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Transitional aggregation kinetics in dry and damp environments
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We investigate the kinetics of constant-kernel aggregation which is augmentegdsaporation of mono-
mers from clusters, which is termed aggregation in a “dry” environment,(aBhdontinuous cluster growth or
condensation, termed aggregation in a “damp” environment. The rate equations for these two processes are
analyzed using both exact and asymptotic methods. In dry aggregation, mass conserving evaporation is treated,
in which the monomers which evaporate remain in the system and continue to be reactive. For this reaction
process, the competition between evaporation and aggregation leads to several asymptotic outcomes. When the
evaporation is weak, the kinetics is similar to that of aggregation with no evaporation, while a steady state is
quickly reached in the opposite case. At a critical evaporation rate, a steady state is slowly reached in which the
cluster mass distribution decays kis>?, wherek is the mass, while the typical cluster mass, or upper cutoff
in the mass distribution, grows with time &3, For damp aggregation, several cases are considered for the
dependence of the cluster growth ratgon k. (i) For L, independent ok, the mass distribution attains a
conventional scaling form, but with the typical cluster mass growinglag. (i) WhenL >k, the typical
mass grows exponentially in time, while the mass distribution again scalié9. In the intermediate case of
L, >k, scaling generally applies, with the typical mass growingt’48*. The scaling approach is also
adapted to treat diffusion-limited damp aggregation for spatial dimerbsih [S1063-651X96)10210-3

PACS numbg(s): 02.50-—r, 05.40:j, 82.20.Mj

[. INTRODUCTION the process may be viewed as aggregation in a “dry” envi-
ronment. Because the fragmentation maffix has mostly

Aggregation, fragmentation, and condensation underlie @aero elements, detailed balance can no longer determine the
variety of natural nonequilibrium phenomefie-6]. In sys-  asymptotic state of the system. One of our goals is to inves-
tems where only one of these mechanisms is operative, thi@gate the kinetics of a simple version of this combined
time-dependent cluster mass distribution generally evolves taggregation-evaporation process in the rate equation ap-
a scaling form in which the basic variable is the ratio of theproximation.
cluster mass to the typical mass. These scaling forms have A crucial feature of this system is that the monomers
been obtained by exact solutions, numerical simulations, angthich have evaporated remain in the system and continue to
by direct consistency checks of the scaling description. Bybe reactive[Fig. 1(a)]. Physically, this can be achieved by
these efforts a general understanding has been developed famclosing the system in a box which prevents the escape of
the connection between microscopic reaction rates and maaeaterial. (In an open system, evaporation eventually domi-
roscopic features of the cluster distribution. nates leading to a trivial final state of a completely evapo-

These approaches have also been successfully applied tated system.We consider the generic case where the ag-
processes where the mechanisms of aggregation, fragmengregation rate is independent of the masses of the two
tion, and condensation are simultaneously active. One impoiincident clusters. This situation nicely illustrates the interest-
tant example is aggregation in combination with fragmentaing features that arise from the competition between aggre-
tion, a process which arises naturally in reversiblegation and evaporation. If the evaporation is sufficiently
polymerization[7]. Since the basic elements of aggregationstrong(which occurs for small concentrations of clusjeits
and fragmentation are manifestly opposed, their combinedominance over the effects of aggregation results in a steady
effect generally leads to an equilibrium in a closed systenstate in which the cluster mass distribution decays exponen-
and its characterization has been of basic inteféstl1]. tially in the mass. In the opposite case where aggregation
Detailed balance considerations can generally be applied tdominates, the typical cluster mass increases linearly in time
determine the nature of the equilibrium stateK|f denotes for an infinite system. Qualitatively, the effect of evaporation
the aggregation rate af,+c;—c;,;, wherec, is the con- s to continuously reintroduce the evaporated monomers into
centration of clusters of mads and F;; denotes the frag- the system, leading to a cluster mass distribution which con-

1
mentation rate ot;, ;—c;+c;, then de]tailed balance gives tains both a vestige of the steady-state distribution and a
Kijcicj=Fijci,j, wherec, is the steady-state concentration transient component which is associated with the growing
of k-mers. clusters. At a critical value of the evaporation rate, there is a
A related situation in which the evolution is driven by relatively slow evolution toward a steady state in which the
both aggregation and fragmentation is polymer chain growtftluster mass distribution decays kas”? This power law is
kinetics [12,13, in which k-mers may be unstable to produced by a slow evolution of the cluster mass distribution
breakoff of monomers—i.e., evaporation—while all otherin which the typical mass grows with time 44 These

fragmentation events are forbidden. With these restrictiondntriguing features emerge from exact solutions to the rate
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cases, i.e., §u<1, a scaling approach further predicts that
the mass distribution decays exponentially with mass.

On a more descriptive level, both dry and damp aggrega-
tion involve bimolecular and unimolecular reaction channels.
Thus for damp aggregation with a small initial concentration,
the unimolecular growth process dominates initially but
eventually the concentration becomes large enough so that

the bimolecular aggregation process comes into play. Since
the typical cluster mass grows indefinitely in damp aggrega-
tion, scaling should generally apply, a feature which greatly
\ simplifies the analysis. For dry aggregation, however, even
when the typical cluster mass grows indefinitely, conven-
tional scaling does not strictly apply because the concentra-
tion of clusters of any fixed mass approaches a finite positive
value rather than vanishing. In spite of this complicating fea-
ture, the analysis of both dry and damp aggregation has
FIG. 1. Schematic illustration ofa) dry aggregation andb) many common technical aspects. A detailed treatment of
damp aggregation. Monomers are indicated by small dots, whiléhese two cases is presented in the following two sections.
clusters are indicated by larger circles. In dry aggregation, mono-
mers which evaporate from clusters continue to participate in addi-
tional reactions in a closed system. Damp aggregation can be
viewed as arising from the continued input of monomers. Conse- The rate equations for mass conserving dry aggregation
quently clusters can increase in size by either the addition of monoare,
mers(continuous growthor by aggregation.

(2) (b)

II. DRY AGGREGATION

equations and asymptotic arguments.

The unusual kinetics exhibited by dry aggregation is in-
dicative of the fact that constant-kernel aggregation is sensi- o
tive to perturbative influences on the dynamics of the mono- Lt 1Cks 1(D = LoD ]+ 81>, Lici(t).
mers. In particular, sufficiently rapid evaporation of i=1
monomers stops the growth of clusters and leads to a steady (13
state. This observation leads us to consider a complementary
situation where monomers are continuously added to an adgdere the overdot denotes the time derivative ggd) is the
gregating system. We may view this continuous addition ofconcentration of clusters of makst timet. In this equation,
monomers as aggregation in a “damp” environméhtg.  the first two terms account for the gain and losskeahers
1(b)]. Such a process naturally arises in various contextsjue to aggregation, respectively. The prime on the sum in the
such as the growth of breath figures and in thin film deposigain term indicates the mass conservation restrictignj
tion and growth[6,14,15. For breath figures, in particular, =K. In the evaporation processkamer produces & —1)-
theoretical models have generally considered the growth rateer and a monomer at a rdtg=Ak*. The gain and loss of
of each droplet to be a specified function of time. When thisk-mers because of evaporation are therefore described by the
is combined with the effects of the aggregation, the composthird and fourth terms of Eq.1a). Finally, the last term ac-
ite aggregation-condensation process exhibits a faster growttounts for monomer production as a result of evaporation.
law than the underlying single particle growth rate. It is thismonomers were removed from the system by evaporation,
feature of enhanced cluster growth that we wish to quantifythe last term would be absent and the mass would disappear

For this purpose, we find it more convenient and realisticexponentially in time.
to consider a version of the condensation process in which Let us now determine the conditions for which the system
the droplet growth rate is a function of the cluster size only either reaches steady state or evoladgnfinitum We focus
and not of the time. Normally, the growth rate of an indi- on the case where the aggregation ratgs are all equal
vidual cluster in a monomer-rich environment would be pro-(constant-kernel aggregatipand where the evaporation rate
portional to its surface area. However, the influence of thas independent of the cluster magg=0). Physically, this
condensation already becomes apparent for a much weaklatter rate is appropriate for linear polymers with evaporation
growth rate which is independent of the cluster size. Thigossible only at the chain ends. Although one can easily
motivates us to consider the general situation where the clugeneralize the discussion to treat mass-dependent aggrega-
ter growth rate is proportional to* (with O<u<1). Withina  tion and evaporation rates, their relative influences are typi-
rate equation description, we find a rich range of kineticcally of different orders of magnitude. Consequently, it is
behavior for the cluster mass distribution. When the condenrelatively straightforward to anticipate whether a steady state
sation rate is independent of the cluster mggs-0), the or a scaling distribution arises. However, for mass-
distribution of cluster masses obeys conventional scaling, butidependent aggregation and evaporation, the competition
with the typical mass that grows a#n t. On the other hand, between these two influences is subtle and gives rise to sur-
for a condensation rate which is proportional to the masgrisingly rich kinetic behavior.
(u=1), the typical mass grows as', while for general With the assumptions of constant reaction kernel and size-
0<u<1, the typical mass grows as'* #. For all three independent evaporation, the rate equations simplify to

. g, -
C(t)=5 2" Kiei(tg (D~ et 2, Kigci(®)
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Kei(t)e;(t)— ck(t)E Kc;(t)

NII—‘

i

+>\[ck+1<t>—ck<t>]+mk,li§l ci(t). (1b)

The evaporation rat® and reaction rat& can be absorbed
by redefining the concentrations and timedyt) — 2\ ¢ (t)
andt—t/AK, leading to

'ck<t>=i2j ’ q(t)cj(t)—zck(t);l ci(t)

+e (D -]+ 5k,1i:21 ci(t) (10

For simplicity, consider a monomer-only initial condition,
c(t=0)=M 4y ;. In this case, the total initial mas®! is the
only control parameter, with a large mass corresponding to
small evaporation rate and vice versa.

To gain insight into the kinetics, it is helpful to first write
the equations for the moments of the mass distribution
M, (1)==,-,k"c,(t). By straightforward manipulations on
Eqg. (1¢), these moments satisfy

Mo(t)=—Mg(t)2+Mq(t) = C4(1),
M,(t)=0,

M(t)=2[M2—M; +Mq(t)],

)

M3(t)=3M;+3(2M;—1)My(t),

M 4(t)=2Mo(t) —4M; +6[M5(t) + M(1)?]
+4(2M1—1)M4(1),

Ms(t)=5M;—
+5(2M,—

10M (1) + 10M 5(t) + 20M »(t) M (1)
1)My(1),

For the monomer-only initial conditiom ,(t=0)=M for all
n; additionally, by constructioM ;(t)=M for all t=0. The
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9(z,1)=g(z,t)>—2g(z,t)M(t) +

1(t)>
(49

Here we use the equality(z=1t) = My(t), with My(t) the
cluster number density. As is often the case in these types
of systemq3,4], it is more convenient to consider a modi-
fied generating function,h(zt)=g(z,t)—g(1t)=9(zt)
—My(t), in which the value ar=1 is subtracted. This gen-
erating function satisfies

—g(z,t)+Mgy(t)z.

(4b)

1— 2
( ZZ) Mo(t).

. 1-z
h(z,t)=h?(z,t)+ ——hzn+

While we have been unable to solve this differential equa-
tion in general, the time-independent solution is

h(z)= —— (1 V1—4My2), (5)
a
with h(z)=h(z,t=»), My=M(t==), and the sign of the

radical is fixed by requiring thdi(z) — — My asz—0. Once
the value oM, is specified, the steady-state solution, as well
as the conditions for a steady state to exist, can be deter-
mined. From Eq(5), we conclude that stationary behavior
arises wheneverM <1, while if 4My>1, the power series
representation of the generating function diverges and a sta-
tionarity is not reached. The unknown quanth, can be
related to the initial mass by the requirement that
zoh/ 9z|,—, which is the total mass of the system, equals the
initial mass M. This leads to the conditionM=(1
—J1-4My)/2, or equivalently, My=M(1-M). For a
steady state to occu must be real, leading tM, being
restricted to the rang@®, ). As M, increases from 0 tg, M
correspondingly increases from 0 3oFrom this it immedi-
ately follows thatM, is an increasing function aM, with
the latter quantity restricted to the ran@® 3) in the steady
state.

The properties of the cluster size distribution in the steady
state can be obtained by expanding the generating function in
Eq. (5) in powers ofz for 4M <1. This gives, forc,(t=),

1 [[(k=3)

I'(k+1)
aym [T(k+1) (4

s
T'(k+2)

k+1
0 ),

C(®)=
(6)

equations forM ,(t) for n=2 indicate that the typical mass whereI'(z) is the gamma function. WhenM,<1 (equiva-

and higher moments grow indefinitely, if the initial mass is Iently,M<2) the asymptotic behavior @ is dominated by

sufficiently large. In the complementary case, however, £4M)* and the mass distribution decays exponentialli.in

steady state is possible. On the other hand, whenM,=1(M=3), the mass distribu-
More complete information about the kinetics can be ob-ion has the power-law form

tained by analyzing the rate equations themselves. For this

purpose, we introduce the generating function 3 I'(k— —)

8 ¢”_ r k-+-2)

The behavior of the moments of the mass distribution
reflects the above two possibilities. Since all positive mo-
ments approach steady values fof<3, a recursive solution
of the moment equations, E®), gives

—5/2

)= )

Cy(®

o

9(zt)= >, c(t)z®

)

By multiplying the rate equation for eaat(t) by z* and
summing over alk, the generating function obeys
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Mo=M(1-M), c(=) given by Eq.(7) and the scaling componeaj®(t) to
be determined. The number of clusters in the latter subpopu-
M;=M, lation should ultimately decay to zero, thus playing an analo-
M gous role to the transient solution in pure aggregation. While

= we are unable to verify the correctness of this form by direct
1-2M’ substitution into the rate equations, we can validate the intu-
ition that the transient subpopulation, in some sense, scales.
3:3M(1_M3)_ M1+ M) , To see this, let us return to Eq®) and consider the case of
2(1-2M)°  2(1-2M) M>3. As we have previously argueM (t)—3. By insert-

8 ing this into Eqs(2) and solving for the moments asymptoti-
cally, we obtainM,(t)—2(M—2%, M4(t)—6(M—3)>%?,
suggestingM ,(t) —n!(M—3"t""1. To derive this result

On the other hand, for the limiting case 8fl=3 (My=3), more rigorously, let us suppose that asymptotically the mo-
the power-law form of the cluster mass distribution leads taments exhibit power-law behavior,
finite values of the momentsl, for n<3 and diverging val-
ues forn=3. M, (H)=t""1A,. (10)
When M>1, a stationary solution of the rate equations
does not exist and the transient behavior is of basic interesBubstituting Eq(10) into the moment equations and retain-
To determine this behavior, it is helpful to first recall the ing only the asymptotically relevant terms, E(®). are trans-
transient behavior in the simpler case of pure aggregatioformed into a system of equations for the amplitudes
[1,2]. The Smoluchowski rate equations admit only one
steady-state solution, namely,=0 for all k, corresponding n
to an empty system. In a sense, the transient solution of (n—l)An=(2M—1)nAn_1+Z (i)AiAn—iv n=3.
Smoluchowski rate equations can be regarded as approach- =2 (11)
ing this steady state, that ig,(t) —0 ast— for anyfixed k
Notice, however, that the transient solutions contain a con
stant positive total mass density} kc,(t) =const-0, while
the (empty steady state contains zero mass density.
In the case of dry aggregation, an analogous behavior may “ A
be expected, i.e., the transient solution approaches some A(z)=>, —Lz-1 (12)
steady state. The difficulty is that there exists a continuum of =2 !
possible steady states which are characterized by different
values of M. We assumethat the transient solution con- It is then straightforward to transform the systétd) into
verges to the extreme steady state given by Eywhich  the differential equation,
contains the maximum possible mass density. This assump-

M5

n—-2

We have already founé,=2(M—2). To solve for the re-
maining A, we introduce the generating function,

tion, in particular, implies thaMy=My(t=«), when writ- dA 12
ten as a function of\, is Gz~ AT M=2)5 (13

M@A=M) it M=<3, whose solution is

Mo=1 , , ) 9
I if M=3. (M=1)27
2
This feature that a nonlinear system selects the marginal so- = m (14
lution from a continuous family of potential solutions arises 2
in a wide variety of physical situatiorf4.6]. While we are Therefore
unable to demonstrate the validity of the marginal solution ’
hypothesis directly, notice that if the transient solution were M., ()=l (M-3)ntn—2 (15
n — I T2 ’

to approach another steady state, the dependence of the num-
ber of clusters on mas$/,=My(M), would be pathologi-

cal. It is possible that for some pathological initial condi-
tions, the transient solution which contains the total mas

in agreement with what we anticipated previously. From the
éime dependence of the moments, it is evident that the scal-

density M>1 will approach some steady state which con-'Ng component of the cluster mass distribution is of the form

2 — .
tains the total mass densityt<3. However, the basins of C!icakt):t 20 (x), whe_rexzk/t IS the scaled mass. The pre-
attraction of these “light” steady states are expected to b&iS€ form_ of Eq.(15) gives Fhe Mell_m transform.of the scal-
negligible compared to the basin of attraction of the extremdnd function ®(x). Performing the inverse Mellin transform
steady staté7). This scenario is confirmed by our numerical We finally obtain
simulations. 1

If the transient solution does approach the steady ¢Tate )= ————exg ————|. (16)

there then remains a cluster subpopulation, which we refer to (M—)t? (M—3)t
as the scaling part of the distribution, which contains the
difference M —3 between the total mass and the steady-stat&Ve therefore arrive at the same expression for the mass dis-
distribution. That is, the total concentration should have theribution as that which arises in pure aggregation with a con-
form ¢, (t) = c () +cit), with the stationary component stant reaction ratgl—4]. The only difference is that the mass
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which comprises the scaling component is equajMo-3. Mo(t)=—Mg(1)2,
The remaining mass is contained in the residual steady-state
distribution of Eq.(7). M LO=AM(t), (19)

Note also that Eq(15) correctly describes the asymptotic
behaviors of the moments only for>1. Whenn<1 the : _ 2
steady-state component dominates over the scaling comp(MZ(t)_ZMl(t) FALZM () + Mo(D)],
nent and the moments approach constant values.

To summarize, in the strong evaporation or weak aggre-
gation regime M<3, the mass distribution approaches the

stationary form of Eq(6) at an exponential rate in time. In subject to the initial conditioM ,(t=0)=1 for alin. We also

set the initial density equal to unity so that the condensation

. . h
:heic‘;?r?np;ine?;%vz I\|A|{1 ?aZI?I e}'r?'iﬁ;aet'oﬁo\:\?g\'/get;gr;hies anrate)\ is the only control parameter. Solving for the moments
yp 9 Y : ' successively yields

anomalous enhancement in the small-mass tail of the mass
distribution which is of the form given in Eq7). This resi-
due arises from the continued reintroduction of monomer y(t)=

into the system by evaporation. 1+t
At the critical pointM =3, a novel temporal behavior can
be anticipated in which the approach to a steady state occuM1()=1+A In(1+1), (20

at a power law, rather than an exponential rate. Let us there- 5

fore hypothesize that the cluster number dendity(t), ap-  M2()=1+X IN(1+1)+ (4N =27 (1+1)In(1+1)

proaches its stationary value gfast™". Employing this +2N2(1+8)IN2(1+1) +2(1— N +AD)t

assumption in the moment equations gives the series of rela- '

tions M,(t)~t177, My(t)=(1+3t)/2~t, M,(t)~t3"2",

Ms(t)~t3~7, etc. Since the exponents of successive reduced

moments should be equidistant within a scaling descriptionAnhough the exact expressions bt (t) become cumber-

e . . _2 .
the conditionM ,/M3~M3/M;, e.g., impliesy=3. This SUg-  gome as the indem grows, the asymptotic behavior is sim-
gests the general formula ply

M (1)~ 2131 17 Mp(t)~n!I\"t""2(In t)". (22)

The appearance of the logarithmic factor in the moments
for n>3, while for n<3 the moments approach finite values. stems from the fact that the rate of mass input is proportional
to the number of clusters which, in turn, decays ds 1/
To solve the full rate equations, we again introduce the
Ill. DAMP AGGREGATION generating functiom(z,t) =3 ;_,c,(t)z*, which reduces an
infinite set of rate equations, Eg&L8), to the differential

We now consider the complementary damp aggregatio%quation

process, where bimolecular aggregatiofwith mass-
independent aggregation ratés supplemented by unimo- 2
lecular cluster growth, in which a cluster of mdsgrows at g(z,t)=g(z,t)%>— 1t g(z,t)+x(z—1)g(z,1t). (22
a ratelL, «k*. We wish to understand how this additional

growth influences the kinetics of the underlying aggregatio

within the rate equations. "Notice thatg(z,t) "~ satisfies a linear inhomogeneous differ

ential equation whose solution is readily found to be

. Zé\(27 l)t
A. Mass independent growth rate(L ,=cons) 9(zt)=
’ (1+1)?

t dr -1
1—zf o Zemlﬁ} . (23
Let us first investigate damp aggregation for a size- o (1+7)
independent growth raté, =\. For this case, the rate equa-

tions become Although Eq.(23) represents a solution to the problem, we

could not find compact formulas for the concentratiog(g).

* A straightforward expansion of Eq23) leads to cumber-
ék(t)=z ' ci(t)cj(t)—ZCk(t)E ci(t) some expressions dsincreases. We therefore restrict our-
b =1 selves to determination of the asymptotic behaviocgt).
FA[C (D) —ce(D)]. (18) This information will also suggest the asymptotic form for

the mass distribution for general rates of aggregation and
condensation, a system for which an analytical solution can-
To gain qualitative insight into the asymptotic behavior, wenot be found.
begin by solving for the first few moments of the mass dis- First, notice that the densitieg(t) which make a nonzero
tribution. We then present a complete solution for the massontribution to the generating function are those whose mass
distribution, from which the asymptotic behavior may be ex-is in the range &k=(1—2z) . This basic fact follows by
tracted. approximating the generating function in the physically rel-
From the rate equations, the moments evolve according tevant limit ofz—1 as
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©

k
g(zt)=2 ck(t>zk~f ci(t)ek Mk, gz =2 Ze(t)=2 (kﬁ) ci(t)

. _ . »
~f c(tye K1-2gk, At 'nt¢(t)fo ®(x)e *dx. (30)

. Finally, by comparing Eqg28) and(30) and performing the
_[a-2~ inverse Laplace transform, the prefactg(t) and the scaling
Nf c(t)dk @49 function d(x) are
To obtain the last relation, we merely replace the exponential 1
decay by a step function cutoff &=(1—2z)" 1. Thus as d’(t):m
z—1, the dominant contribution to the generating function
arises from clusters whose masses are in the rangqotice that the scaling solution of EqR9) and (31) agrees
k<(1—2z)~". We now return to Eq(23) and further assume with the asymptotic expression for the mome(a4).
that 1-z>(\t) %, so that the integral can be approximated  For completeness, we also investigate the large-mass talil
by replacing the exponential by unity; this is asymptotically of the mass distributiork>\t In t. The analysis is similar to
correct over the domain of integration. The generating functhat given above so we merely quote the result,
tion now becomes

with d(x)=e™ . (31

1 k
tz c(t)~|1— ) . (32
gzt =(1+1) 2 M iTz (25) Atint
Thus the mass distribution function does not scale in both the
Expanding Eq(25) gives small- and large-mass tails. Formally, the condensation pro-
cess governs the small-mass tail of the distribution, as well
AD)K as the overall mass. Conversely, the form of the distribution
Crr2(D= t7%e7, for O<k<\t.  (26) in the scaling region and in the large-mass tail is determined

solely by the aggregation process.

Thus for the rang&k<<At, the mass distribution is Poisso- _
nian; however, the distribution cannot be written in the con- B. Growth rate proportional to the mass (L k)

ventional scaling fornt™ “®(k/t). . We now consider the extreme case of a condensation rate
On the other hand, for sufficiently larde the mass dis- \yhich is linear in the mass, i.e., the rate at whigh-Cy. ;
tribution does exhibit scaling. To dete[rPine an appropriateequa@\k_ Because of the simple form of the growth rate, the
mass scale we expand the exponeHf ™17, compute the (ate equations turn out to be exactly soluble. As might be
integral on the right-hand side of E(3), and then asymp-  expected, an input rate which is proportional to the amount
t()k't(|ZC§III)37/ balance the various terms. Thus, by insertingsf mass already present leads to a total mass which grows
e =1+M(z—1)7+- - into the integral, the expression exnonentially in time. The detailed consequences of this ba-

in the square brackets of E@R3) reads[(1-2)+z/(1+1)  gjc result can be obtained by considering the underlying rate
+Az(1-2)Int+---]. Clearly, the third term asymptotically equations,

dominates over the first term 6f—z), so that the nontrivial
scaling limit arises by balancing the second and third terms. *
Thus (1-z)~(t Int)"%, which suggests that the appropriate (D) =2 ci(t)ej() —2c(1) X, ci(t)
scaling variable is b =1
+A[(k=1)c_1(t) — ke (t)]. 33
[=(1-2atInt, 27 [(k=1)ck-1(t) —kek(t)] (33
Employing the generating functiog(z,t)=3 y_,c,(t)Z,
instead of the original variablesandt. Eq. (33) becomes
In the scaling limit,t—o and 1-z—0 with { kept fixed,
the generating function simplifies to d d
51 920=0(z,)*=29(z,)Mo(1) +A2(z—-1) —- g(z.1).

gz )=t 1+, (28) (34)

and the mass distribution approaches the scaling form Notice that the number of clustetd,(t)=g(z=1t) still
satisfiesM o(t) = — M(t)%; hence,My(t)=(1+1t) L. Intro-
ducing again the modified generating function,
h(z,t)=g(z,t) —My(t), transforms Eq.(34) into a linear
equation forh(z,t) *

C ()= (t)P(x) with x=ﬁ, (29

with the prefactorg(t) and scaling functionb(x) to be de- 5 5
termined. Making use of Eq$27) and(29), we express the 7 1 N7 1, 4_
generating function in terms af(t) and®d(x) as at h(zh)™"+A2(1-2) Jz h(zt)"+1=0. (39



54 TRANSITIONAL AGGREGATION KINETICS IN DRY . ..

By introducingw=(1/\)In[z/(1—z)], Eq. (35 becomes a
first-order wave equation in the variables,{). This equa-
tion further simplifies by transforming fromw(t) to
u=t+w andv=t—w to yield

APV
ﬁ (ulv) - Y

5 (36

with solutionh(u,v) ~=—u/2+f(v). Heref(v) is fixed by

the initial conditions. For example, for monodisperse

monomer-only initial conditions, we obtain

u+v
2

—\v

h(up) 1=-1- —e

z
= 1—t—p M ___
1-t—e 15

(37

By expandingg(z,t) =h(z,t)+1/(1+t) in powers ofz, the
exact expression for the concentrations are

—At

c(t)= ENL

e—)\t k-1

(38)

1= 1+t

In the scaling regionk—« andt—oo with x=k/te' finite,
Eq. (38) has the pure exponential asymptotic form

c(t)=t 2e Me X, (39

C. General mass dependent growth ratéL k")

In both cases ofu=0 and u=1 the scaling solution for
the mass distribution may be written in the unified form

Mo()? _ ~ Mg(1)

() = k. (40
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My () =AtI=»  with A=[N(1—u)T ()Y~

(42

It is instructive to compare the resulting asymptotic be-
havior for the typical cluster size,

M(1) _

Atl/(lfll-),
Mo(1)

S(t)= (43

with a naive estimate that arises by considering growing, but
noninteracting i.e., nonaggregating, clusters. This latter es-
timate is obtained from the equatid(t) =\ S(t)*, which
implies
S()=Apt™ 4 with Ag=[N(1— )"~ (49
Therefore the system with continuously growing but nonin-
teracting droplets provides the correct exponent for the time
dependence of the typical cluster size in the interacting sys-

tem. However, the corresponding prefacty is slightly
smaller than that of the interacting system.

D. Scaling approach for low spatial dimension

For diffusion-controlled aggregation, the above mean-
field approaches are typically not applicable for spatial di-
mensiond<2 (see, e.g.[17,18). However, for the damp
aggregation process with a homogeneous growth rate,
L ock® (0=<u<1), it is possible to infer partial results for
d=<2 by applying scaling and exploiting known results. In
particular, for diffusion-controlled aggregation with a mass-
independent cluster diffusivity, the density of clustewhich
is not altered by the condensation progasg17,18

e X with x=
Ml(t) Ml(t) t—d/Z, d<2

MoO~intrt, d=2. 49

Although the mass densiti ,(t), has a very different time
dependence for the two caseswof0 andu=1, the respec-
tive scaling functions are the same and in fact identical to/Ve now again assume that asymptotically the mass distribu-
that in pure aggregation with a constant aggregation ratéion approaches the scaling form
[1-4]. This universal behavior suggests that the behavior in
the intermediate regime of a mass-dependent cluster growth
rate, L, =\k*, with O<u<1, should also be described by
scaling.

Thus when @i,u<l, it is reasonable to attempt a solution with a generajd_dependent Sca"ng functiod)d(x)_ The
to the rate equations for damp aggregation by assuming thaiass densityM(t), is determined fromv [ =AM (1),
the scaling form of Eq(40) holds. This assumption reduces where the momeni ,(t) is estimated to béfollowing the
the problem to finding the first two moments|o(t) and  steps of the preceding subsection
M,(t). The former task is trivial since the condensation pro-
cess does not alter the evolution of the number of clusters, so
that My(t)=(1+t) . On the other handV(t) is deter-
mined byM,(t)=AM ,(t), which is coupled to an undeter-
mined moment. However, in the long-time limit we can use
the scaling form(40) to estimateM ,(t) as

My(t)? Mo(t
ck(t)z%d)d(x) with x= ot

k, (46

M,L(t>=Mo<t>1*#M1<t>“f:dxx“<1>d<x>. (47)

Ignoring numerical factors we solve for the mass density to

obtain
- Ma(t))#* Mo(t)? =
= M ~ Mma— X 1/(1—u—d/2) .
M. (1) glk C() (Mo(t)> M L(0) fo dxx‘e tHdmwmd2 - d<2, Oswp<i;
M.(t)~4{ t#E=m nt, d=2, O<u<l; (48
=T (1+p)My(H)AM(t) (41 1t 5 o 48
In? t, d=2, u=0.

Thus asymptoticallyM ;(t) =\T (1+ x)t*~ M, (t)*, which

may be solved to yield Finally, combining Eqs(45), (46), and(48) yields
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t~VAmw=d2g (x), d<2, O=su<l1 the one-dimensional reversible reactién- A< A [19]. In
(2 ) _ this case, the relaxation of the density to its final value de-
C(t)~y t In tdy(x), d=2, 0<p<l. cays exponentially in time, but with a characteristic decay
t72d,(x), d=2, u=0 time which depends on the initial density.
(49) For damp aggregation, the unimolecular cluster growth

was found to enhance the effects of the bimolecular aggre-
The scaling variable ig=kt™Y(*~#) for the first two cases, gation, as is expected. However, the nature of this enhance-
while in the latter case, the scaling variablexisk/t Int,  ment has some unusual features. When the growth rate is
i.e., the same expression that was found in the rate equationsdependent of cluster mass, a relatively weak enhancement
Making use of the techniques which allow one to solvearises, in which the typical cluster mass grows with time as
the one-dimensional diffusion-controlled aggregation prot Int, compared to linear growth for aggregation with no
cess with a mass-independent cluster diffusifit9—21], we  condensation. The source of the logarithmic correction is that
have found22] an exact solution to diffusion-controlled ag- the input rate of new material is proportional to the number
gregation in one dimension which is augmented by a cluste®f clusters, a quantity which asymptotically decaystas
growth rate of the fornl, k. These results agree with the Conversely when the growth rate is proportional to the mass,
above heuristic expectations. Unfortunately, we were unabléhe typical mass grows exponentially in time, a result which
to adapt these exact approaches to solve related onis intuitively obvious. In the intermediate case of a growth
dimensional problems, such as damp aggregation with corfate for clusters of mads given byL, k", with 0<u<1, a

stant growth rate or dry aggregation. scaling approach indicates that the typical cluster mass
grows ast® % This behavior is identical to that which
IV. SUMMARY AND DISCUSSION arises for pure condensation without aggregation, indicating

that an independent particle description is sufficient to deter-
Our primary results were to outline the broad range ofmine the cluster growth.

phenomenology which arises from the combined effects of: Damp aggregation can also be viewed as a model for
(a) aggregation with evaporation—dry aggregation, &d breath figure§14,15 and related models of droplet growth
aggregation with condensation—damp aggregation. In thend coalescencgs]. In the modeling of these systems, the
former case, the interesting situation is that of mass consegrowth rate of individual droplets has generally been ex-
vation, where evaporated monomers remain in the systemressed as a function of time, rather than of the mass. Thus in
and continue to participate in further reaction. When the agbreath figures, if one assumes that the mass of individual
gregation rate is mass independent, a stationary state tHoplets growg®, then the typical cluster mass in the system
reached for sufficiently strong evaporation, while the kineticsyhich undergoes condensation and aggregation grows at a
is essentially identical to that of pure aggregation when thdaster rate ot?, with 8 simply related to the system geom-
evaporation is relatively weak. In the stationary state, theetry anda through
concentration of clusters of mags c,(«), decays ak >?
for smallk and is exponentially cut off fok larger than the B=Dal(D—d). (503

typical size. At a critical evaporation rate, there is_a POWerHereD is the spatial dimension of the droplets ah@which

law approach to the steady-state mass distributiong st pe smaller thai) is the dimensionality of the sub-
Ci(>2)ock™ ™", with the upper cutoff, or typical cluster size, gyrate |n contrast, for our damp aggregation model a droplet
growing ast™. It is worth noting that a qualitatively similar oot rate proportional t&* is equivalent to a growth rate
slow approach to the steady state arises in aggregation with\@nich varies in time as“® . Thus in terms of the expo-

temporally fixed .input of monomers. In thi; steadi!y driven pentsq and B in the breath figure system, their interrelation
system, the typical cluster size grows linearly tnand g

() k%2 for k<t [23]. In view of the qualitative simi-
larities between aggregation with steady monomer input and a=pBlu. (50b)

dry aggregation, it might be possible to connect the expo- . .
nents of the two systems by qualitative arguments. It would be worthwhile to understand whether there is a

An essential ingredient in the behavior of dry aggregatiorgi;nrﬁgv\gﬁ(y to combine E¢503 and Eq.(50b) in a unified

is the comparable magnitudes of the aggregation and evapo- Finally, we studied the scaling behavior for damp aggre-

ration rates, so that their competition is relatively delicate. tion i : ith tial di id2 Th It
Related transition behavior has been obtained for combine8at'oN N Systems with spatial dimensidss=2. Ihese results

: ; - based on applying known results for the decay of the
aggregation-evaporation processes by Vigil, Ziff, and Ludre )
[13], but with both a mass-dependent aggregation (jaite- number Of. clust_ers for<2 [17._2]]’ to extend the scaling
portional to the product of the cluster magsasd evapora- appr_oach n a_S|mpIe way. This approach suggests that_ con-
tion rate (proportional to the cluster massFor this latter Ventional scaling continues to apply, but with dimension-

system, however, the effects of evaporation and aggregatio%ependent scgllng behavior. Thesg predictions  smoothly
were chosen to be of the same order in a scaling sens@?atCh those given by the rate equationsiai2.

leading to a transition between a steady state and gelation for
a critical value of the ratio of the two rates and also distinct
power-law behavior at the transition in which the mass dis- We thank R. M. Ziff for helpful correspondence. We also
tribution decays ak~ "2 Another not entirely unrelated ex- gratefully acknowledge ARO Grant No. DAAH04-93-G-
ample, where competition between opposing microscopic e021 and NSF Grant No. DMR-9219845 for partial support
fects influence the approach to a stationary state, occurs iof this research.
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