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We study the starvation of a lattice random walker in which each site initially contains one food unit and
the walker can travel S steps without food before starving. When the walker encounters food, it is
completely eaten, and the walker can again travel S steps without food before starving. When the walker
hits an empty site, the time until the walker starves decreases by 1. In spatial dimension d ¼ 1, the average
lifetime of the walker hτi ∝ S, while for d > 2, hτi≃ expðSωÞ, with ω → 1 as d → ∞; the latter behavior
suggests that the upper critical dimension is infinite. In the marginal case of d ¼ 2, hτi ∝ Sz, with z ≈ 2.
Long-lived walks explore a highly ramified region so they always remain close to sources of food and the
distribution of distinct sites visited does not obey single-parameter scaling.
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Searching for a randomly located resource is an essential
task of all living organisms [1–10]. Examples include
searching for nourishment, an abode, or a particular indi-
vidual. Stochastically driven search processes also underlie
diffusion-controlled reactions [11] and a variety of physio-
logical processes [12]. In all these examples, the time for a
successful search is the typical metric that the organism is
trying to optimize. A related aspect of stochastic search is
the tradeoff between continued exploitation of a familiar
resource or the exploration of new domains for potentially
more fruitful resources [13].
An important theme in biological foraging [1–3] is the

notion of optimality. Given an environment with hetero-
geneously distributed resources and a predatory organism
that has full environmental knowledge and makes intelli-
gent decisions, the marginal value theorem [1] provides a
specific criterion about whether the forager should continue
to exploit current resources or move to new territory. Our
focus, in this Letter, is on a different aspect of foraging in
that we ascribe zero intelligence to the forager and it is the
depletion of the environmental resource that determines
when the forager dies.
In our model, the forager is a random walker that

gradually depletes the resource contained in a medium
as it moves. The medium is a d-dimensional lattice with a
unit of food initially at each site. The walker is endowed
with an intrinsic starvation time S, defined as the number of
steps it can take without encountering food before starving
to death. If the walker encounters a food-containing site, the
walker instantaneously and completely consumes the food
and can again travel S additional steps without eating
before starving. Each time the walker encounters an empty
site, it comes one time unit closer to starvation. Our goal is
to understand the interplay between the amount of the

resource consumed and how long the random walker can
survive before starving.
We focus on two key observables of starving random

walks: the average lifetime hτi and the average number hN i
of distinct sites visited when starvation occurs. In dimen-
sion d ¼ 1, hτi ∝ S and we determine the distribution of
N at starvation, PðN Þ. For d > 2, the transience of the
random walk leads to τ scaling as expðSωÞ, with ω → 1 as
d → ∞. When successive visits to new sites are uncorre-
lated, corresponding to d ¼ ∞, we find τ ∼ ekS, with k
given in terms of the probability to visit a new site. In
d ¼ 2, numerical simulations suggest that τ ≃ Sz, with
z ≈ 2. We develop a mean-field approximation for d ¼ 2

that gives a rigorous lower bound for τ and suggests that
PðN Þ does not obey single-parameter scaling, as seen in
our simulations.
Our mortality mechanism differs from previous models

in which a random walker can die or be absorbed at a fixed
rate, independent of its location [14–17]. Here, the lifetime
distribution of a random walker is not given a priori but is
generated by the random-walk trajectory, which renders
the problem highly nontrivial. It is worth mentioning the
related problem of the “excited” random walk, in which
the hopping of the walker depends on whether it has just
encountered food or an empty site [18–23]. While the
excited random walk has surprising behavior, we will show
that even when the motion of the walker is not explicitly
affected by the environment unusual properties arise.
One dimension.—As the walker moves, an interval

devoid of food—a desert—is gradually carved, and the
survival of the walker is controlled by the interplay between
wandering within the desert and reaching food at the edge
of this desert (Fig. 1). For a starving random walker to
survive for times beyond its intrinsic lifetime S, excursions
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of more than S steps without food cannot occur in its past
history. A long-lived walk must therefore spend less time
wandering in the interior of a desert than unrestricted
walks. Thus, the mean number of distinct sites visited
should be larger than that for unrestricted random walks of
the same number of steps N.
We first determine PðN Þ, the probability that a random

walker has visited N distinct sites when it starves. This
probability can be expressed as

PðN Þ ¼ Q2Q3Q4…QN ð1 −QNþ1Þ; ð1Þ

where Qj ¼
R
S
0 dtFjðtÞ, and FjðtÞ is the probability that

the walker reaches either end of an interval of length
ja (with a the lattice spacing) at step t when starting a
distance a from one end. Each Qj accounts for the interval
growing from length j − 1 → j, because the walker reaches
either end point within S steps, while the factor QNþ1

accounts for the last excursion in which the walker
starves. It is expedient to express the visitation probability
in terms of the scaled number of distinct sites visited,
θ ¼ aN =ðπ ffiffiffiffiffiffiffi

DS
p Þ. In the Supplemental Material [24], we

show that, when S ≫ 1, PðθÞ is (Fig. 2)

PðθÞ≃ 4

θ

X
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where D≡ a2=2 is the diffusivity of the corresponding
continuous process and E1ðxÞ≡ R∞

1 ðdt=tÞe−xt denotes the
exponential integral. From Eq. (2), the average number of
visited sites at the starvation time is

hN i≃ π
ffiffiffiffiffiffiffi
DS

p

a

Z
∞

0

θPðθÞdθ ≈ A
ffiffiffiffi
S

p
; ð3Þ

with A ≈ 2.90222 [25].
The average lifetime hτi of starving random walks is

formally given by

hτi ¼
X
j≥1

ðhτ1i þ hτ2i þ…þ hτji þ SÞPðjÞ; ð4Þ

where hτji is the average time for the random walk to hit
either end of the interval in the jth excursion, conditioned
on the walker hitting either end before it starves, while the
factor S accounts for the final excursion that causes the
walker to starve. By definition,

hτji ¼
R
S
0 dt t FjðtÞR
S
0 dt FjðtÞ

: ð5Þ

The numerator, defined as Nj, reduces to

Nj ¼
4πD
ðjaÞ2

X
n≥0

ð2nþ 1Þ sin λj;n
Z

S

0

dt t e−βt; ð6Þ

with λj;n ≡ ð2nþ 1Þπ=j and β≡ λ2j;n=ðjaÞ2.
For large j, we approximate the sine function by its

argument and perform the temporal integral to give

Nj ≃ 4a2

π2D

X
n≥0

1

ð2nþ 1Þ2 ½1 − e−βSð1þ βSÞ� ð7Þ

for S ≫ 1. Using this in Eq. (5) gives hτi≃ 3.26786S.
These results for the distinct sites visited and the lifetime
agree with numerical simulations shown in Fig. 3.
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FIG. 1. A d ¼ 1 starving random walker clears out an interval
where food (shaded) has been eaten. The walker starves (×) when
it travels S steps without encountering food.
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FIG. 2 (color online). The scaled distribution of number of
distinct sites visited for three representative values of S. The
curve is the theoretical prediction from Eq. (2) and the data are
based on 106 walks for each value of S.
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FIG. 3 (color online). Average number of distinct sites visited
hNi (∘) and average lifetime hτi (▵) for 106 realizations of
starving random walks in one dimension at the starvation time
versus S. The dashed lines are the respective asymptotic
predictions of hN i ∼ 2.90222

ffiffiffiffi
S

p
and hτi ∼ 3.26786S.

PRL 113, 238101 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

5 DECEMBER 2014

238101-2



Infinite dimension.—For d ¼ ∞, the probabilities of
hitting a previously visited or previously unvisited
site equal λ and 1 − λ, respectively, with λ a constant.
Schematically, the time until the walker starves undergoes
one-dimensional hopping in “starvation space”—an inter-
val of length S—and starvation occurs when 0 is reached
(Fig. 4). A particle at site n in starvation space can wander n
additional steps in physical space without encountering
food before starving. When the walker hits a previously
visited site in physical space, the time to starvation
decreases by one time unit, corresponding to a hop to
the left with probability λ in starvation space. When the
random walker encounters a new food-containing site, it
can wander an additional S steps until starvation occurs,
corresponding to a long-range rightward hop to site S in
starvation space with probability 1 − λ.
Using this equivalence to hopping in starvation space,

we now compute tn, the average time until the walker
starves when starting from site n. These starvation times
satisfy the recursions [26]

tn ¼ 1þ λtn−1 þ ð1 − λÞtS; 2 ≤ n ≤ S;

t1 ¼ 1þ ð1 − λÞtS; ð8Þ
from which

tS ¼ hτi ¼ 1

λS

�
1 − λS

1 − λ

�
: ð9Þ

The high-dimensional limit corresponds to λ → 0, for
which the average starvation time grows exponentially
with S, in contrast to the linear dependence for d ¼ 1.
We may also obtain the distribution of the number of

distinct sites visited by the walker in physical space at the
starvation time. For this quantity, we need the probability
Rn that the walk reaches S without first hitting 0, when
starting from site n in starvation space. Each such return
corresponds to the random walker visiting a new site in
physical space without starving. These return probabilities
satisfy the recursions

Rn ¼ 1 − λþ λRn−1; 2 ≤ N ≤ S;

R1 ¼ 1 − λ; ð10Þ

with solution Rn ¼ 1 − λn.

For a walker that starts at site S in starvation space,
the probability that N distinct sites are visited before the
walker starves is given by

PðN Þ ¼ ðRSÞN ð1 − RSÞ; ð11Þ

from which the average number of distinct sites visited
before the walker starves is

hN i ¼ RS

1 − RS
¼ λ−Sð1 − λSÞ: ð12Þ

Dimensions d > 2.—A random walk is transient, so new
sites are visited at a nonzero rate [26–28] and it is unlikely
for a walker to first create a local desert and then wander
within this desert until it starves. Thus, the survival time
should be much longer than in d ¼ 1 for the same S. As a
check, we simulate starving random walks on a periodic
hypercubic lattice where each site initially contains one
food unit. We choose the lattice size so that wraparound
effects are negligible. A random walk dies when it takes S
consecutive steps without encountering food. We find
lnhτi ∼ Sω, with ω ≈ 0.54, 0.73, and 0.81 in d ¼ 3; 4; 5
(Fig. 5). Even though the walk is transient, so that the rate
of visiting new sites is nonzero, temporal correlations
between successive visits to new sites [29] lead to hτi
deviating from the mean-field result (9). The systematic
trend in the exponent estimates suggests that the upper
critical dimension is dc ¼ ∞.
Two dimensions.—The most relevant case is that of two

dimensions, which lies at the boundary between recurrence
and transience. Numerical data indicate that both hN i
and hτi scale as S2, albeit with substantial preasymptotic
corrections. This behavior is consistent with rigorous
bounds for these quantities [29]. Sample random-walk
trajectories are shown in Fig. 6 for intrinsic lifetime
S ¼ 500. Trajectories of short-lived walks are compact,
while those of long-lived walks are quite stringy so that the
walker remains close to food-containing sites.
Strikingly, the underlying distribution for N violates

single-parameter scaling (Fig. 7). To explain this feature,
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FIG. 4. Evolution of a high-dimensional random walk in
starvation space. A particle at position n in this space can survive
n additional steps without encountering food.
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FIG. 5 (color online). Logarithm of the average starvation time
hτi versus S for starving random walks in d ¼ 3, 4, and 5. Data
are based on 106 realizations for each value of S.
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we give a mean-field description for the evolution of the
desert that relies on the assumption that it always remains
circular. When the walker comes to the edge of the desert
and eats a morsel of food, we assume that the desert
becomes a slightly enlarged circle with an area that is
increased by a2. After n visits to the edge of the desert and
immediately after the walker has eaten, the radius of the
desert is Rn ¼ a

ffiffiffiffiffiffiffiffi
n=π

p
and the walker is a distance a from

the edge. Equation (1) still holds andQj can be shown to be
given by [29]

Qj ¼ 1 − 2
X∞
k¼0

J0ð
ffiffiffiffiffiffiffiffi
π=j

p
αkÞ

αkJ1ðαkÞ
e−DSπα2k=ja

2

; ð13Þ

where αk is the kth zero of the Bessel function J0. We then
follow the same analysis as in one dimension to give for
S ≫ 1 [29]

PðN Þ≃ exp

(
−
2DπS
a2

X∞
j¼0

½θe−α2j =θ − α2jE1ðα2j=θÞ�
αjJ1ðαjÞ

)

× 2
X∞
j¼0

e−α
2
j =θ

αjJ1ðαjÞ
: ð14Þ

The simultaneous appearance of multiple parameters,D,N ,
and the scaling variable θ ¼ aN =ðπ ffiffiffiffiffiffiffi

DS
p Þ, shows that the

above expression for PðN Þ does not satisfy single-parameter
scaling, as is observed in our simulation shown in Fig. 7.
To summarize, starving random walks represent a

minimalist description for the consumption of a depleting
resource by a stochastic searcher. The motion of the walker
is limited by the number of steps S that it can take without
encountering food before starving. The spatial dimension-
ality plays a crucial role in the dynamics, as the lifetime of a
starving random walker grows faster than algebraically in S
for d > 2 and algebraically with S for d ≤ 2. We also
obtained comprehensive results for the starvation dynamics
in d ¼ 1. The two-dimensional case is particularly chal-
lenging, as the distribution of the distinct sites visited does
not obey single-parameter scaling and the region visited by
the random walker is spatially complex. Many challenges
remain to understand all of the statistical properties of this
intriguing model, including the properties of starving
random walks at fixed time and the connection between
the walk lifetimes and the geometry of the desert, as
illustrated in Fig. 6.
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