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We investigate the long-time behavior of a majority rule opinion dynamics model in finite spatial dimen-
sions. Each site of the system is endowed with a two-state spin variable that evolves by majority rule. In a
single update event, a group of spins with a fixedsoddd size is specified and all members of the group adopt the
local majority state. Repeated application of this update step leads to a coarsening mosaic of spin domains and
ultimate consensus in a finite system. The approach to consensus is governed by two disparate time scales, with
the longer time scale arising from realizations in which spins organize into coherent single-opinion bands. The
consequences of this geometrical organization on the long-time kinetics are explored.
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I. INTRODUCTION

The majority rule modelsMRd is a simple description for
consensus formation in an interacting population. The model
consists ofN spinssopinionsd that are fixed on lattice sites,
and each spin can assume the states +1 or −1, corresponding
to two opposite opinions. Spins evolve by the following

two steps: first, pick a group of spins of fixed odd sizeG;
second, all the spins in this group adopt the state of the local
group majoritysFig. 1d. These two steps are repeated until a
final consensus is necessarily reached. Our goal is to under-
stand basic properties of this approach to consensus in finite
spatial dimensions.

A general form of this majority rule dynamics was intro-
duced by Galamf1g in which a variable number of groups of
arbitrary size are formed simultaneously and then majority
rule is simultaneously applied to each group. Our implemen-
tation of majority rule, in which only a single small group is
updated at each time step, allows for considerable analytical
progress in the mean-field limitf2,3g and also makes it con-
venient to simulate the model, especially in high dimensions.

In a previous study of the MR modelf2g, it was shown
that the average time until consensus is reached is propor-
tional to the logarithm of the number of spinsN in the sys-
tem in the mean-field limit. On the other hand, for finite
dimensions, numerical simulations suggested that the most
probable consensus time grows as a power law inN, with an
exponent that decreases as the spatial dimension increases.

Mean-field behavior was not reproduced even in four dimen-
sions, indicating a still larger value for the upper critical
dimension of the MR model.

In this article, we focus on the MR model in finite spatial
dimensions. The questions that we will investigate are: What
is the geometry of single-opinion domains? How long does it
take to reach consensus? How do basic system parameters
affect the consensus time? We find that the probability dis-
tribution for the consensus time involves two very different
time scales when the spatial dimension is greater than one.
The longer time scale arises from configurations in which
opposite-opinion domains organize into coherent
geometries—stripes in two dimensions, slabs in three dimen-
sion, etc. While the probability for the system to reach such
a coherent state decreases as the spatial dimension is
increased—approximately 33% in two dimensions and 8% in
three dimensions—we believe that this probability remains
nonzero in all finite spatial dimension. More importantly, the
time needed to reach final consensus from these coherent
states is extremely long. These configurations therefore give
the dominant contribution to the mean consensus time.

To put our results in context, it is instructive to compare
the MR model with two fundamental kinetic spin models,
namely, the voter modelsVM d f4g, and the kinetic Ising
model with zero-temperature Glauber kineticssIGd f5g. The
VM describes consensus formation in a population of indi-
viduals with zero self confidence. In an update step of the
VM, a spin is selected at random and it blindly adopts the
state of a randomly-selected neighbor. This step is repeated
until consensus is necessarily reached. Because of the under-
lying linearity of the VM spin-flip rate on the number of
anti-aligned nearest neighbors, the VM is exactly soluble in
all spatial dimensionsf4,6,7g. In particular, for anN-spin
system ind dimensions with zero initial magnetization, the
consensus time scales asN for d.2, asN ln N in d=2 sthe
critical dimension of the VMd, and asN2 in d=1. Because
the average magnetization is conserved, the probability that
the system eventually ends with all1 spins equals the initial
density of1 spins in all spatial dimensions.

In contrast, the zero-temperature kinetics of the IG model
obeys a form of majority rule. In the update step, a flippable
spin sthose with zero or positive energyd is picked at random
and it adopts the state of the majority in its interaction neigh-
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FIG. 1. Illustration of a single majority rule update step for the
five-site von Neumann neighborhood on the square lattice.
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borhood. In the case of a tie in the neighborhood stateswhich
can happen on bipartite latticesd, the selected spin flips with
probability 1/2. This elemental update step is repeated until
no flippable spins are left. At early times, coarsening do-
mains form whose typical length scale grows ast1/2 due to an
underlying diffusive dynamicsf8g.

The primary operational difference between the IG and
MR models is that in the latterall the spins within the neigh-
borhood flip, a feature that also occurs in Galam’s modelf1g
and also in the Sznajd modelf9g of social influence, where a
small group that is in consensus can influence other spins at
the periphery of the group. This distinction in the update rule
has fundamental consequences. In the IG model, infinitely
long-lived metastable states can occur that consist of per-
fectly flat interfaces ind=2, or states where all interfaces
have zero net curvature fordù3 f10g. In contrast, consensus
is the only possible final state in the MR model. Neverthe-
less, both the zero-temperature IG model and the MR model
have anomalous kinetics because of the existence of very
long-lived transient states.

In Sec. II, we present simulation results for the anomalous
behavior of the consensus time distribution and the two basic
controlling time scales. Then in Sec. III, we discuss the role
of the long-lived coherent states that dominate the
asymptotic tail of the consensus time distribution. A qualita-
tive argument for the lifetime of these states is given in Sec.
IV. We conclude in Sec. V.

II. CONSENSUS TIME DISTRIBUTION

We first simulate the distribution of times until consensus
is reached on finite-dimensional hypercubic lattices with pe-
riodic boundary conditions. Typically, we initialize each re-
alization of the system to contain equal numbers of1 and2
spins. We choose the group size to beG=3 and construct the
group by selecting a spin at random and then randomly pick-
ing two out of its 2d nearest neighbors. This definition for a
group has the advantages of computational simplicity and a
dimension-independent group size. Other definitions for a
group, such as the von Neumann neighborhood of Fig. 1
sthe initial site plus its 2d nearest neighbors; group size
G=2d+1d, lead to qualitatively similar results.

We then evolve each realization according to MR kinetics
until consensus is reached. The quantities that we focus on
aresid the distribution of consensus times,PNstd, in anN-spin
system with zero initial magnetization, andsii d the probabil-
ity for a realization to reach a stripe or a slab state,SNsmd sto
be defined belowd, as a function ofN and the initial magne-
tization m.

The consensus time distributionsPNstd for spatial dimen-
sions 2, 3, and 4 are shown in Fig. 2. It is evident that in two
and three dimensions,PNstd is characterized by two time
scales—the most probable consensus time, corresponding to
the peak of the distribution, and a much longer time scale
associated with the asymptotic exponential decay. In four
dimensions, there is a change in the slope of the asymptotic
tail of PNstd for t*400, suggesting the possibility that the
asymptotic kinetics involves yet a third time scale.

From these data, we find that the most probable consensus
time, tmp, scales withN astmp,Na, with a<1.24, 0.72, and
0.56 for spatial dimensions 2, 3, and 4, respectively. These
values are identical to those obtained previously in Ref.f2g;
these were based on smaller-scale simulations in which real-
izations where the consensus time exceeded aslarged preset
limit were terminated.

On the other hand, the asymptotic decay ofPNstd is
clearly governed by a much longer characteristic time and
we now apply two methods to estimate this longer time

FIG. 2. Distribution of consensus times,PNstd, versust sin units
of Monte Carlo steps per spind for anN-spin system starting from a
random zero-magnetization state. Shown are results forstop to bot-
tomd a 502 square latticesN=2500d, a 143 cubic latticesN=2744d,
and a 74 four-dimensional hypercubic latticesN=2401d. Data are all
based on 106 realizations.

P. CHEN AND S. REDNER PHYSICAL REVIEW E71, 036101s2005d

036101-2



scale. First, we consider the reduced moments of the consen-
sus time distribution

MksNd ; kftsNdgkl1/k = FE
0

`

tkPNstddtG1/k

. s1d

As suggested by the data in Fig. 2, if the long-time tail of
consensus time distribution has a simple exponential decay
of the form e−t/tsNd at long times, then all the reduced mo-
ments would asymptotically scale astsNd, with subdominant
corrections that become smaller ask increases. This trend is
illustrated in Fig. 3 whereMk is plotted as a function ofN for
various values ofk. In d=2, eachMk grows as a power law
in N for largek, but with a slightly different apparent expo-
nent. Least-squares fits to the data give the following expo-
nents ind=2: 1.64 fork=1 ssd, 1.73 fork=2 shd, 1.75 for
k=4 snd, and 1.75 fork=8 s1d. From this limiting large-k
value of this exponent we can then infer theN-dependence
of t.

For d=3, the behavior is qualitatively similar, except that
there is a large disparity in the exponents forMk for k=1 and
for k.1. Linear fits to the data now give the exponent values

1.18 fork=1 ssd, 1.64 fork=2 shd, 1.77 fork=4 snd, and
1.78 fork=8 s1d. However, there is a perceptible downward
curvature in the dependence ofMk on N for largek, so that
linear fits are inadequate to determine theN dependence oft
accurately.

Our second analysis method is simply to measure the
slope of the exponential tail ofPNstd directly for different
values ofN and thereby determinetsNd. To do this, we first
make a first estimate fort by finding the slope in the region
that is visually most linear. Then we refine this estimate by
computing the slopes in the systematic rangest /2 through
2t, t /2 through 3t, t /2 through 4t, etc., and using the range
where a linear fit has the highest correlation coefficient. In
the resulting data fort versusN, there is now small and
systematic downward curvaturesFig. 4d. By dropping the
first four data points one-by-one and then performing linear
fits to the remaining data, the local slope decreases from
1.746 to 1.719 in two dimensions. In three dimensions, there
is a larger decrease in the local slope from 1.832 to 1.709 as
the first six points are deleted. Extrapolating this local slope
to N→`, we obtain the estimatesn=1.7±0.04 ind=2 and
n=1.5±0.1 ind=3 in the relationt,Nn. The error bars are
a subjective guess of the uncertainty in the extrapolation.

III. ANOMALOUS COARSENING AND LONG-LIVED
COHERENT STATES

The main result of the above analysis is that the average
consensus time is much larger than the dependence ofN2/d

that would arise if domain coarsening were entirely governed
by diffusive dynamics. By observing the evolution of many
realizations of the system, it is clear that the asymptotic tail
of the consensus time distribution arises from situations
where the1 and2 spins organize into spatially coherent and
long-lived states that consist of relatively flat stripes in two
dimensionssFig. 5d, slabs in three dimensionssFig. 6d, and
analogouslyswe believed in higher dimensions. The exis-
tence of these states is one of the most surprising feature of
the MR model. In spite of the isotropy of the MR interaction,
the long-lived transient states arise and spontaneously break

FIG. 4. Double logarithmic plot oftsNd sin units of Monte Carlo
steps per spind versusN for d=2 ssd andd=3 snd. The lines are
the best fits to the last few data points.

FIG. 3. Double logarithmic plot ofMksNd, thekth reduced mo-
ments of the consensus time distribution, versus the total number of
spinsN for k=1 ssd, k=2 shd, k=4 snd, k=8 s1d, in d=2 stopd
andd=3 sbottomd. Data are based on 105 realizations ind=2 and
43105 realizations ind=3. The lines are least-squares linear fits to
the large-N data.
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this symmetry. Once the system reaches such a state, further
evolution proceeds extremely slowly, as we shall discuss be-
low.

To develop intuition for these coherent states, we show in
Fig. 5 a set of snapshots of a 50350 system that happens to
evolve to a stripe. After a few time steps, the lattice-scale
granularity of the random initial state has disappeared due to
the effective surface tension in the majority rule dynamics.
After this early-time transient, the subsequent evolution
qualitatively resembles the coarsening of a spin system with
nonconserved order-parameter kinetics. However, domains
tend to develop a stringy morphology, a feature that pro-
motes the formation of stripes that span the system. For the

realization shown, a clearly resolved stripe emerges by 100
time steps, while ultimate consensus is achieved when 1850
time steps have elapsed; notice that a time of 1850 steps is
relatively early in the asymptotic tail ofPNstd in Fig. 2.

In spite of the anomalous long-time kinetics of the MR
model, the early-time coarsening is diffusive in nature. To
determine the growth of the typical domain length scale at
early times, we studied the time evolution of the two-spin
correlation function. We took this correlation function at dif-
ferent times and found the length rescaling that gave the best
data collapse. We thus found that the appropriate rescaling
the correlation function is by a length scale that is propor-
tional to t1/2. We therefore conclude that the early-time coars-
ening in the MR model is characterized by a length scale that
grows ast1/2.

A phenomenon analogous to stripe formation occurs in
three dimensions, where long-lived states arise that consist of
two relatively flat slabs of oppositely oriented spinssFig. 6d.
For the example shown from a 203 lattice, a slab state forms
around 150 time steps, while final consensus does not occur
until 3800 time steps have elapsed.

To verify that stripe states actually govern the asymptotic
tail of PNstd two dimensions, we also study the evolution of
a synthetic system with an ordered initial state that consists
of two straight stripes, with half the spins1 and half the
spins2. The long-time tail of the consensus time distribution
for this special initial condition follows a single exponen-
tially decaying function, as shown in Fig. 7. Also shown in
this figure is the corresponding distribution for a system of
the same size with a random zero-magnetization initial con-
dition. The coincidence of the slopes in the tails of these two
distributions shows that stripe states control the long-time
evolution of random zero-magnetization initial condition
systems.

Because of the crucial role that spatially coherent states
play in the MR model, we also study the probabilitySNsmd
that a randomly preparedN-spin system ind dimensions
with initial magnetizationm evolves to such a state. We use
two independent methods to measureSNsmd. One is based on

FIG. 5. Snapshots of a 502 system att=0, 1, 5, 20, 80, and
200.

FIG. 6. One of the two interfaces of the slab state on a cubic
lattice of linear dimension 20. Coordinates are in units of lattice
spacing.

FIG. 7. Consensus time distribution for a 502 square lattice for a
two-stripesdashedd and random initial conditionssolidd. All data are
based on 105 realizations. Time is in units of Monte Carlo steps per
spin.
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simply counting the fraction of realizations whose consensus
time lies within the asymptotic tail of the consensus time
distribution. For example, for the data from the 50350 sys-
tem in Fig. 2, the tail region corresponds to a consensus time
t greater than 600. Thus for this system size all realizations
with t.600 are counted as reaching a coherent state.

Alternatively, we investigate correlation functions that are
engineered to detect stripe states. Ford=2, we consider the
following correlation functions for two spins that are located
a distanceL /2 apart:

Cxstd ; 1
2kssx,y,tdssx ± L/2,y,tdl,

Cystd ; 1
2kssx,y,tdssx,y ± L/2,tdl.

For both a random state and for consensus, these correlation
functions equal zero. Conversely, for an ordered two-stripe
state with stripes of widthL /2 parallel to thex axis, Cx
= +1 andCy=−1, and vice versa for stripes parallel to they
axis. We therefore posit that a stripe state arises if the corre-
lation function in the directionssd parallel to the stripe is
greater than a threshold value, while the correlation function
perpendicular to the stripe is less than the negative of
this threshold value. We arbitrarily choose the threshold to
equal 0.5, but our results for largeN depend only weakly
fSNsm=0d varies byø10%g on the threshold value when it
is in the range 0.3–0.7. The results given below are based
on the threshold set to 0.5.

We find that the stripe/slab probabilitySNsm=0d grows
quickly for smallN and then saturates to a nonzero value that
is close to 0.33 ind=2 and 0.08 ford=3 sFig. 8d. The stripe
probability in two dimensions is very close to that found
previously in the zero-temperature evolution of the Ising
model with Glauber kineticsf10g. Note also that as the initial
magnetizationm is moved away zero,SNsmd quickly decays
to zerosFig. 9d. This simply reflects the fact that if one phase
is initially below the percolation threshold, there is a very
small possibility for minority phase droplets to merge and
form a stripe that spans the system.

We can qualitatively understand the dimension depen-
dence of the probability to reach a stripe state by the follow-
ing rough argumentssee also Ref.f10gd. For simplicity, we
first discuss the case of two dimensions with the random
zero-magnetization initial condition. Consider a large system

of linear dimensionL and cut it into four equal subsquares of
linear sizeL /2. The final state in each of these subsquares is
reached more quickly than that of the entire system. We now
make the plausible assumption, based on observations of
many realizations of the system, that each subsquare inde-
pendently reaches consensus. Then out of the 24 possible
configurations of these subsquares, only the following ar-
rangements;

+ + − − + − − +

− − + + + − − +

where the1 and 2 symbols refer to the final state of each
subsquare, correspond to a stripe state of theL3L system.
This argument then suggests thatSNsm=0d=4/24=1/4.

This coarse-graining argument straightforwardly general-
izes to higher spatial dimensions. On the cubic lattice, we
divide anL3L3L cube into eight subcubes of linear dimen-
sion L /2. If these subcubes each independently reach con-
sensus, then a slab state on the original cubesconsisting of
two slabs of oppositely oriented spins, each of sizeL3L
3L /2d can be achieved in six possible ways. The probability
of reaching a slab state is therefore 6/28<0.047. Ind dimen-
sions, this same line of reasoning givesSNsm=0d=2d/22d

.
While our argument is crude, the resulting numerical values
for SN qualitatively mirror the corresponding estimates from
simulations.

Our approach also helps explain why stripe states quickly
disappear when the initial magnetization is nonzero. As an
example, for initial magnetization 0.08, we find by numerical
simulations that the probability that a 25325 system even-
tually ends with all spins1 is 0.88. Now employing the
above coarse-graining argument for a 50350 system, the
four 25325 subsquares will each reach1 consensus with
probability 0.88 and2 consensus with probability 0.12.
Then the probability for the 50350 system to reach a
stripe state isSN<4s0.88d2s0.12d2<0.0446. This is very
close sprobably fortuitouslyd with our numerical result of
SNsm=0.08d<0.0498.

Another important aspect of the evolution to the final state
is the dependence of the final magnetization on the initial
magnetization. Since the system always reaches consensus,
the final magnetizationmf is simply the difference in the
probabilities that the systems ends with all spins1 and all
spins2. On the square lattice, we find that the curve of the

FIG. 8. Probability to reach a stripe state versus number of spins
N for d=2 ssd and d=3 shd using the threshold value 0.5ssee
textd. Data are based on 105 realizations.

FIG. 9. Probability to reach a stripe state versus initial magne-
tization m for a 502 system. Data are based on 105 realizations.
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final magnetization versus the initial magnetization ap-
proaches a step function asN→` sFig. 10d. Thus any initial
bias predetermines the final state of the system in the ther-
modynamic limit. This step-function behavior is in contrast
to the behavior in one dimension, where the final magnetiza-
tion curve remains nonsingular asN→` f2g. Finally, it is
worth noting thatmf equals the initial magnetizationm for
the voter model in all spatial dimensionsf4g; there is no
tyranny of the majority in the voter model.

IV. LIFETIME OF STRIPE STATES

Once a stripe state is formed, the evolution to ultimate
consensus is controlled by the time required for the two in-
terfaces that define the stripe to meet and annihilate. In one
dimension, it is easy to see that each isolated interface be-
tween 1 and 2 spins moves by free diffusion. When two
interfaces approach to nearest-neighbor separation they nec-
essarily annihilate.sNote that in the kinetic Ising model, two
nearest-neighbor interfaces can annihilate, with probability
1/2, or recede by one lattice spacing, also with probability
1/2, in a single update step.d Therefore the time for the last
two domain walls to annihilate is proportional toL2, whereL
is the linear dimension of the system. Further, because the
system is controlled by the meeting of two random walks on
a finite ring, the consensus time distribution has an exponen-
tial decay of the forme−t/N2

f7g.
In two and three dimensions, the interfaces between

stripes are quite smoothsFigs. 5 and 6d and the scaling of the
interface width on the transverse dimension of the system
appears to be in the Edwards-Wilkinson universality class
f11g. We verified the smoothness of the interface by prepar-
ing a system of linear sizeL3Lsd−1d in d dimensions, with
L@L, in which all spins in the regionf0,L /2g are initially
in the 2 state, and all spins in the regionfL /2 ,Lg are ini-
tially in the 1 state. In two dimensions, the widthw of the
interface initially grows slowly in time and eventually satu-
rates to a value that approximately scales asw,L1/2. In three
dimensions, the growth of the width is even slower and the
saturation value of the width is consistent with a logarithmic
dependence onL.

Thus it is the diffusion of the interface as a whole rather
than fluctuations in the interface shape that determines the
lifetime of the stripe state. Since the interfaces are typically

separated by a distance of orderL when they are first formed,
the lifetimeT of the stripe state should therefore given by

T ,
L2

DsLd
, s2d

whereDsLd is the diffusion coefficient of a single interface
with transverse dimensionL.

We may obtain a simple albeit rough estimate for this
diffusion coefficient by treating each site on the interface as
an independent random walkf10,12g. For a d-dimensional
system, a smooth interface contains of the order ofLd−1 sites.
In a single time step, each interface site will randomly move
by ±1 perpendicular to the interface. Hence if each site is
independent, the center of mass of the interface will move by
a distanceÎLd−1/Ld−1,L−sd−1d/2 in one time step. As a result,
the diffusion coefficient of the interfaceDsLd scales as
L−sd−1d.

We tested this prediction by simulation by following the
evolution of a single interface in a long stripsor slabd geom-
etry with transverse dimensionL in which all the spins on the
right half are set to +1 and all the spins on the left half are set
to −1. We then let the spins evolve by majority rule dynam-
ics. After a short transient that lasts of the order of one time
step, we observe that the interface moves diffusively, with a
diffusion coefficient that scales approximately asL−1 in two
dimensions and asL−2 in three dimensions. Given the crude-
ness of the above random walk argument, it is surprising that
the simulation results agree quite well with the prediction
DsLd,L−sd−1d.

From this scaling of the diffusion coefficient on the trans-
verse linear dimensionL, Eq.s2d then gives a consensus time
T that scales asT,Ld+1. Equivalently, in terms of the total
number of spinsN=Ld, the dependence isT,Nsd+1d/d. How-
ever, this prediction is only qualitatively consistent with the
exponent values of 1.7 ford=2 and 1.5 ford=3 that were
obtained from direct numerical simulations of the consensus
time distribution. We do not have an explanation for this
discrepancy.

V. SUMMARY AND DISCUSSION

We studied the time evolution of the majority rulesMRd
model for finite-dimensional systems. One of our main re-
sults is that the approach to consensus in an initially unbi-
ased system is surprisingly complex. Before ultimate consen-
sus is reached, a nontrivial fraction of all realizations falls
into coherent metastable states that consist of stripes in two
dimensions and slabs in three dimensions. We anticipate that
analogous coherent states arise in higher spatial dimensions.
The interfaces between domains in these coherent states are
quite smooth and reflect the strong surface tension in the
majority rule dynamics.

Due to these coherent states, the time to reach consensus
is anomalously long and is controlled by a diffusion process
that brings two interfaces close enough that they can annihi-
late. The characteristic time scale for this annihilation is
much longer than the most probable time to reach consensus.
The fraction of realizations that reach these long-lived states

FIG. 10. Final magnetizationmf as a function of initial magne-
tization m, on the square lattice for linear dimensionL=10 sdotted
curved, 20 sdashedd, 30 sdot-dashd, and 50ssolidd.
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decreases asd increases, but their role appears to be domi-
nant in the asymptotic kinetics. When the initial magnetiza-
tion is nonzero, however, these long-lived states quickly dis-
appear. As a result, the consensus time distribution has a
single peak and there is no long-time tail. Furthermore, the
time until consensus grows only logarithmically in the sys-
tem sizesFig. 11d. Thus an initial bias in the density of spins
is a decisive influence in the long-time behavior of the sys-
tem.

We gave a crude coarse-graining argument to estimate the
probability to reach a coherent state as a function of the
spatial dimension. This approach qualitatively explained the
behavior of the probability to reach such a state as a function
of the spatial dimensiond and the initial magnetization.

Finally, we suggest several directions for further study.
First, it would be worthwhile to determine the value of the
upper critical dimension of the MR model. An exact analysis
of this model on the complete graph, where all spins are
nearest neighbors of each other, showed that the mean con-
sensus time grows as lnN f2g. On the other hand, the simu-
lations presented here and inf2g suggested that the mean
consensus time grows as a power law inN for spatial dimen-
sions 1, 2, 3, and 4. These two facts suggest that the upper
critical dimension of the MR model is greater than 4. It
would be worthwhile to have a theoretical understanding for
the apparently large value of the upper critical dimension.

We also believe it will be fruitful to study simple exten-
sions of the MR model with more stringent conditions for
achieving consensus. One example is to have a higher
threshold than simple majority before the opinion of a group
is swayed. While a higher threshold will obviously slow the
dynamics, it should be interesting to investigate whether this
modification leads to different scaling properties for the
mean consensus time and the distribution of consensus times.

A more intriguing generalization arises when each spin
has more than two opinions, where we anticipate new types
of dynamical behavior. With more than two states, the pos-
sibility of a dynamically stable steady state that consists of
coalescing and coexisting multiple opinion groups was dis-
cussed in the framework of the “stochastic seceder” model
f13g. In the context of our majority rule model, there obvi-
ously will be slower dynamics because it may be possible to
have a group with no local majority, but only a local plural-
ity. Such a group would not evolve according to the majority
rule dynamics. Thus configurations in which there is no ma-
jority in each group represent another absorbing state for the
dynamics. In the mean-field limit, we find that such a system
never reaches this frustrated state, as the corresponding fixed
point of equal concentrations of all species is unstablef14g.
Instead, for a system with more than two opinion states, the
time to reach ultimate consensus is merely increased by a
multiplicative factor compared to the two-opinion MR
model. However, for finite spatial dimensions, the existence
of more than two opinions appears to have a more significant
effect on the long-time behavior that depends fundamentally
on the interplay between the group size and the number of
states. When there are many distinct local majorities in the
initial state the group dynamics has a primarily diffusive
character. However, when there is of the order of one local
majority, the opinion of this group quickly overtakes the en-
tire system.
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