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Aging and its distribution in coarsening processes

L. Frachebourg,* P. L. Krapivsky, and S. Redner
Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215

~Received 19 September 1996!

We investigate the age distribution functionP(t,t) in prototypical coarsening processes. HereP(t,t) is the
probability density that in a time interval (0,t) a given site was last crossed by an interface in the coarsening
process at timet. We determineP(t,t) exactly in one dimension for the~deterministic! two-velocity ballistic
annihilation process and the~stochastic! infinite-state Potts model with zero-temperature Glauber dynamics.
Surprisingly, we find that in the scaling limit,P(t,t) is identical for these two models. We also show that the
average age, i.e., the average time since a site was last visited by an interface, grows linearly with the
observation timet. This latter property is also found in the one-dimensional Ising model with zero-temperature
Glauber dynamics. We also discuss the age distribution in dimensiond>2 and find similar qualitative features
to those in one dimension.@S1063-651X~97!09406-3#

PACS number~s!: 02.50.Ga, 05.70.Ln, 05.40.1j
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I. INTRODUCTION AND PROBLEM STATEMENT

Coarsening underlies various natural nonequilibrium p
cesses, e.g., phase separation in binary alloys, grain gro
and growth of soap bubbles@1#. A common feature of coars
ening phenomena is the scale-invariant morphology
arises in the late stage@1,2#. Such a behavior is a signature
dynamical scaling. If dynamical scaling holds, the avera
domain size l (t) typically exhibits algebraic growth
l (t); t1/z.

It has recently been appreciated that knowledge of
dynamical exponentz doesnot provide a comprehensive de
scription of the coarsening dynamics. In particular, the ex
nentl, which describes the dependence of the autocorr
tion functionA(t)[^s(x,0)s(x,t)&, wheres(x,t) is the order
parameter at positionx and timet, on the average domai
sizeA(t); l (t)2l @2–4#, and the exponentu, which char-
acterizes~in magnetic language! the fraction of spins tha
have never flippedP0(t); t2u @5–7#, were found to be in-
dependent of the dynamical exponentz. The latter quantity
P0(t) naturally suggests the generalization toPn(t), the frac-
tion of spins that have flipped exactlyn times up to timet @8#
as a detailed and fundamental characterization of the tem
ral history of spin flips.

In this paper, we probe the temporal history of coarsen
processes, at a deeper level than that provided by the a
correlation function@9,10#, by focusing on the timet when
the last spin flip occurs~Fig. 1!. More generally, we may
introducePn(t,t) as the probability that a given spin flip
n times up to timet and that the last spin flip occurs at tim
t. Here we investigateP1(t,t), which focuses on the las
spin flip and does not specify the total number of fli
P1(t,t)5(n>1Pn(t,t). If we view a spin as being ‘‘re-
born’’ each time it flips, thenP1(t,t) gives the density of
spins of ‘‘age’’ t2t. There is also a finite fraction of spin
that have not yet flipped; these spins should be treate
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spins of aget. The total age distribution density of the spin
is therefore

P~t,t !5P0~ t !d~t!1P1~t,t !. ~1!

The densityP(t,t) should satisfy the normalization cond
tion *0

t dtP(t,t)51, while the average age of the system
defined via

T5E
0

t

dt~ t2t!P~t,t !5tP0~ t !1E
0

t

dt~ t2t!P1~t,t !.

~2!

The age distributionP(t,t) will be of primarily impor-
tance in systems with history-dependent dynamics, such
glassy systems@11#, and in systems with infinite memor
where actual aging takes place. Generally, when a two-t
correlation functionC(t,t)5^s(x,t)s(x,t)& becomes a func-
tion of a single variablet/t, instead of being a function o
t2t ~as in an equilibrium system!, this is interpreted as a
signature of aging@12–14#. According to this definition, ag-
ing is a characteristic of coarsening processes and the sc

24

FIG. 1. Graphical definition ofP(t,t) for one-dimensional
coarsening processes. At the point marked by the dashed line
spin last flips, or, equivalently, is visited by a domain wall, at tim
t. The specific examples shown are~a! the infinite-state Potts mode
~in which the domain walls undergo diffusive single-species coa
cence! and ~b! the deterministic coarsening of a three-state syst
with cyclic interactions~in which the domain walls undergo ballis
tic single-species annihilation!.
6684 © 1997 The American Physical Society
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55 6685AGING AND ITS DISTRIBUTION IN COARSENING . . .
dependenceP(t,t).t21f (t/t) has been found in a numbe
of pertinent examples@15,16#.

The age distribution will also play a fundamental ro
when the dynamics of a system is explicitly time depende
A potentially interesting situation is that of the ‘‘adaptive
voter model. The conventional voter model@17# is a two-
state lattice system in which a voter~site! randomly chooses
one of its nearest neighbors and assumes the state of
neighbor. In the adaptive extension of this model the pr
ability that a given voter changes its opinion depends on
local environment~as in the usual voter model! and on the
time interval since this particular voter last changed its op
ion. This might be viewed as a model to describe the incre
ing conservatism of people when they are not stimulated
contact with those of differing opinions. This adaptive vo
model exhibits rather unexpected coarsening dynamics
is ultimately driven by the underlying age distribution@18#.
In particular, we find coarsening for all spatial dimensio
while the conventional voter model coarsens only for spa
dimensiond<2.

In Secs. II and III, we consider the age distribution f
two specific one-dimensional coarsening processes for w
exact results can be obtained. In Sec. II, we first trea
deterministic three-state model of coarsening in which
dynamics of the domain walls is simply that of two-veloci
ballistic annihilation in one dimension. Because of th
equivalence, it is possible to obtain the exact expression
P(t,t) by simple means. In Sec. III, we investigate the a
distribution in two stochastic coarsening models. The firs
the infinite-state one-dimensional Potts model in which
domain wall dynamics is simply diffusion-limited coale
cence process, which may be represented asA1A→A. We
find that the scaling form of the age distribution is identic
to that found in the deterministic coarsening process.
also consider the age distribution for the Ising model w
zero-temperature Glauber dynamics in which, for one dim
sion, the domain wall dynamics coincides with sing
species diffusion-limited annihilation process, which may
represented asA1A→0. In this case, the age distributio
has a bimodal ‘‘smiling’’ form as a function oft, a result
that can be understood intuitively. We also discuss the
distribution for the dynamical Ising model in dimensio
d>2, for which the qualitative behavior is the same as
one dimension. Finally, we give an exact expression for
age distribution in the mean-field limit. Section IV gives
brief summary and outlook.

II. AGING IN A DETERMINISTIC MODEL
OF COARSENING IN ONE DIMENSION

We first examine the age distribution in a determinis
coarsening model that describes phase ordering dynami
a cyclic one-dimensional system with three equilibriu
statesA, B, andC. The dynamics is cyclic so that theB
phase invades theA phase,C invadesB, andA invadesC.
Corresponding to this dynamics, interfaces between diss
lar domains move toward the subordinate domain with
fixed velocity. A domain that is besieged by two domina
domains shrinks and eventually disappears, leading to
merging of the neighboring domains. The interfaces the
fore undergo ballistic motion with annihilation occurrin
t.
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whenever two interfaces meet. These rules are preci
those of the ballistically driven single-species annihilati
reaction. The simplicity and rich phenomenology of this r
action has stimulated extensive fundamental work@19–23#,
as well as related applications to growth processes@24–27#,
and the dynamics of interacting populations@28–30#.

We start by describing the behavior@19,22# of the ballistic
annihilation model for the domain walls. In this model, th
densities of right-moving and left-moving walls are equ
with velocities that can be taken to be61 without loss of
generality. From the exact solution@19#, the probability
S(t) for an arbitrary interface to survive up to timet is

S~ t !5e22t@ I 0~2t !1I 1~2t !#. ~3!

Here I j denotes the modified Bessel function of orderj and
the initial spatial distribution of interfaces is assumed to
Poissonian~no correlations!, with the initial densities of6
interfaces taken to be equal 1/2.

To obtain the age distribution for the coarsening proc
induced by this domain wall dynamics, first considerP0(t),
the fraction of space that has not been crossed by any in
face in the time interval (0,t). One can interpretP0(t) as the
probability that a stationary ‘‘target’’ particle, which i
placed at the origin, for example, is not hit by any movi
domain wall. It is convenient to consider an auxiliary on
sided problem with interfaces distributed only to the right
the origin. For this case, the survival probability of the s
tionary particleS0(t) is @21#

S0~ t !5e2t@ I 0~ t !1I 1~ t !#. ~4!

Indeed, the relative velocity between a stationary particle
its reaction partner is a factor of 2 smaller than the relat
velocity between two moving reaction partners. Hen
S0(t)5S(t/2) and Eq.~4! follows from Eq.~3!. Clearly, the
survival probabilityP0(t) in the original two-sided problem
is

P0~ t !5S0~ t !
2. ~5!

The continuous part of the age distributionP1(t,t) can
also be expressed in terms of the survival probabilitiesS(t)
andS0(t). We first note that for the origin to be crossed b
an interface during the time interval (t,t1dt), a left-
moving interface should be initially located in the spat
interval t,x,t1dt or a right-moving interface should b
located in the spatial interval2t2dt,x,2t. Each of
these events occurs with probabilitydt/2 for an initial inter-
face density of unity.

Suppose that the origin is crossed by a left-moving int
face ~Fig. 2!. Then this interface will ultimately be annihi
lated with some right-moving interface at some future tim
t1, which satisfiest1.t. If t1.(t1t)/2, then the origin can-
not be crossed by a right-moving interface during the ti
interval (t,t). The contribution of these type of configura
tions toP1(t,t) is

SS t1t

2 DS0~ t2t!. ~6!
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6686 55L. FRACHEBOURG, P. L. KRAPIVSKY, AND S. REDNER
The first factor is just the probability that the left-movin
interface survives up to time (t1t)/2. The latter factor in
Eq. ~6! is the probability that the initial location of the left
moving interface has not been crossed by any other
moving interface during the time interval (0,t2t), which, in
turn, ensures that the origin remains uncrossed from the r
during the time interval (t,t).

Consider now the complementary situation when the l
moving interface that crosses the origin in the time inter
(t,t1dt) survives to timet1 with t,t1,(t1t)/2. In this
case, additional right-moving interfaces can cross the or
before time t. The contribution of such configurations t
P1(t,t) is

S0~ t2t!E
t

~ t1t!/2
S0~ t22t11t!@2Ṡ~ t1!#dt1 . ~7!

Here S0(t2t) again ensures that the origin remains u
crossed from the right during the time interval (t,t). Simi-
larly, S0(t22t11t) guarantees that the origin remains u
crossed from the left. Finally,2Ṡ(t1)dt1 is the probability
that the left-moving interface is annihilated in the time inte
val (t1 ,t11dt1). Combining these contributions gives th
final exact expression for the age distribution density

P~t,t !5S0~ t !
2d~t!1SS t1t

2 DS0~ t2t!

2S0~ t2t!E
t

~ t1t!/2
S0~ t22t11t!Ṡ~ t1!dt1 .

~8!

The singular part of the age distributionS0(t)
2d(t) cor-

responds to the fraction of space that has not been trave
by any interface; in the long-time limit, this fraction deca
ast21. To determine the asymptotic behavior of the contin
ous part of the age distribution, we substitute into Eq.~8! the
asymptotic expressionsS(t); 1/Apt and S0(t); A2/pt,
which are found by using the asymptotic relations for t
modified Bessel functions,I j (z)→ez/A2pz as z→` and j

FIG. 2. Illustration of a typical configuration that contributes
P1(t,t) in the deterministic coarsening process generated by
main walls that undergo ballistic single-species annihilation. T
left-moving domain wall trajectory that crosses the origin at tim
t is shown as a heavy line. This domain wall is annihilated at a t
t1.t such that any right-moving trajectory cannot reach the ori
before timet52t12t.
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fixed @31#. The contribution of the third term of Eq.~8! turns
out to be asymptotically negligible, while the second te
leads to the scaling form

P1~t,t !.t21f ~j!, ~9!

in the scaling limit

t→`, t→`, j5t/t, ~10!

with the scaling function given by

f ~j!5
2

p

1

A12j2
. ~11!

A prominent feature of the age distribution is thatt scales
as t. That is, the average age

T5^t2t&.tE
0

1

dj~12j! f ~j!5S 12
2

p D t ~12!

grows linearly with the observation timet.

III. AGING IN STOCHASTIC MODELS OF COARSENING

A. One dimension

The ballistic annihilation model is perhaps the simple
one-dimensional coarsening process withdeterministicdy-
namics. We now consider simple examples of on
dimensional coarsening processes withstochasticdynamics.
Consider first theq-state Potts model forq5`, with zero-
temperature Glauber dynamics and with the initial condit
where each spin is in a different state. The dynamics p
ceeds as follows: During the time intervaldt a given spin
assumes the state of one of its nearest neighbor with ov
probability dt/2. In one dimension, the interfaces betwe
domains of identical spins therefore diffuse and coale
whenever two domains meet. The domain wall dynamics
thus identical to the diffusion-limited coalescence reacti
which may be represented asA1A→A.

Because of this equivalence between the Potts model
the coalescence reaction, the age distribution can be ca
lated exactly. Since interfaces coalesce upon colliding, o
the interfaces that are the nearest neighbors of a partic
site are important in determining its age distribution. In co
structing the age distribution, first note that the spin will n
change its color up to timet if neither of the two neighboring
interfaces reaches the spin. The probabilityP0(t) is thus
equivalent to the square of the probabilityQ(t,1) that a ran-
dom walker on a lattice starting at positionx051 will not
reach the origin up to timet. The probabilityQ(t,1) is
readily computable@32# and gives the fraction of ‘‘persis
tent’’ spins

P0~ t !5$e2t@ I 0~ t !1I 1~ t !#%
2. ~13!

To compute the contribution to the age distribution fro
configurations where an interface has previously reached
spin ~which we may take to be at the origin!, let us assume
that this spin takes on a new color from its left neighbor
time t. This spin is now the right extremity of a domain o
same color spins~see Fig. 3!.
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55 6687AGING AND ITS DISTRIBUTION IN COARSENING . . .
Let the size of this domain ben. The position of the
interface that defines the left edge of this domain is dist
uted according to the domain size distributionF(n21,t).
The spin at the origin will then not change its color up
time t if the two surrounding interfaces do not cross t
origin. The continuous part of the age distribution can th
be written as

P1~t,t !5 (
n52

`

F~n21,t!Q~ t2t,n!Q~ t2t,1!. ~14!

The last factor is just the probability that the domain tha
one lattice spacing to the right of the spin at the origin do
not reach the origin between timet and timet, while the first
two factors give the corresponding probability for the le
neighboring domain that is a distancen from the origin.

Each of the factors in this equation are well known. T
domain size distribution is given by F(n21,t)
5E(n21,t)22E(n,t)1E(n11,t), where E(k,t) is the
probability to find at leastk successive spins of the sam
color at timet @33#. For a discrete lattice system, this latt
distribution satisfies a lattice diffusion equation, with boun
ary conditionE(0,t)51 and initial conditionE(k,0)5dk,0 ,
corresponding to the initial condition where each spin is d
ferent. The expression forE(k,t) is @32#

E~k,t !512e22tF I 0~2t !12(
j51

k21

I j~2t !1I k~2t !G ~15!

and thus

F~n21,t!5
e22t

t
nIn~2t!. ~16!

In a similar vein, the probabilityQ(t,k) that a random
walker that starts atx5k does not hit the origin during the
time interval (0,t) is @32#

Q~ t,k!5e2tF I 0~ t !12(
j51

k21

I j~ t !1I k~ t !G . ~17!

So we finally obtain

FIG. 3. Illustration of one process that enters in the computa
of P1(t,t) for the infinite-state Potts model. Shown is the sp
configuration at timest and t1dt just as one spin changes i
state. For the state of this spin to remain unchanged until timt,
both the domain wall a distance 1 to the right and the domain w
a distancen to the left must not reach the position of the new
flipped spin.
-

s

s
s

-

-

P1~t,t !5
e22t

t
@ I 0~ t2t!1I 1~ t2t!# (

n51

`

nIn~t!

3F I 0~ t2t!12(
k51

n21

I k~ t2t!1I n~ t2t!G .
~18!

In the scaling limit~10!, the dominant contribution to the
sum in Eq.~18! is provided by terms withn}At. In this
region we use the asymptotic form of the Bessel functio
I n(t).exp(t2n2/2t)/A2pt. A lengthy but elementary com
putation then yields

P1~t,t !.
2

pAt22t2
, ~19!

which is exactly of the same form as Eqs.~10! and ~11!. At
first sight, it may seem surprising to find the same scal
function, as well as the same expression forP0(t), as in the
ballistic annihilation problem. Indeed, Eq.~4! can be com-
puted from a mapping of the initial distribution of the inte
faces onto a random-walk process.S0(t) can then be com-
puted in the same way as the probabilityQ(t,1) shown
above. Whenever we can determine a property of
infinite-state Potts model via the behavior of two indepe
dent random walks, we should recover the same results a
the ballistic annihilation problem. Nevertheless, some pr
erties of these two systems are very different. For exam
the domain size distribution in ballistic annihilation exhibi
a nontrivial behavior that is characterized by an infinite nu
ber of singularities@22,34#.

Let us now consider the age distribution of spins in t
two-state Potts model with zero-temperature spin-flip d
namics, i.e., the kinetic Ising-Glauber model@32#. Since the
solution for P0(t) in the Ising-Glauber model is difficul
@35#, one can anticipate that calculation ofP1(t,t) is also
subtle. We therefore study this problem numerically and g
heuristic arguments to explain the limiting behaviors of t
age distributionP1(t,t).

Our numerical results, which are based on simulations
the equivalentA1A→0 reaction process, confirm that th
scaling ansatz~9!and ~10! still applies~Fig. 4!.

The singular behavior of the scaling part of the age d
tribution function f (j) in the limits j↓0 and j↑1 can be
accounted for by matching to the known behaviors in th
limits. When t5O(1), P1(t,t); P0(t); t23/8 @35#.
Matching this with Eq.~9! at j5t/t5O(t21) implies the
f (j); j25/8 as j↓0. This asymptotic behavior agrees we
with our simulations. In the opposite limit oft→t, the cor-
responding limiting form of the age distribution is dete
mined by domain walls that have crossed the origin at ti
t close to t: This happens with probabilityt21/2 since the
number of domain walls decreases with time ast21/2 @32#.
The diffusing domain wall should then not cross the orig
again in the following time interval (t,t): This happens with
probability (t2t)21/2 @36#. Thus P(t,t); t21/2(t2t)21/2,
which implies thatf (j);(12j)21/2 as j↑1, in agreement
with our numerical results. Indeed, the product of these t
asymptotic forms f guess(j)5Bj25/8(12j)21/2 provides a

n
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6688 55L. FRACHEBOURG, P. L. KRAPIVSKY, AND S. REDNER
reasonable fit to the data over most of the range ofj. If one
uses this guess over the entire range ofj, then the normal-
ization condition*dj f guess(j)51, requires the numerica
prefactor to beB5G(7/8)/G(3/8)G(1/2)50.259 349 . . . .

For the generalq-state Potts model with zero-temperatu
Glauber dynamics, we may also expect that the age distr
tion scales, with the limiting behaviors of the scaling fun
tion given by

f ~j!;H ju~q!21, j↓0
~12j!21/2, j↑1. ~20!

The persistence exponentu(q), found analytically in Ref.
@35#, increases from 3/8 to 1 asq increases from 2 tò .
Thus the smiling form of the age distribution in the Isin
case~Fig. 4! gradually transforms into the half-smiling form
of the infinite-state model@see Eq.~19!#.

B. Higher dimensions

In more than one dimension, aging of spins in the kine
Ising model is expected to depend on the temperature. I
initially disordered system is quenched to a final tempera
Tf.0, the average age is expected to be finite for alld.1.
This follows because for nonconserved dynamics, even s
embedded within a large region of aligned spins will flip a
finite rate for all positive temperatures. On the other ha
for a quench to zero temperature, we anticipate that the
erage age will grow with time since spin flips can occur on
at interfaces and these eventually disappear. To test this
pectation, we performed numerical simulations of the tw
dimensional kinetic Ising-Glauber model on the square
tice and found that the average age of the spins gr
linearly in time and that scaling still applies. Moreover, t
age distribution function has the same qualitative smil
form of the one-dimensional system~Fig. 4!.

In the small-age limitt2t!t, the numerical data sug
gests a behavior of the age distribution that is consistent w
P(t,t); t21/2(t2t)21/2. To understand this result, which

FIG. 4. Simulation data for the age distribution in the on
dimensional Ising-Glauber model. Shown is the scaling funct
f (j) versusj for t5(1.5)12 (1) andt5(1.5)17 (s), with the latter
data averaged~smoothed! over five consecutive points. The soli
line is the guess f guess(j)5Bj25/8(12j)21/2, with
B50.259 349 . . . , asexplained in the text.
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identical to that of the one-dimensional counterpart, first n
that the density of domain walls decays ast21/2. This arises
because for nonconserved dynamics, the average domain
grows ast1/2 @2# and domains appear to be compact. Con
quently, the domain wall density is expected to be the rec
rocal of the average domain size. The perimeter of a dom
has typically a vicinal shape, with the kinks and antikin
that define terraces undergoing diffusive motion~this diffu-
sion does not cost energy and is therefore allowed at z
temperature!. This diffusional motion is one dimensional i
character and thus a step~either kink or antikink! that has
crossed a bond at timet will not cross it again in the fol-
lowing time interval (t,t) with probability (t2t)21/2. The
age distribution is then given by the product of step dens
and the above no-return probability, which give
P(t,t);t21/2(t2t)21/2. In fact, the evolution of interfaces
is a much more involved process—kinks and antikinks an
hilate upon colliding and spin flips at the corner give birth
a pair of steps~horizontal and vertical!—but in the small-age
limit these additional complexities should not qualitative
affect the age distribution.

In the large-age limitt!t, the scaled age distribution i
expected to behave asf (j); ju21, similarly to one dimen-
sion. Indeed, we confirmed numerically such a power-l
behavior and found thatu'0.21 provides the best fit to ou
data. This is consistent with previous simulations of the tw
dimensional Ising-Glauber model for which the fraction
persistent spinsP0(t) was found to decay ast20.22 @5,37#.

To determine the form of the age distribution for the k
netic Ising-Glauber model in higher dimensions, we appl
mean-field approach. It is simple to solve forP(t,t) in the
mean-field limit ~e.g., for the Ising model on a complet
graph! since the dynamics in the zero-temperature cas
simple: Spins from the majority phase do not change th
state, while spins from the minority phase change their s
with a constant rate that we may set equal to one. Supp
that the system starts from an initial condition where t
fraction of 1 and2 spins is equal top and q512p, re-
spectively ~with p>q without loss of generality!. Clearly,
the fraction of spins that never change their state until ti
t is equal top1qe2t. The probability that a minority spin
changes its state in the time interval (t,t1dt) is equal to
e2tdt. Thus

P~t,t !5~p1qe2t!d~t!1qe2t. ~21!

This result violates the scaling form of Eq.~9!, but still im-
plies that the average age@see Eq.~2!# increases linearly in
time:

T5~p1qe2t!t1q~ t211e2t!5t2q~12e2t2te2t!.
~22!

IV. SUMMARY AND OUTLOOK

The age distribution in coarsening processes with a n
conserved order parameter has been investigated by an
cal and numerical techniques. These approaches indicate
the average age grows linearly with the observation time
the system. Exact results for two prototypical coarsen
processes in one dimension, the deterministic ballistic an
hilation, and the stochastic infinite-state Potts model w

-
n
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zero-temperature Glauber dynamics have been obtained
the general q-state Potts model with zero-temperatu
Glauber dynamics, asymptotic behaviors have been es
lished.

Various results for the aging of spins in the Ising-Glaub
model in general dimension have been obtained. The in
esting situation, for nonconserved spin-flip dynamics, is t
of zero temperature where domain walls ultimately disapp
so that the system undergoes aging. In particular, nume
results in two dimensions were found to be qualitative
similar to corresponding one-dimensional results. We ant
pate that the bimodal smiling form of the age distributi
will arise for all spatial dimensiond,4. Whend>4, how-
ever, the age distribution is expected to exhibit features s
lar to the easily derived mean-field solution@see Eq.~21!#. In
particular, the fraction of spins that never flip should satur
at a finite value even in the symmetric case ofp5q51/2.
This has apparently been observed@37#, although it is hard to
definitively settle this issue by numerical means, especi
in the marginal case ofd54.

It is worth noting that for the models discussed in th
work, the only possibilities found are systems where the
erage age saturates to a finite value or where the averag
increases linearly in time. The saturation of the age in
in
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first class of systems arises because a steady state is rea
On the other hand, for systems that coarsen it is perh
worth investigating whether there are examples where
average age grows slower than linear in time. Numeri
evidence shows that the average age in the two-dimensi
voter model is growing slower than linearly and perha
logarithmically in time. This intriguing possibility merits fur
ther consideration.

For the coarsening processes examined in this work,
dynamics determines the age distribution. It may be instr
tive to study models with feedback, in which the aging pr
cess influences the coarsening dynamics@18#. The adaptive
voter model is one such example. Another possibly intrig
ing extension would be to consider coarsening proces
with conservative dynamics.
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