process. For this latter process, it is widely appreciated that the asymptotic
behavior of the sum and its distribution is provided by the central limit theorem. However, no
such universal principle exists for a random multiplicative process. In this case, the ratio between
the average value of the product (P ) and the most probable value P,,, diverges exponentially in N
as N— «. Within a continuum approximation, the classical log-normal form is often invoked to
describe the distribution of the product. It is shown, however, that the log-normal provides a poor
approximation for the asymptotic behavior of the average value and, also, for the higher moments
of the product. A procedure for computing the correct leading asymptotic behavior of the
moments is outlined. The implications of these results for simulations of random multiplicative
processes are also discussed. For such a simulation, the numerically observed “average” value of
the product is of the order of P, and it is only when the simulation is large enough to sample a
finite fraction of all the states in the system that a monotonic crossover to the true average value
(P ) occurs. An idealized, but quantitative account for this crossover is provided.

I. INTRODUCTION

An important component of an elementary statistical
mechanics course is a discussion of the theory of random
walks.! Usually, an initial treatment is based on a one-di-
mensional lattice random walk, which is a sequence of
equal-length displacements whose direction is chosen ran-

domly at each step. One of the basic goals in the study of
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random walks is to find the average displacement of the
probability distribution after a large number of steps N.
This example is a realization of a random additive process,
as the displacement r is the sum of random steps. For the
one-dimensional random walk, the probability distribution
for the displacement is the binomial function. In the limit
as N— oo, the central limit theorem®™* guarantees that this
distribution approaches a Gaussian function, with the 2k th
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moment of the displacement (#*) varying as N * This
limiting Gaussian distribution is a universal property of a
wide class of stochastic processes, in that details of the un-
derlying random process at the single-step level are irrele-
vant in determining the asymptotic properties of the distri-
bution of displacements.® Thus the existence of the central
limit theorem provides crucial information for understand-
ing the asymptotic behavior of a random additive process.
This universality principle has stimulated extensive study
of a variety of physical realizations of random walks, in
order to elucidate the limits of applicability of the central
limit theorem.*”’

In contrast to the well-studied and (relatively) well-un-
derstood situation of random additive processes, there is a
lesser degree of appreciation of the statistical properties of
a product of random variables in the physics research litera-
ture. This apparent dearth belies the ubiquity of random
multiplicative processes. They underlie a diverse range of
natural phenomena such as the distribution of incomes,
body weights, rainfall, fragment sizes in rock crushing pro-
cesses, etc.>® Random multiplicative processes have also
been found to underlie a range of physical processes that
fall under the rubric of multifractal phenomena.>'® Quite
recently, the notions of random multiplicative processes
have been applied to diffusive transport in random me-
dia.'" Given the ubiquity and recent interest in random
multiplicative processes, it should prove to be fruitful to
provide a relatively complete, yet elementary treatment of
their statistical properties.

As a specific example, consider a successive process of
rock fragmentation in which the size of a fragment evolves
according to x,— X, »X,— ' ** >X,, with a reduction fac-
tor at each stage of breakup, 7, = x,/x, _, <1, which has
some well-behaved distribution. The size of a fragment at
the Nth level is thus given by the product of the relative
reduction factors,

N
Xy =(Hrk>xo.
k=1

The primary goal of this article is to elucidate some of the
basic statistical properties of such a product of N random
variables. It is hoped that the ensuing discussion represents
a useful self-contained presentation of the basic features of
random multiplicative processes that will fill the apparent
gap in the literature.

We shall argue that the behavior of such a product is
considerably richer than that of a sum of N random vari-
ables. A crucial feature of such a process is that extreme
events, although exponentially rare in N, are exponentially
different from the typical, or most probable value of the
product. Thus it turns out to be necessary to account prop-
erly for the extremes in the distribution of the product in
order to compute averages correctly.

In the limit of large &, a time-honored approximation for
describing the distribution of products is based on noting
that the logarithm of the product, In P, is merely the sum of
N.random variables, so that In P obeys a Gaussian distribu-
tion. This leads to the classic Jog-normal form for the distri-
bution of the product.® By this construction, however, in-
formation about the tail of the distribution has been lost,
and these details are crucial in determining the higher mo-
ments of the product. We shall show explicitly how the log-
normal form fails in providing an accurate description of
the statistical properties of the product. Correspondingly,
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one of our basic results will be to derive an accurate contin-
uum limit for a random multiplicative process from which
the correct asymptotic behavior of the higher moments can
be obtained. In the context of asymptotic expansions, this
continuum limit is a Gaussian function, but one in which
the location of the peak depends on the order of the mo-
ment being computed.

The fact that the average is dominated by rare events has
fundamental implications for numerical studies of systems
governed by a random multiplicative process. If one sam-
ples only an infinitesimal fraction of the total number of
states of the system, as is the case in most realistic situa-
tions, then by definition one will detect the typical value of
an observable. As the scale of the simulation is increased,
progressively more extreme events become accessible, and
the observed average also increases. However, it is only
when one has the resources to sample a finite fraction of all
the states of the system that the measurement will converge
to the true average value of the observable. The quantita-
tive description of this crossover between the most prob-
able value of a random product and its “true’ average value
is another major goal of this article.

While many of our basic results are straightforward to
derive, it appears that they are not as widely known as one
might expect. We have therefore endeavored to give a peda-
gogical discussion in what follows.

II. A BINOMIAL MULTIPLICATIVE PROCESS

To be concrete, consider a binary sequence in which the
real, positive numbers z, and z, appear independently and
with probabilities p and g, respectively. Without loss of
generality, we take z, > z,. If there are N elements in the
sequence, we ask what is the average value of this N-fold
product (P )? In order to compute (P ), define p(n) to be
the probability that the binary product of & independent
factors assumes the value z7z) ~". This probability is sim-
ply the binomial

p(n) ='(]:)p”q”’", (H

where

(N)_ N!
nl (N —n)!

By averaging over all possible outcomes of the product, one
finds the average value

N
P = (N)pn N—n nZN—n= 2z N. 2
(P) n;o” 9 'z (pz, + 92,) (2)
On the other hand, the most probable event is one in which

the product contains Np factors of z, and Ng factors of z,.
This is obtained by maximizing the probabilistic factor

(g)pnqN— .

with respect to 7 in Eq. (2). Consequently, the most prob-
able value of the product P,,, is simply

P (B2, (3)

While the most probable event yields a good approxima-
tion for the average value of the sum in a random additive
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process, we see that it is inadequate for determining the
average value of the product in a random multiplicative
process. In fact, the ratio (P )/P,,, diverges exponentially
inNas N- .

Another way to compute P,,, is to consider the loga-
rithm of the product. This is a random additive process for
which the average value and the most probable value di-
verge at the same rate as N— . Therefore, by computing
(In P), one also obtains the value of In P,,,. Then by reex-
ponentiating, one has

P, =e"P), (4a)
while by definition
(P)={(e""). (4b)

Mathematically, the interchange of exponentiation and
averaging is not generally justified. In fact, by expanding
Egs. (4) in power series and using the basic fact>™* that
(x*) > (x)% itis clear that (P) > P,,,. In general, there is
no reason why P,,, and (P ) should have similar values or
even be of the same order of magnitude for a sufficiently
broad distribution.

The disparity between (P ) and P,,, can be nicely illus-
trated by considering several special cases with z; = 2 and
zy=4 (i) For p=g=1, (P) = (§)" =", while
P, = 1; (ii) For p = {and g = }, the s are twice as likely
to occur as 2’s in the sequence of numbers comprising the
product. In this case (P)=1, while
Pmp — ({;X%XZ)N” =2V g~ (WHNIn2 (jiiy For p
strictly within the range | to }, one has the curious situation
where (P)~e* ¥~ o and P, ~e "0, where a and
B are positive constants, as N — oo.

The essential reason for the large discrepancy between
(P) and P, is the relatively important role played by rare
events. For example, a sequence consisting only of N fac-
tors of z, occurs with an exponentially small probability,
but the value of this product is exponentially large com-
pared to the typical value. Consequently, this extreme
event makes a finite contribution to (P ) and a dominant
contribution to the higher moments of the product (P*).
From Eq. (2), we see that (P*) reduces to ( pz{)” as
k— 0; i.e., the kth moment is determined solely by the
most extreme event. A closely related feature is that the
moments obey the inequalities (P*) = ( pz¥ 4 qz&)"
>(PY =(pz, +92,)¥, and more generally,
(P*)y> (P*~1)k/t:= D These relations also show that
there does not exist a unique scale that governs the scaling
of all the moments of the product. That is, {(P*) cannot be
written in the form (P*) ~a, (P )*, with a, a nonsingular
function of k and NV. This loss of scaling stems from the long
tail in the underlying distribution of products. However, as
the order of the moment goes to «, the contribution of the
single event where the product has the value z)’ dominates
in the value of the moment. In this circumstance, a conven-
tional scaling picture is restored since the value of the mo-
ment is essentially determined by a single event.

An additional intriguing feature of the binomial multi-
plicative process is the sensitivity of (P ) to short-range cor-
relations in the sequence of variables that are being multi-
plied. As a simple example, consider the case where z, = 2
and z, = 4, with these two factors occurring with equal
probability. Further, suppose that there are “no immediate
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reversals” in the sequence of z,’s and z,’s that comprise the
product. That is, when a 2 first appears in the sequence, the
next element must also be a 2. Only after the second appear-
ance of a 2 does the sequence become uncorrelated again.
For a random walk process with this type of correlation
(persistent random walk ), it is well known that the asymp-
totic properties of the mean displacement are unaffected.5
However, for a random multiplicative process, this near-
est-neighbor correlation is equivalent to replacing the se-
quence of N correlated variables, which may be either 2 or
1, by a sequence of N /2 independent variables, which may

be either 4 or 1. For this new sequence,

(P) = (J17/8)"> (5/4)™ as N- . The increase in (P)
compared to the original binomial process becomes much
more pronounced as the range of correlation in the se-
quence becomes longer. The origin of this increase stems
from the relatively larger role played by “rare” events; i.e.,
a sequence containing only 2’s becomes relatively more
likely as the correlation range increases. This simple but
remarkable result shows that there is no analog of a central
limit theorem for a random multiplicative process, as the
mean value depends on correlations among the factors
comprising the product.

III. THE CONTINUUM LIMIT

Animportant aspect of treating any stochastic process is
determining the distribution of relevant observables in the
continuum limit. For a product of random variables, the
exact distribution function for the discrete system is simply
the binomial function given in Eq. (1). From this form, one
is naturally led first to apply Stirling’s approximation and
then expand the resulting distribution about its maximum
to arrive at the classical log-normal form. While this is the
time-honored approach for deriving the continuum limit in
virtually all stochastic processes, it is an ill-founded ap-
proximation for a random multiplicative process. Let us
follow this general prescription, however, in order to illus-
trate the pitfalls associated with the Gaussian approxima-
tion. We then present an appropriate expansion procedure
that leads to the correct continuum limit.

The k th moment of the product can be approximated by

+N
<Pk>zf e P gnkg(N—mk gy (5
-~ N

The Gaussian approximation is based on first applying
Stirli?g’s formula to the binomial distribution of Eq. (1) to
yield

—Inpn)=nIn(n/N) + (N —n)ln(1 — n/N)
—nlnp—(N—n)lng
+ (1/72N)In[27n(1 — n/N)]. (6)

We now expand this approximation for In p(n) about its
maximum, which is located at n = Np, with corrections to
this condition that vanish in the limit N— . Then, by
reexponentiating this expansion, one obtains the Gaussian
form

pGaussian (n) = ( 1/\/ 2‘ﬂ'NPq)
Xexp[ — (n — NP)*/2Npq]. (7
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By writing a generic value of the product as P = (z,/z,)"zY
and P, = (2,/2,)"z}, Eq. (7) can be recast as

1 (nP—InP,,)*
ex 5] (8)
V27 Npg 2NpqlIn(z,/z,)]

This is the well-known Jog-normal distribution,® whose
name reflects the fact that the logarithm of the product is
normally distributed. '

The k th moment of the product within the Gaussian ap-
proximation is, from Eq. (7),

(P k )Gaussian = l/V 27TNPq

+
XJ e (n— Np)°/2Npg Z}]‘lkz;N* mk dn,
— o0

)

and we evaluate this integral by completing the square in
the exponential to yield

<Pk>Gaussian
= exp{(Npg/2)k*[In(z,/2,) ]*
+ N(p — @)k In(z,/2,) + (Nk /2)In z,z,}. (10)

It is instructive to compare the values for (P *)g,ucian
with the exact result for (P*) given in Eq. (2). Forz,~z,
and for p,q =4, the agreement between the exact result and
the Gaussian approximation is reasonable because the role
of extreme events is lessened by having z, close to z, and
p~q. However, when either of these relations is not satis-
fied, then the agreement becomes poor (see Table I). This
is especially true for large k because the Gaussian approxi-
mation predicts that the k th moment of an N-fold product
increases as e"*’, where ¥ = ( pq/2)[In(z,/z,)]?, while
the exact value increases only as e¥*'" =,

What is wrong with the Gaussian approximation? The
essential flaw can be seen in comparing Eqgs. (5) and (9).
In Eq. (5), the k th moment equals the probability of an
event, times the k th power of the value of that event, aver-
aged over all events. The k th power of the product is expon-
entially large in N, so that both factors in the integral are of
the same order of magnitude. However, in writing the
Gaussian approximation of Eq. (9), the binomial distribu-
tion has first been expanded about the point where it
achieves a maximum. The process of completing the square
in the exponent in Eq. (9) is then tantamount to finding the
maximum of the function in the exponent in which one
portion of this function has already been expanded to sec-
ond order. This represents an incorrect application of La-

PGaussian (1) =

Table I. Comparison between the exact value and the Gaussian estimate of
the average value of the product of V factors for the case wherep = ¢ =}
and z, =z, " Since (P ) and (P )g.ussian DOth grow as u”, we write the
value of u to provide a comparison between two numbers that are of the
same order of magnitude. The agreement is reasonable for smali z,, but
becomes poor for larger values of z,.

Z Hexact HGaussian
2 1.2500 1.2715
3 1.6667 . 1.8285
4 2.1250 2.6141
5 2.6000 3.6515

10 5.0500 14.167

20 10.025 88.873
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place’s method'? to provide an asymptotic expansion of the
integral in Eq. (9).

To see explicitly where such an approach leads, we
change variables from n to x = n/N and rewrite Eq. (6) as
In p(x) = — Nf(x), where

Sx)= ~Nxlnx+ (1 —x)In(1 —x) —xInp

— (1 =x)Ing + (1/2N)In [27Nx(1 — x)]}.
(11)
Equation (5) then becomes
1
<Pk>=f+ efN[f(X)+g(x)]Ndx’ (12)
—1
where g(x) = kx Inz, + k(1 — x)In z,. In the Gaussian
approximation,  f(x) is  first replaced Dby
fGaussian (x) :f(xo) + %(X - x())z_f” (-xo), where Xo =D.
The completion of the square in the exponential in Eq. (9)
is equivalent to expanding about the maximum of
S Gaussian (X¥) + g(x). The interested reader can readily ver-
ify that this generally is a poor approximation for the loca-
tion of the peak of the exact exponent function,
r(x)=f(x) + g(x).
To perform the integral correctly by the Laplace meth-
od, we expand A(x) about its true maximum. Writing

A(x) =xlnx+ (1 —x)In(1 —x) —xlnp
—(1—x)Ing+ (1/72N)In[27Nx(1 — x) ]
— kxIn(z,/z,) — klnz, (13)

differentiating with respect to x, and setting this expression
to zero, one finds that 2(x) has a maximum at

x*=E/(1+ &), &=pzt/qzt, (14)

in the limit N— oo. Notice that this maximum is always
greater than the value x,,, = p that corresponds to the
most probable value of the product. This shows that the
dominant contribution to (P*) generally comes from
product values that are larger than P, . At x = x¥,
straightforward algebra gives

_ £ i £
hx¥)=In———4+ —In 27N ——— 15
Grop o oy Y
and
B (x*) = (1 + E)VE. (15b)

Therefore, the k th moment becomes

+1
(P"):f e MIN dx
—1

+ 1

— N * — X*)Y R (x*

~J e [A(x*) + (1/2)(x — x*}*h " (x*) + ]Ndx
-1

~e VMO DEN /R (x*). (16)
Employing the expressions for #(x*) and 2 " (x*) given in
Egs. (15) yields

(P*)~(pz} + qz5)™. (17)

Thus the correct value of {P *) is obtained if the contin-
uum limit is formulated appropriately. This formulation
only requires that Laplace’s method is applied to the exact
form of the exponent function in Eq. (12). In this circum-
stance, Laplace’s method is guaranteed to give the correct
leading asymptotic behavior of the integral.'”> The short-
coming of the log-normal approximation stems from the
fact that an approximation to one of the two terms in the
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exponent function has been made before Laplace’s method
is applied. It is also noteworthy that the correct continuum
distribution function cannot be cast as a single function,
such as a simple log-normal. From Eqgs. (12) and (16), the
product of the distribution function times the value of the
k th moment can itself be represented by a Gaussian, but
one in which the location of the peak depends on k. This
emphasizes that there does not exist a unique scale that
accounts for all the moments of the product, but rather,
each moment is governed by distinct portions of the under-
lying distribution. It is important to keep these basic fea-
tures in mind when writing the continuum distribution
functions for stochastic processes in which extreme events
play a major role.

IV. THE DEPENDENCE OF THE “OBSERVED”
AVERAGE VALUE ON THE SAMPLE S1ZE

While the true average value of an N-fold product of
random variables is governed by extreme events that are at
the tail of the distribution, most probable events will tend
to dominate in a typical numerical simulation of such a
process. That is, most simulations are performed in situa-
tions for which one can sample only an infinitesimal frac-
tion of all the states of the system. Therefore, the “ob-
served” average value of the product in such a simulation
will actually be close to P,,,. As the number of realizations
R in the simulation ensemble is increased, however, there is
a corresponding increase in the accessibility to the tails of
the distribution. In a given simulation, this increased ac-
cess will manifest itself in the sporadic appearance of ex-
ceptional realizations that will cause the observed averages
to fluctuate wildly as a function of R. However, for a large
enough ensemble, all events are sampled with the correct
weight, and the fluctuating observations as a function of R
will cross over and converge to the true average. We now
give a quantitative analysis of this “crossover” within an
idealized picture in which the increased access to the tails
occurs systematically as a function of R. This approximate
treatment predicts a smooth, but sharp increase in the ob-
served average as the number of realizations in the simula-
tion reaches a crossover value R * ~e*", where « is a con-
stant. While our analysis is rather crude, to the best of our
knowledge, an explicit description of this crossover has not
appeared in the literature previously.

A crucial step in our analysis is determining the expected
value of the largest product in an ensemble of R realizations
of an N-fold product. For this largest product, the number
of appearances of the factor z, (the larger factor in the
product) attains a maximal value n . which we will show
increases only logarithmically with the number of realiza-
tions R. Consequently, R needs to be of the order of ¢”, i.e.,
of the order of all the states in the system, before the ex-
treme events that lead to the correct averages are effective-
ly sampled. To estimate n , , we employ the Gaussian ap-
proximation for the probability distribution of the product
p(n). This will provide an accurate estimate for n . aslong
as Risnottoolargesothatn , falls within several standard
deviations of the Gaussian peak. This is very likely to be
true in any realistic simulation. The case where R ap-
proaches 2% can also be treated within the present frame-
work, but at the expense of introducing unenlightening
technical complications. .
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To determine n __, we require the probability that in an
ensemble of R independent realizations, there exists a sin-
gle realization for which the expected maximal number of
z,’s in an N-fold product is greater than orequal ton . . In
other words, we wish to specify the lower limit for the inte-
gral over p(n) such that the probability of havingn>n | is
equal to 1/R. That is,

N 1 )
f p(n)d =;. (18)

Employing the Gaussian approximation for p(n), Eq. (18)
becomes

1

1 Jwe“"_Np’z’ZN”dn=—. 19
V27wNpg Jn.
This can be recast as 1/R=}jerfc(u, ), where

u, = (n— Np)/2Npq and erfc(x) is the error function
complement. Finally, using the asymptotic expansion for
the error function'? yields the fundamental result

n, =~Np+V2NpgIn R. (20)
Correspondingly, there is a minimal number

n_ ~Np —+2NpgIn R that specifies the smallest value of
the product in an ensemble of R realizations. Thus » , is
greater than the typical value of n = Np by an amount that

is of the order of YN when the scale of the simulation is
small, i.e., typical random walk fluctuations, and n 4 ap-
proaches the maximum possible value of N only when the
simulation is large enough to sample a finite fraction of all
events, i.e., when R2 R *~0(2"). When R reaches R *,
the square root term in Eq. (20) becomes of the order of N,
and the most extreme events in the ensemble are now acces-
sible. We emphasize that although this approach predicts
that n _ is a smoothly increasing function of R, n, will
actually be a sporadically increasing function in a given
simulation, and it is only the expected vahie of n . that will
conform to Eq. (20).

Due to the predicted systematic dependence of the mag-
nitude of the extreme event on the number of realizations R
in a simulation, there will be a corresponding smooth de-
pendence of observed averages on R. Within this formula-
tion, the k th moment of the product in a simulation con-
taining R realizations becomes

(PHyg= e mon ax

X 4+
~
x

— * —_ 2 " -
e N{A(x*) + (1/72)(x — x*)*h " (x*) + ]Ndx’

(21)
where x | =n_ /N. The qualitative behavior of (P ) is
determined by the relative position of the peak in the inte-
grand compared to the limits of the integral, as illustrated
in Fig. 1. For relatively small R, both limits of the integral
lie far to the left of the peak, so that (P} is vanishingly
small. As the number of realizations R increases, the upper
limit of the integral, x , , slowly increases and eventually
reaches the location of the peak at x*. From Eqs. (14) and
(20), the number of realizations R * required for x L+ to
reach x* is given by

AETEET PR 7

= PQ(ZI/Zz)k_.)Z.
2pq 14+ £ 2pq

q +p(z,/zz)k
(22)
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(a) x, < x*

L) L] .

X. X4 x* X
(b) x,> x*

L L] L)

X_ x* X4 X

Fig. 1. Qualitative behavior of the integral in Eq. (21). For small R, the
limits of the integral are close together and on the tail of the distribution.
As R increases, more of the peak is included within the integration limits,
and the value of the integral increases sharply as R — R * as shown in Fig.
2.

When R = R *~¢"", with a dependent on the details of
the multiplicative process, we have integrated over one-
half of the contribution to (P*), in Eq. (21), and
(P)gr=3(P*)_ (seeFigs.1and2). ForR>R* x, has
passed the far side of the peak, and (P*), very quickly
approaches (P*) _ . Since the width of the peak is of order
1/JYN, (P) is sharply increasing in the narrow range
X, =x*+ 0( I/W), and this corresponds to
R=R* + O(e'V) (Fig. 2). Furthermore, since there is a
distinct peak location for each value of &, which is an in-
creasing function of &, progressively more realizations are
needed in a simulation to estimate the higher moments to
the same degree of accuracy as the low-order moments.

The value of the k th moment of the product in an ensem-
ble containing R realizations can now be obtained by sub-
stituting in the expressions for #(x*) and & " (x*) given in
Egs. (15) into Eq. (21). This yields

(PYp/(Pdp

Fig. 2. A sketch of the “observed” value of the & th moment in a simula-
tion, {P*) 4, as a function of the logarithm of the number of realizations
R. The sharpincreasein {P*) . moves progressively to the right for larger
values of k. As an illustrative example, we have chosen p=¢g =1,
zy=2z; '=4, k=1, and N=100. The value of In R *~38.93, corre-
sponding to R * ~8x 10'®. Thus, to find the moments of a product of only
100 random numbers numerically, a simulation beyond the scope of pres-
ent-day computation is required!
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1 “ >
<Pk>R=J—;-(pzf +qz§)NL e “du, (23)
where
U, =INR"(x*) (x, —x*). (24)

We expect that this expression is quantitatively correct
when u . >0, where we are essentially performing a La-
place expansion of an exponential integral. Foru , <0, we
are integrating a rapidly varying exponential function over
a range where there is no extremum in the integrand. In
this case, the Gaussian approximation is not justified, but it
does provide a simple and correct qualitative picture of the
behavior of the moments on the number of realizations.

Equation (23) can be rewritten in terms of error func-
tions, and there are two cases depending on the relative
position of the limits with respect to the peak (cf. Fig. 1).
We thereby find

L(pzk + g2 [erf(Ju_ |) —erf(Ju, ],
if u, <O (R<R*),

1 pzt +qz5)" [erf(u , ) +erf(Ju_ )],
ifu, >0(R>R*¥*).

(P*)r=

(25)

Thus the observed value of the kth moment suddenly
crosses over from a relatively small number to the true
value of the & th moment when R passes through R *. While
a real simulation will not actually exhibit such a smooth
behavior, Eq. (25) provides an appealing and quantitative
account of the expected nature of the crossover.

V. CONCLUSIONS

The statistical properties of the product of N random
variables has been outlined. We have shown that the distri-
bution of the product and the behavior of the moments are
crucially sensitive to extreme events. Consequently, there
is no analog of a central limit theorem, as in the case of
random additive processes, in which typical events are suf-
ficient to determine the statistical properties of the sum of a
large number of random variables. We have shown expli-
citly why the log-normal approximation fails to represent
adequately the statistical properties of the product in the
continuum limit. It is worthwhile to be cognizant of these
shortcomings, given the wide range of phenomena for
which the log-normal is invoked. We have also provided
the correct continuum limit that can be viewed as a log-
normal function, but one whose precise form depends on
the order of the moment being considered. This emphasizes
that there does not exist a unique scale that accounts for all
the moments of the product.

We have also discussed how these features would appear
in numerical simulations of random multiplicative pro-
cesses. Numerically observed ‘‘averages” are determined
by the extreme events that appear in a finite number of
realizations of a random product, and we have derived the
condition that specifies the nature of these extreme events.
When the size of the simulation ensemble is of the order of
the total number of possible realizations of the product,
then the most extreme events will appear. It is only when
this finally happens that a simulation can provide accurate
numerical estimates. The logarithmic dependence of the
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magnitude of the extreme event on the size of the ensemble
provides the basis for an idealized, but quantitative account
of the crossover to asymptotic behavior. The basic message
of this analysis is that numerical estimates from realistic-
scale simulations of a random multiplicative process have
no relation to true average values. A nice graphics demon-
stration of these general features has been given by Blum-
berg.'
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