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We investigate the kinetics of constant-kernel aggregation which is augmented by~a! evaporation of mono-
mers from clusters, which is termed aggregation in a ‘‘dry’’ environment, and~b! continuous cluster growth or
condensation, termed aggregation in a ‘‘damp’’ environment. The rate equations for these two processes are
analyzed using both exact and asymptotic methods. In dry aggregation, mass conserving evaporation is treated,
in which the monomers which evaporate remain in the system and continue to be reactive. For this reaction
process, the competition between evaporation and aggregation leads to several asymptotic outcomes. When the
evaporation is weak, the kinetics is similar to that of aggregation with no evaporation, while a steady state is
quickly reached in the opposite case. At a critical evaporation rate, a steady state is slowly reached in which the
cluster mass distribution decays ask25/2, wherek is the mass, while the typical cluster mass, or upper cutoff
in the mass distribution, grows with time ast2/3. For damp aggregation, several cases are considered for the
dependence of the cluster growth rateLk on k. ~i! For Lk independent ofk, the mass distribution attains a
conventional scaling form, but with the typical cluster mass growing ast ln t. ~ii ! WhenLk}k, the typical
mass grows exponentially in time, while the mass distribution again scales.~iii ! In the intermediate case of
Lk}k

m, scaling generally applies, with the typical mass growing ast1/~12m!. The scaling approach is also
adapted to treat diffusion-limited damp aggregation for spatial dimensiond<2. @S1063-651X~96!10210-5#

PACS number~s!: 02.50.2r, 05.40.1j, 82.20.Mj

I. INTRODUCTION

Aggregation, fragmentation, and condensation underlie a
variety of natural nonequilibrium phenomena@1–6#. In sys-
tems where only one of these mechanisms is operative, the
time-dependent cluster mass distribution generally evolves to
a scaling form in which the basic variable is the ratio of the
cluster mass to the typical mass. These scaling forms have
been obtained by exact solutions, numerical simulations, and
by direct consistency checks of the scaling description. By
these efforts a general understanding has been developed for
the connection between microscopic reaction rates and mac-
roscopic features of the cluster distribution.

These approaches have also been successfully applied to
processes where the mechanisms of aggregation, fragmenta-
tion, and condensation are simultaneously active. One impor-
tant example is aggregation in combination with fragmenta-
tion, a process which arises naturally in reversible
polymerization@7#. Since the basic elements of aggregation
and fragmentation are manifestly opposed, their combined
effect generally leads to an equilibrium in a closed system
and its characterization has been of basic interest@7–11#.
Detailed balance considerations can generally be applied to
determine the nature of the equilibrium state. IfKi j denotes
the aggregation rate ofci1cj→ci1 j , whereck is the con-
centration of clusters of massk, andFi j denotes the frag-
mentation rate ofci1 j→ci1cj , then detailed balance gives
Ki j c̄i c̄ j5Fi j c̄i1 j , wherec̄k is the steady-state concentration
of k-mers.

A related situation in which the evolution is driven by
both aggregation and fragmentation is polymer chain growth
kinetics @12,13#, in which k-mers may be unstable to
breakoff of monomers—i.e., evaporation—while all other
fragmentation events are forbidden. With these restrictions,

the process may be viewed as aggregation in a ‘‘dry’’ envi-
ronment. Because the fragmentation matrixFi j has mostly
zero elements, detailed balance can no longer determine the
asymptotic state of the system. One of our goals is to inves-
tigate the kinetics of a simple version of this combined
aggregation-evaporation process in the rate equation ap-
proximation.

A crucial feature of this system is that the monomers
which have evaporated remain in the system and continue to
be reactive@Fig. 1~a!#. Physically, this can be achieved by
enclosing the system in a box which prevents the escape of
material.~In an open system, evaporation eventually domi-
nates leading to a trivial final state of a completely evapo-
rated system.! We consider the generic case where the ag-
gregation rate is independent of the masses of the two
incident clusters. This situation nicely illustrates the interest-
ing features that arise from the competition between aggre-
gation and evaporation. If the evaporation is sufficiently
strong~which occurs for small concentrations of clusters!, its
dominance over the effects of aggregation results in a steady
state in which the cluster mass distribution decays exponen-
tially in the mass. In the opposite case where aggregation
dominates, the typical cluster mass increases linearly in time
for an infinite system. Qualitatively, the effect of evaporation
is to continuously reintroduce the evaporated monomers into
the system, leading to a cluster mass distribution which con-
tains both a vestige of the steady-state distribution and a
transient component which is associated with the growing
clusters. At a critical value of the evaporation rate, there is a
relatively slow evolution toward a steady state in which the
cluster mass distribution decays ask25/2. This power law is
produced by a slow evolution of the cluster mass distribution
in which the typical mass grows with time ast2/3. These
intriguing features emerge from exact solutions to the rate
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equations and asymptotic arguments.
The unusual kinetics exhibited by dry aggregation is in-

dicative of the fact that constant-kernel aggregation is sensi-
tive to perturbative influences on the dynamics of the mono-
mers. In particular, sufficiently rapid evaporation of
monomers stops the growth of clusters and leads to a steady
state. This observation leads us to consider a complementary
situation where monomers are continuously added to an ag-
gregating system. We may view this continuous addition of
monomers as aggregation in a ‘‘damp’’ environment@Fig.
1~b!#. Such a process naturally arises in various contexts,
such as the growth of breath figures and in thin film deposi-
tion and growth@6,14,15#. For breath figures, in particular,
theoretical models have generally considered the growth rate
of each droplet to be a specified function of time. When this
is combined with the effects of the aggregation, the compos-
ite aggregation-condensation process exhibits a faster growth
law than the underlying single particle growth rate. It is this
feature of enhanced cluster growth that we wish to quantify.

For this purpose, we find it more convenient and realistic
to consider a version of the condensation process in which
the droplet growth rate is a function of the cluster size only,
and not of the time. Normally, the growth rate of an indi-
vidual cluster in a monomer-rich environment would be pro-
portional to its surface area. However, the influence of the
condensation already becomes apparent for a much weaker
growth rate which is independent of the cluster size. This
motivates us to consider the general situation where the clus-
ter growth rate is proportional tokm ~with 0<m<1̄!. Within a
rate equation description, we find a rich range of kinetic
behavior for the cluster mass distribution. When the conden-
sation rate is independent of the cluster mass~m50!, the
distribution of cluster masses obeys conventional scaling, but
with the typical mass that grows ast ln t. On the other hand,
for a condensation rate which is proportional to the mass
~m51!, the typical mass grows aset, while for general
0,m,1, the typical mass grows ast1/~12m!. For all three

cases, i.e., 0<m<1, a scaling approach further predicts that
the mass distribution decays exponentially with mass.

On a more descriptive level, both dry and damp aggrega-
tion involve bimolecular and unimolecular reaction channels.
Thus for damp aggregation with a small initial concentration,
the unimolecular growth process dominates initially but
eventually the concentration becomes large enough so that
the bimolecular aggregation process comes into play. Since
the typical cluster mass grows indefinitely in damp aggrega-
tion, scaling should generally apply, a feature which greatly
simplifies the analysis. For dry aggregation, however, even
when the typical cluster mass grows indefinitely, conven-
tional scaling does not strictly apply because the concentra-
tion of clusters of any fixed mass approaches a finite positive
value rather than vanishing. In spite of this complicating fea-
ture, the analysis of both dry and damp aggregation has
many common technical aspects. A detailed treatment of
these two cases is presented in the following two sections.

II. DRY AGGREGATION

The rate equations for mass conserving dry aggregation
are,

ċk~ t !5
1

2 (
i , j

8Ki j ci~ t !cj~ t !2ck~ t !(
i51

`

Kkici~ t !

1@Lk11ck11~ t !2Lkck~ t !#1dk,1(
i51

`

Lici~ t !.

~1a!

Here the overdot denotes the time derivative andck(t) is the
concentration of clusters of massk at timet. In this equation,
the first two terms account for the gain and loss ofk-mers
due to aggregation, respectively. The prime on the sum in the
gain term indicates the mass conservation restriction,i1 j
5k. In the evaporation process, ak-mer produces a~k21!-
mer and a monomer at a rateLk[lkm. The gain and loss of
k-mers because of evaporation are therefore described by the
third and fourth terms of Eq.~1a!. Finally, the last term ac-
counts for monomer production as a result of evaporation.~If
monomers were removed from the system by evaporation,
the last term would be absent and the mass would disappear
exponentially in time.!

Let us now determine the conditions for which the system
either reaches steady state or evolvesad infinitum. We focus
on the case where the aggregation ratesKi j are all equal
~constant-kernel aggregation! and where the evaporation rate
is independent of the cluster mass~m50!. Physically, this
latter rate is appropriate for linear polymers with evaporation
possible only at the chain ends. Although one can easily
generalize the discussion to treat mass-dependent aggrega-
tion and evaporation rates, their relative influences are typi-
cally of different orders of magnitude. Consequently, it is
relatively straightforward to anticipate whether a steady state
or a scaling distribution arises. However, for mass-
independent aggregation and evaporation, the competition
between these two influences is subtle and gives rise to sur-
prisingly rich kinetic behavior.

With the assumptions of constant reaction kernel and size-
independent evaporation, the rate equations simplify to

FIG. 1. Schematic illustration of~a! dry aggregation and~b!
damp aggregation. Monomers are indicated by small dots, while
clusters are indicated by larger circles. In dry aggregation, mono-
mers which evaporate from clusters continue to participate in addi-
tional reactions in a closed system. Damp aggregation can be
viewed as arising from the continued input of monomers. Conse-
quently clusters can increase in size by either the addition of mono-
mers~continuous growth! or by aggregation.
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ċk~ t !5
1

2 (
i , j

8Kci~ t !cj~ t !2ck~ t !(
i51

`

Kci~ t !

1l@ck11~ t !2ck~ t !#1ldk,1(
i51

`

ci~ t !. ~1b!

The evaporation ratel and reaction rateK can be absorbed
by redefining the concentrations and time byck(t)→2lck(t)
and t→t/lK, leading to

ċk~ t !5(
i , j

8 ci~ t !cj~ t !22ck~ t !(
i51

`

ci~ t !

1@ck11~ t !2ck~ t !#1dk,1(
i51

`

ci~ t !. ~1c!

For simplicity, consider a monomer-only initial condition,
ck~t50!5Mdk,1. In this case, the total initial massM is the
only control parameter, with a large mass corresponding to a
small evaporation rate and vice versa.

To gain insight into the kinetics, it is helpful to first write
the equations for the moments of the mass distribution,
Mn(t)[(k>1k

nck(t). By straightforward manipulations on
Eq. ~1c!, these moments satisfy

Ṁ0~ t !52M0~ t !
21M0~ t !2c1~ t !,

Ṁ1~ t !50,

Ṁ2~ t !52@M1
22M11M0~ t !#,

~2!
Ṁ3~ t !53M113~2M121!M2~ t !,

Ṁ4~ t !52M0~ t !24M116@M2~ t !1M2~ t !
2#

14~2M121!M3~ t !,

Ṁ5~ t !55M1210M2~ t !110M3~ t !120M2~ t !M3~ t !

15~2M121!M4~ t !,

A

For the monomer-only initial condition,Mn~t50!5M for all
n; additionally, by constructionM1(t)[M for all t>0. The
equations forMn(t) for n>2 indicate that the typical mass
and higher moments grow indefinitely, if the initial mass is
sufficiently large. In the complementary case, however, a
steady state is possible.

More complete information about the kinetics can be ob-
tained by analyzing the rate equations themselves. For this
purpose, we introduce the generating function

g~z,t !5 (
k51

`

ck~ t !z
k. ~3!

By multiplying the rate equation for eachck(t) by z
k and

summing over allk, the generating function obeys

ġ~z,t !5g~z,t !222g~z,t !M0~ t !1S g~z,t !

z
2c1~ t ! D

2g~z,t !1M0~ t !z. ~4a!

Here we use the equalityg(z51,t)5M0(t), with M0(t) the
cluster number density. As is often the case in these types
of systems@3,4#, it is more convenient to consider a modi-
fied generating function,h(z,t)[g(z,t)2g(1,t)5g(z,t)
2M 0(t), in which the value atz51 is subtracted. This gen-
erating function satisfies

ḣ~z,t !5h2~z,t !1
12z

z
h~z,t !1

~12z!2

z
M0~ t !. ~4b!

While we have been unable to solve this differential equa-
tion in general, the time-independent solution is

h~z!5
z21

2z
~12A124M0z!, ~5!

with h(z)[h(z,t5`), M0[M0(t5`), and the sign of the
radical is fixed by requiring thath(z)→2M0 asz→0. Once
the value ofM0 is specified, the steady-state solution, as well
as the conditions for a steady state to exist, can be deter-
mined. From Eq.~5!, we conclude that stationary behavior
arises whenever 4M0<1, while if 4M0.1, the power series
representation of the generating function diverges and a sta-
tionarity is not reached. The unknown quantityM0 can be
related to the initial mass by the requirement that
z]h/]zuz51, which is the total mass of the system, equals the
initial mass M. This leads to the conditionM5(1
2A124M0)/2, or equivalently,M05M~12M!. For a
steady state to occur,M must be real, leading toM0 being
restricted to the range~0, 14!. AsM0 increases from 0 to14,M
correspondingly increases from 0 to12. From this it immedi-
ately follows thatM0 is an increasing function ofM, with
the latter quantity restricted to the range~0, 1

2! in the steady
state.

The properties of the cluster size distribution in the steady
state can be obtained by expanding the generating function in
Eq. ~5! in powers ofz for 4M0<1. This gives, forck(t5`),

ck~`!5
1

4Ap
FG~k2 1

2 !

G~k11!
~4M0!

k2
G~k1 1

2 !

G~k12!
~4M0!

k11G ,
~6!

whereG(z) is the gamma function. When 4M0,1 ~equiva-
lently,M,1

2!, the asymptotic behavior ofck is dominated by
(4M0)

k and the mass distribution decays exponentially ink.
On the other hand, when 4M051~M51

2!, the mass distribu-
tion has the power-law form

ck~`!5
3

8Ap

G~k2 1
2 !

G~k12!
}k25/2. ~7!

The behavior of the moments of the mass distribution
reflects the above two possibilities. Since all positive mo-
ments approach steady values forM, 1

2, a recursive solution
of the moment equations, Eq.~2!, gives
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M05M~12M!,

M15M,

M25
M

122M ,

M35
3M~12M!

2~122M!3
2
M~11M!

2~122M!
,

~8!

A

On the other hand, for the limiting case ofM5 1
2 ~M05

1
4!,

the power-law form of the cluster mass distribution leads to
finite values of the momentsMn for n,3

2 and diverging val-
ues forn> 3

2.
WhenM. 1

2, a stationary solution of the rate equations
does not exist and the transient behavior is of basic interest.
To determine this behavior, it is helpful to first recall the
transient behavior in the simpler case of pure aggregation
@1,2#. The Smoluchowski rate equations admit only one
steady-state solution, namely,ck50 for all k, corresponding
to an empty system. In a sense, the transient solution of
Smoluchowski rate equations can be regarded as approach-
ing this steady state, that is,ck(t)→0 ast→` for anyfixed k.
Notice, however, that the transient solutions contain a con-
stantpositive total mass density,Skck(t)5const.0, while
the ~empty! steady state contains zero mass density.

In the case of dry aggregation, an analogous behavior may
be expected, i.e., the transient solution approaches some
steady state. The difficulty is that there exists a continuum of
possible steady states which are characterized by different
values ofM. We assumethat the transient solution con-
verges to the extreme steady state given by Eq.~7! which
contains the maximum possible mass density. This assump-
tion, in particular, implies thatM0[M0(t5`), when writ-
ten as a function ofM, is

M05HM~12M! if M< 1
2 ,

1
4 if M> 1

2 .
~9!

This feature that a nonlinear system selects the marginal so-
lution from a continuous family of potential solutions arises
in a wide variety of physical situations@16#. While we are
unable to demonstrate the validity of the marginal solution
hypothesis directly, notice that if the transient solution were
to approach another steady state, the dependence of the num-
ber of clusters on mass,M05M0~M!, would be pathologi-
cal. It is possible that for some pathological initial condi-
tions, the transient solution which contains the total mass
densityM.1

2 will approach some steady state which con-
tains the total mass densityM,1

2. However, the basins of
attraction of these ‘‘light’’ steady states are expected to be
negligible compared to the basin of attraction of the extreme
steady state~7!. This scenario is confirmed by our numerical
simulations.

If the transient solution does approach the steady state~7!,
there then remains a cluster subpopulation, which we refer to
as the scaling part of the distribution, which contains the
differenceM21

2 between the total mass and the steady-state
distribution. That is, the total concentration should have the
form ck(t)5ck(`)1ck

scal(t), with the stationary component

ck~`! given by Eq.~7! and the scaling componentck
scal(t) to

be determined. The number of clusters in the latter subpopu-
lation should ultimately decay to zero, thus playing an analo-
gous role to the transient solution in pure aggregation. While
we are unable to verify the correctness of this form by direct
substitution into the rate equations, we can validate the intu-
ition that the transient subpopulation, in some sense, scales.
To see this, let us return to Eqs.~2! and consider the case of
M.1

2. As we have previously argued,M0(t)→ 1
4. By insert-

ing this into Eqs.~2! and solving for the moments asymptoti-
cally, we obtainM2(t)→2~M2 1

2!
2t, M3(t)→6~M2 1

2!
3t2,

suggestingMn(t)→n!~M2 1
2!
ntn21. To derive this result

more rigorously, let us suppose that asymptotically the mo-
ments exhibit power-law behavior,

Mn~ t !5tn21An . ~10!

Substituting Eq.~10! into the moment equations and retain-
ing only the asymptotically relevant terms, Eqs.~2! are trans-
formed into a system of equations for the amplitudesAn ,

~n21!An5~2M21!nAn211 (
i52

n22 S ni DAiAn2 i , n>3.

~11!

We have already foundA252~M21
2!
2. To solve for the re-

mainingAn we introduce the generating function,

A~z!5(
j52

`
Aj

j !
zj21. ~12!

It is then straightforward to transform the system~11! into
the differential equation,

dA
dz

5~A1M2 1
2 !2, ~13!

whose solution is

A5
~M2 1

2 !2z

12~M2 1
2 !z

. ~14!

Therefore,

Mn~ t !5n! ~M- 12 !ntn21, ~15!

in agreement with what we anticipated previously. From the
time dependence of the moments, it is evident that the scal-
ing component of the cluster mass distribution is of the form
ck
scal(t)5t22F(x), wherex[k/t is the scaled mass. The pre-
cise form of Eq.~15! gives the Mellin transform of the scal-
ing functionF(x). Performing the inverse Mellin transform
we finally obtain

ck
scal~ t !5

1

~M2 1
2 !t2

expF2
k

~M2 1
2 !tG . ~16!

We therefore arrive at the same expression for the mass dis-
tribution as that which arises in pure aggregation with a con-
stant reaction rate@1–4#. The only difference is that the mass
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which comprises the scaling component is equal toM21
2.

The remaining mass is contained in the residual steady-state
distribution of Eq.~7!.

Note also that Eq.~15! correctly describes the asymptotic
behaviors of the moments only forn.1. When n,1 the
steady-state component dominates over the scaling compo-
nent and the moments approach constant values.

To summarize, in the strong evaporation or weak aggre-
gation regime,M,1

2, the mass distribution approaches the
stationary form of Eq.~6! at an exponential rate in time. In
the complementary weak evaporation regime,M.1

2, the
typical mass grows linearly in time. However, there is an
anomalous enhancement in the small-mass tail of the mass
distribution which is of the form given in Eq.~7!. This resi-
due arises from the continued reintroduction of monomers
into the system by evaporation.

At the critical pointM51
2, a novel temporal behavior can

be anticipated in which the approach to a steady state occurs
at a power law, rather than an exponential rate. Let us there-
fore hypothesize that the cluster number density,M0(t), ap-
proaches its stationary value of14 as t2n. Employing this
assumption in the moment equations gives the series of rela-
tions M2(t);t12n, M3(t)5(113t)/2;t, M4(t);t322n,
M5(t);t32n, etc. Since the exponents of successive reduced
moments should be equidistant within a scaling description,
the conditionM4/M3;M3/M2 , e.g., impliesn52

3. This sug-
gests the general formula

Mn~ t !;t2n/321 ~17!

for n. 3
2, while for n,3

2 the moments approach finite values.

III. DAMP AGGREGATION

We now consider the complementary damp aggregation
process, where bimolecular aggregation~with mass-
independent aggregation rates! is supplemented by unimo-
lecular cluster growth, in which a cluster of massk grows at
a rateLk}k

m. We wish to understand how this additional
growth influences the kinetics of the underlying aggregation
within the rate equations.

A. Mass independent growth rate„Lk5const…

Let us first investigate damp aggregation for a size-
independent growth rate,Lk5l. For this case, the rate equa-
tions become

ċk~ t !5(
i , j

8 ci~ t !cj~ t !22ck~ t !(
i51

`

ci~ t !

1l@ck21~ t !2ck~ t !#. ~18!

To gain qualitative insight into the asymptotic behavior, we
begin by solving for the first few moments of the mass dis-
tribution. We then present a complete solution for the mass
distribution, from which the asymptotic behavior may be ex-
tracted.

From the rate equations, the moments evolve according to

Ṁ0~ t !52M0~ t !
2,

Ṁ1~ t !5lM0~ t !, ~19!

Ṁ2~ t !52M1~ t !
21l@2M1~ t !1M0~ t !#,

A

subject to the initial conditionMn~t50!51 for all n. We also
set the initial density equal to unity so that the condensation
ratel is the only control parameter. Solving for the moments
successively yields

M0~ t !5
1

11t
,

M1~ t !511l ln~11t !, ~20!

M2~ t !511l ln~11t !1~4l22l2!~11t !ln~11t !

12l2~11t !ln2~11t !12~12l1l2!t,

A

Although the exact expressions forMn(t) become cumber-
some as the indexn grows, the asymptotic behavior is sim-
ply

Mn~ t !;n!lntn21~ ln t !n. ~21!

The appearance of the logarithmic factor in the moments
stems from the fact that the rate of mass input is proportional
to the number of clusters which, in turn, decays as 1/t.

To solve the full rate equations, we again introduce the
generating functiong(z,t)5( k51

` ck(t)z
k, which reduces an

infinite set of rate equations, Eqs.~18!, to the differential
equation

ġ~z,t !5g~z,t !22
2

11t
g~z,t !1l~z21!g~z,t !. ~22!

Notice thatg(z,t)21 satisfies a linear inhomogeneous differ-
ential equation whose solution is readily found to be

g~z,t !5
zel~z21!t

~11t !2 F12zE
0

t dt

~11t!2
el~z21!tG21

. ~23!

Although Eq.~23! represents a solution to the problem, we
could not find compact formulas for the concentrationsck(t).
A straightforward expansion of Eq.~23! leads to cumber-
some expressions ask increases. We therefore restrict our-
selves to determination of the asymptotic behavior ofck(t).
This information will also suggest the asymptotic form for
the mass distribution for general rates of aggregation and
condensation, a system for which an analytical solution can-
not be found.

First, notice that the densitiesck(t) which make a nonzero
contribution to the generating function are those whose mass
is in the range 0,k&(12z)21. This basic fact follows by
approximating the generating function in the physically rel-
evant limit of z→1 as
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g~z,t !5 (
k51

`

ck~ t !z
k'E`

ck~ t !e
k ln zdk,

'E`

ck~ t !e
2k~12z!dk,

'E ~12z!21

ck~ t !dk. ~24!

To obtain the last relation, we merely replace the exponential
decay by a step function cutoff atk5(12z)21. Thus as
z→1, the dominant contribution to the generating function
arises from clusters whose masses are in the range
k,(12z)21. We now return to Eq.~23! and further assume
that 12z@(lt)21, so that the integral can be approximated
by replacing the exponential by unity; this is asymptotically
correct over the domain of integration. The generating func-
tion now becomes

g~z,t !>~11t !22e2lt
zeltz

12z
. ~25!

Expanding Eq.~25! gives

ck11~ t !>
~lt !k

k!
t22e2lt, for 0<k!lt. ~26!

Thus for the rangek!lt, the mass distribution is Poisso-
nian; however, the distribution cannot be written in the con-
ventional scaling formt2aF(k/tb).

On the other hand, for sufficiently largek, the mass dis-
tribution does exhibit scaling. To determine an appropriate
mass scale we expand the exponentel(z21)t, compute the
integral on the right-hand side of Eq.~23!, and then asymp-
totically balance the various terms. Thus, by inserting
el(z21)t511l(z21)t1••• into the integral, the expression
in the square brackets of Eq.~23! reads@(12z)1z/(11t)
1lz(12z)ln t1•••#. Clearly, the third term asymptotically
dominates over the first term of~12z!, so that the nontrivial
scaling limit arises by balancing the second and third terms.
Thus ~12z!;~t ln t!21, which suggests that the appropriate
scaling variable is

z5~12z!lt ln t, ~27!

instead of the original variablesz and t.
In the scaling limit,t→` and 12z→0 with z kept fixed,

the generating function simplifies to

g~z,t !.t21~11z!21, ~28!

and the mass distribution approaches the scaling form

ck~ t !.f~ t !F~x! with x5
k

lt ln t
, ~29!

with the prefactorf(t) and scaling functionF(x) to be de-
termined. Making use of Eqs.~27! and ~29!, we express the
generating function in terms off(t) andF(x) as

g~z,t !5( zkck~ t !5( S 12
z

lt ln t D
k

ck~ t !

.lt ln tf~ t !E
0

`

F~x!e2xzdx. ~30!

Finally, by comparing Eqs.~28! and~30! and performing the
inverse Laplace transform, the prefactorf(t) and the scaling
functionF(x) are

f~ t !5
1

lt2 ln t
with F~x!5e2x. ~31!

Notice that the scaling solution of Eqs.~29! and~31! agrees
with the asymptotic expression for the moments~21!.

For completeness, we also investigate the large-mass tail
of the mass distribution,k@lt ln t. The analysis is similar to
that given above so we merely quote the result,

ck~ t !;S 12
1

lt ln t D
k

. ~32!

Thus the mass distribution function does not scale in both the
small- and large-mass tails. Formally, the condensation pro-
cess governs the small-mass tail of the distribution, as well
as the overall mass. Conversely, the form of the distribution
in the scaling region and in the large-mass tail is determined
solely by the aggregation process.

B. Growth rate proportional to the mass „Lk}k…

We now consider the extreme case of a condensation rate
which is linear in the mass, i.e., the rate at whichck→ck11
equalslk. Because of the simple form of the growth rate, the
rate equations turn out to be exactly soluble. As might be
expected, an input rate which is proportional to the amount
of mass already present leads to a total mass which grows
exponentially in time. The detailed consequences of this ba-
sic result can be obtained by considering the underlying rate
equations,

ċk~ t !5(
i , j

8 ci~ t !cj~ t !22ck~ t !(
i51

`

ci~ t !

1l@~k21!ck21~ t !2kck~ t !#. ~33!

Employing the generating functiong(z,t)5( k51
` ck(t)z

k,
Eq. ~33! becomes

]

]t
g~z,t !5g~z,t !222g~z,t !M0~ t !1lz~z21!

]

]z
g~z,t !.

~34!

Notice that the number of clustersM0(t)[g(z51,t) still
satisfiesṀ0(t)52M0(t)

2; hence,M0(t)5(11t)21. Intro-
ducing again the modified generating function,
h(z,t)5g(z,t)2M0(t), transforms Eq.~34! into a linear
equation forh(z,t)21

]

]t
h~z,t !211lz~12z!

]

]z
h~z,t !211150. ~35!
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By introducingw5~1/l!ln@z/(12z)], Eq. ~35! becomes a
first-order wave equation in the variables (w,t). This equa-
tion further simplifies by transforming from (w,t) to
u5t1w andv5t2w to yield

]

]u
h~u,v !2152

1

2
, ~36!

with solutionh(u,v)2152u/21 f (v). Heref (v) is fixed by
the initial conditions. For example, for monodisperse
monomer-only initial conditions, we obtain

h~u,v !215212
u1v
2

2e2lv

5212t2e2lt
z

12z
. ~37!

By expandingg(z,t)5h(z,t)11/(11t) in powers ofz, the
exact expression for the concentrations are

ck~ t !5
c2lt

~11t !2 S 12
e2lt

11t D
k21

. ~38!

In the scaling region,k→` and t→` with x5k/telt finite,
Eq. ~38! has the pure exponential asymptotic form

ck~ t !.t22e2lte2x. ~39!

C. General mass dependent growth rate„Lk}k
µ
…

In both cases ofm50 andm51 the scaling solution for
the mass distribution may be written in the unified form

ck~ t !.
M0~ t !

2

M1~ t !
e2x with x5

M0~ t !

M1~ t !
k. ~40!

Although the mass density,M1(t), has a very different time
dependence for the two cases ofm50 andm51, the respec-
tive scaling functions are the same and in fact identical to
that in pure aggregation with a constant aggregation rate
@1–4#. This universal behavior suggests that the behavior in
the intermediate regime of a mass-dependent cluster growth
rate, Lk5lkm, with 0,m,1, should also be described by
scaling.

Thus when 0,m,1, it is reasonable to attempt a solution
to the rate equations for damp aggregation by assuming that
the scaling form of Eq.~40! holds. This assumption reduces
the problem to finding the first two moments,M0(t) and
M1(t). The former task is trivial since the condensation pro-
cess does not alter the evolution of the number of clusters, so
that M0(t)5(11t)21. On the other hand,M1(t) is deter-
mined byṀ1(t)5lMm(t), which is coupled to an undeter-
mined moment. However, in the long-time limit we can use
the scaling form~40! to estimateMm(t) as

Mm~ t !5 (
k51

`

kmck~ t !.SM1~ t !

M0~ t !
D m11 M0~ t !

2

M1~ t !
E
0

`

dxxme2x

5G~11m!M1~ t !
mM0~ t !

12m. ~41!

Thus asymptoticallyṀ1(t).lG(11m)tm21M1(t)
m, which

may be solved to yield

M1~ t !.Atm/~12m! with A5@l~12m!G~m!#1/12m.
~42!

It is instructive to compare the resulting asymptotic be-
havior for the typical cluster size,

S~ t !5
M1~ t !

M0~ t !
5At1/~12m!, ~43!

with a naive estimate that arises by considering growing, but
noninteracting, i.e., nonaggregating, clusters. This latter es-
timate is obtained from the equationṠ(t)5lS(t)m, which
implies

S~ t !5A0t
1/~12m! with A05@l~12m!#1/~12m!. ~44!

Therefore the system with continuously growing but nonin-
teracting droplets provides the correct exponent for the time
dependence of the typical cluster size in the interacting sys-
tem. However, the corresponding prefactorA0 is slightly
smaller than that of the interacting system.

D. Scaling approach for low spatial dimension

For diffusion-controlled aggregation, the above mean-
field approaches are typically not applicable for spatial di-
mensiond<2 ~see, e.g.,@17,18#!. However, for the damp
aggregation process with a homogeneous growth rate,
Lk}k

m ~0<m,1!, it is possible to infer partial results for
d<2 by applying scaling and exploiting known results. In
particular, for diffusion-controlled aggregation with a mass-
independent cluster diffusivity, the density of clusters~which
is not altered by the condensation process! is @17,18#

M0~ t !; H t2d/2,
ln t/t,

d,2
d52. ~45!

We now again assume that asymptotically the mass distribu-
tion approaches the scaling form

ck~ t !.
M0~ t !

2

M1~ t !
Fd~x! with x5

M0~ t !

M1~ t !
k, ~46!

with a generald-dependent scaling functionFd(x). The
mass density,M1(t), is determined fromṀ1(t)5lMm(t),
where the momentMm(t) is estimated to be~following the
steps of the preceding subsection!,

Mm~ t !.M0~ t !
12mM1~ t !

mE
0

`

dxxmFd~x!. ~47!

Ignoring numerical factors we solve for the mass density to
obtain

M1~ t !;H t1/~12m2d/2!, d,2, 0<m,1;

tm/~12m! ln t, d52, 0,m,1;

ln2 t, d52, m50.

~48!

Finally, combining Eqs.~45!, ~46!, and~48! yields
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ck~ t !;H t21/~12m!2d/2Fd~x!, d,2, 0<m,1

t2~22m/12m! ln tF2~x!, d52, 0,m,1

t22F2~x!, d52, m50

.

~49!

The scaling variable isx5kt21/(12m) for the first two cases,
while in the latter case, the scaling variable isx5k/t ln t,
i.e., the same expression that was found in the rate equations.

Making use of the techniques which allow one to solve
the one-dimensional diffusion-controlled aggregation pro-
cess with a mass-independent cluster diffusivity@19–21#, we
have found@22# an exact solution to diffusion-controlled ag-
gregation in one dimension which is augmented by a cluster
growth rate of the formLk}k. These results agree with the
above heuristic expectations. Unfortunately, we were unable
to adapt these exact approaches to solve related one-
dimensional problems, such as damp aggregation with con-
stant growth rate or dry aggregation.

IV. SUMMARY AND DISCUSSION

Our primary results were to outline the broad range of
phenomenology which arises from the combined effects of:
~a! aggregation with evaporation—dry aggregation, and~b!
aggregation with condensation—damp aggregation. In the
former case, the interesting situation is that of mass conser-
vation, where evaporated monomers remain in the system
and continue to participate in further reaction. When the ag-
gregation rate is mass independent, a stationary state is
reached for sufficiently strong evaporation, while the kinetics
is essentially identical to that of pure aggregation when the
evaporation is relatively weak. In the stationary state, the
concentration of clusters of massk, ck~`!, decays ask25/2

for small k and is exponentially cut off fork larger than the
typical size. At a critical evaporation rate, there is a power-
law approach to the steady-state mass distribution,
ck(`)}k

25/2, with the upper cutoff, or typical cluster size,
growing ast2/3. It is worth noting that a qualitatively similar
slow approach to the steady state arises in aggregation with a
temporally fixed input of monomers. In this steadily driven
system, the typical cluster size grows linearly int and
ck(`)}k

23/2 for k!t @23#. In view of the qualitative simi-
larities between aggregation with steady monomer input and
dry aggregation, it might be possible to connect the expo-
nents of the two systems by qualitative arguments.

An essential ingredient in the behavior of dry aggregation
is the comparable magnitudes of the aggregation and evapo-
ration rates, so that their competition is relatively delicate.
Related transition behavior has been obtained for combined
aggregation-evaporation processes by Vigil, Ziff, and Lu
@13#, but with both a mass-dependent aggregation rate~pro-
portional to the product of the cluster masses! and evapora-
tion rate ~proportional to the cluster mass!. For this latter
system, however, the effects of evaporation and aggregation
were chosen to be of the same order in a scaling sense,
leading to a transition between a steady state and gelation for
a critical value of the ratio of the two rates and also distinct
power-law behavior at the transition in which the mass dis-
tribution decays ask27/2. Another not entirely unrelated ex-
ample, where competition between opposing microscopic ef-
fects influence the approach to a stationary state, occurs in

the one-dimensional reversible reactionA1A↔A @19#. In
this case, the relaxation of the density to its final value de-
cays exponentially in time, but with a characteristic decay
time which depends on the initial density.

For damp aggregation, the unimolecular cluster growth
was found to enhance the effects of the bimolecular aggre-
gation, as is expected. However, the nature of this enhance-
ment has some unusual features. When the growth rate is
independent of cluster mass, a relatively weak enhancement
arises, in which the typical cluster mass grows with time as
t ln t, compared to linear growth for aggregation with no
condensation. The source of the logarithmic correction is that
the input rate of new material is proportional to the number
of clusters, a quantity which asymptotically decays ast21.
Conversely when the growth rate is proportional to the mass,
the typical mass grows exponentially in time, a result which
is intuitively obvious. In the intermediate case of a growth
rate for clusters of massk given byLk}k

m, with 0,m,1, a
scaling approach indicates that the typical cluster mass
grows ast1/~12m!. This behavior is identical to that which
arises for pure condensation without aggregation, indicating
that an independent particle description is sufficient to deter-
mine the cluster growth.

Damp aggregation can also be viewed as a model for
breath figures@14,15# and related models of droplet growth
and coalescence@6#. In the modeling of these systems, the
growth rate of individual droplets has generally been ex-
pressed as a function of time, rather than of the mass. Thus in
breath figures, if one assumes that the mass of individual
droplets growsta, then the typical cluster mass in the system
which undergoes condensation and aggregation grows at a
faster rate oftb, with b simply related to the system geom-
etry anda through

b5Da/~D2d!. ~50a!

HereD is the spatial dimension of the droplets andd ~which
must be smaller thanD! is the dimensionality of the sub-
strate. In contrast, for our damp aggregation model a droplet
growth rate proportional tokm is equivalent to a growth rate
which varies in time astm/~12m!. Thus in terms of the expo-
nentsa andb in the breath figure system, their interrelation
is

a5b/m. ~50b!

It would be worthwhile to understand whether there is a
simple way to combine Eq.~50a! and Eq.~50b! in a unified
framework.

Finally, we studied the scaling behavior for damp aggre-
gation in systems with spatial dimensiond<2. These results
are based on applying known results for the decay of the
number of clusters ford<2 @17–21#, to extend the scaling
approach in a simple way. This approach suggests that con-
ventional scaling continues to apply, but with dimension-
dependent scaling behavior. These predictions smoothly
match those given by the rate equations atd52.
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