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Majority versus minority dynamics: Phase transition in an interacting two-state spin system
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We introduce a simple model of opinion dynamics in which binary-state agents evolve due to the influence
of agents in a local neighborhood. In a single update step, a fixed-size group is defined and all agents in the
group adopt the state of the local majority with probabifityr that of the local minority with probability 1
—p. For group sizeG=3, there is a phase transition pt=2/3 in all spatial dimensions. F@>p., the
global majority quickly predominates, while far<p., the system is driven to a mixed state in which the
densities of agents in each state are equalpFop., the average magnetizatidtihe difference in the density
of agents in the two statgss conserved and the system obeys classical voter model dynamics. In one
dimension and within a Kirkwood decoupling scheme, the final magnetization in a finite-length system has a
nontrivial dependence on the initial magnetization forpa# p., in agreement with numerical results. p¢,
the exact two-spin correlation functions decay algebraically toward the value 1 and the system coarsens as in
the classical voter model.
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[. INTRODUCTION considering the case of genepmis to understand the change
in dynamics as a function qf and the kinetic phase transi-

In this paper, we investigate the properties of a simpletion that occurs ap,.
model of opinion formation. The model consistshbagents, We shall see that the interplay between minority and ma-
each of which can assume one of two opinion states df  jority rules leads to three distinct kinetic phases in which the
or —1. These agents evolve according to the following rulesapproach to ultimate consensus is governed by different
(Fig. D. mechanisms. As in the earlier work on majority riigd, we

(1) Pick a group ofG agentg(sping from the system, with  seek to understand the long-time opinion evolution. We will
G an odd number. This group could be a@yspins in the be primarily concerned with determining the probability of
mean-field limit, or it could be a randomly chosen contigu-reaching a given final statg¢he exit probability as a func-
ous cluster of spins in finite-dimensional systems. tion of p and the initial densities of each opinion state.

(2) With probability p, the spins in the group all adopt the ~ To provide perspective for this paper, we briefly review
state of the local majority. With probability-1p, the spins  related work on opinion dynamics models. Perhaps the sim-
all adopt the state of the local minority. plest such example in this spirit is the classical voter model

(3) Repeat the group selection and attendant spin updai&]. Here a two-state spin is selected at random and it adopts
until the system necessarily reaches a final state of conseihe opinion of a randomly chosen neighbor. This step is re-
sus. peated until a finite system necessarily reaches consensus.

We term this process th@ajority-minority(MM) mode] ~ One can think of each spin as an agent with zero self-
in keeping with the feature that evolution can be controlledconfidence who merely adopts the state of one of its neigh-
either by the local majority or the local minority. The MM bors.
model represents a natural outgrowth of recent analytical An attractive feature of the voter modéh contrast to the
work on themajority rule model of opinion formatiorf1], ~ familiar Ising model with Glauber kinetict]) is that it is
which, in turn, represents a particular limit of a class of mod-exactly soluble in all spatial dimensions. For a finite system
els introduced by Galarfi2]. In majority rule, the opinion of N spins ind dimensions, the time to reach consensus
evolution of any group is controlled only by the local major- scales ad for d>2, asNInN for d=2 (the critical dimen-
ity within that group. Thus majority rule corresponds to thesion of the voter modgl and asN? in d=1 [3,5,6]. In d
p=1 limit of the present MM model.

A basic motivation for this type of modeling is to incor-
porate, within a minimalist description, some realistic as-
pects of the manner in which members of an interactive

population form consensus on some issue. In this spirit, the

MM model allows for the possibility that a forceful and/or

charismatic minority can sometimes dominate the opinion of \
a group, an experience that many of us have had in our e 1-p
everyday lives. The limit where is close to 1 is probably G

closer to socially realistic situations. Part of our interest in

FIG. 1. Evolution of a group o5=3 spins according to MM
dynamics. Majority rule applies with probabilityand minority rule
*Electronic address: mmobilia,redner@bu.edu applies with probability - p.
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=1 and 2, an infinite system coarsens so that consensssme state, these domain wall particles undergo the diffusive
emerges on progressively larger length scales, whiledfor annihilation reactiolA+A—0, but with constraints in the
>2, an infinite system approaches a steady state of mixe@otion of domain walls, when they are nearby, that reflect
opinions. Because the average magnetization is conservé@e constraints of the MM dynamical rules. Our understand-
[3], the probability that the system eventually ends with alling of this intriguing aspect of the problem is still incom-

plus spins equals the initial density of plus spins in all spatiaPlete. _ . _ y .
dimensions. In Sec. Il, we investigate the exit probability and exit

From a more practically minded viewpoint, there has beefimes in the mean-field limit of the MM model. We then turn

a recent upsurge of interest in kinetic spin-based statisticdP the case of one dimension in Sec. lll. We first write the
physics models that attempt to incorporate some realistic sdha@ster equation for the configurational probability distribu-
ciological features. One such example is Galam's rumor forlion, following the original Glauber formalism. We apply a
mation mode(2,7], in which a population is partitioned into Kirkwood decoupling schemg20] for correlation functions
variable-sized groups, and in each update step the spins {R compute the final magnetization as a function of the initial
each group may adopt the majority state or the minority staté'agnetization. Finally, we show that in the exactly solvable
of the group depending on additional interactions. Our mafase ofp=p.=%, the two-spin correlation functiom,(t)
jority model represents a special case in which only a single=(Si(1)Si+((t)) approaches one 4s' for all r. Thus the
group of fixed sizeG is updated at each step. Another promi- System exhibits diffusive coarsening, as in the traditional
nent example is the Sznajd model, where spins evolve onlyoter model. We give a summary and discussion in Sec. IV.
when local regions of consensus exigt. In the basic ver- Calculational details are given in the appendices.

sion of the model, when two neighboring spins are in the

same state, this local consensus persuades a neighboring spin [l. THE MEAN-FIELD LIMIT

to join in. Such a rule naturally leads to eventual global A. Exit probability

consensus except in the anomalous case of an antiferromag-
netic initial state. The generic questions posed above about Following the approach developed in RéL], we first
opinion evolution in the MM model are also of basic intereststudy the exit probabilityg,,, namely, the probability that a
in the Sznajd moddI9] and considerable work has recently system that initially contains up spins in a system & total
appeared to quantify its basic propertigs-13. There is  spins ends with all spins up. This exit probability obeys a
also a wide variety of kinetic spin models of social interac-simple recursion relation in whick,, can be expressed in
tions that incorporate, for example, multiple trgifis4], in-  terms of the exit probabilities after one step of the MM pro-
compatibility[15,16], and other relevant featurg¢$7]. cess[21].

An inportant feature of our MM model is that the compe-  To construct this recursion relation, we note that
tition between majority and minority rules leads to a kinetic
phase transition in all spatial dimensiothgit a critical value _3 N—3 N d _3 N—-3 N
of p.=2/3 for group sizeG=3. The existence of such a Pn=23P n—2 n and Gn=sp n—-1 n
transition can be easily understood by considering the aver-
age change of the magnetization in a single update step. &re the respective probabilities that a group of three spins
group undergoing an update must consist of two spins of oneontains 2 plus and 1 minus spins or contains 1 plus and 2
sign and a single spin of the opposite sign. According to Figminus spins, and that the majority rule is applied to the
1, the magnetization change in such a group is proportionajroup. Thusp, is the probability that there is a change
to 2p—4(1-p), which is zero whenp=p.=2/3. Forp n—n+1 andq, is the probability that there is a change
>p. and for alld=2, the system quickly evolves toward n—n—1 in a single step of the MM process. Similarly
global consensus where the magnetization equzls[18].
Forp=p., the average magnetization is conserved, as inthe- _ (N—3 N — _ [N=3 N
voter model. Consensus is again always reached, but the tim%n=3q n—1 n and  0,=3q n—2 nt’
until consensus grows as a power law in time. pefp.,
the system is driven toward a state with equal densities fowith q=1—p, are the respective probabilities far to
the two species of agents. Since consensus is still the onlyhange by+ 2 steps due to minority rule being applied to the
absorbing state of the dynamics, consensus is eventuallyroup. The master equation for the exit probability24]
reached in a finite system, but the time needed grows expo- o .
nentially with the system size. It bears emphasizing that for En=PnEns2+PnEns1tAnEn_1+AdnEn_>- (]
all p and for alld, a finite-size system necessarily reaches
consensus in the MM model. There are no metastable states While the exact solution to this discrete recursion relation
that prevent the attainment of ultimate consensus as in theas given in Ref[1] (for p=1), it is much simpler to con-
related majority vote proceg8] or in the zero-temperature sider the continuum limit oh,N—o with x=n/N finite. In

Ising Model with Glauber kinetic§19]. this limit, the hopping probabilities reduce to
The MM model exhibits special behavior in one dimen-

sion in which the magnetization quickly approaches a static Pr=3pX*(1-X), gy=3px(1-X)?,

value that depends only on the initial magnetization. If one . .

focuses on the interfaces between domains of agents in the Pr=30x(1—x)%, q,=3qx3(1—X),
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1 - complementary reasoning applies to a group with 2 minus
e spins and 1 plus spin. Thus the rate equation for the magne-
N [ e tization is
E(m) dm
E=6X2(1—X)(p—ZQ)—6X(1—X)2(p—2q)
=6(3p—2) m(1-m?), (4)
0 = where agairm=2x— 1. This approximate equation becomes

1 m ! an exact description in the liml—oc. The long-time solu-

FIG. 2. Sketch of the exit probabilitE(m) that a finite system tion is
with initial magnetizationm ends with all spins plus fop>p.

=2/3 (solid), p=p, (dashed| andp<p, (dotted. Also indicated is ( Ll 1-m%(0) =366 Pt p>p
the N dependence of the deviation of the first and last curves from - m2(0) ’ ¢
a step function.

m(t)=< m(0), P=Pc
and after some straightforward steps, the continuum version m(0)
of the master equation simplifies to ——— e 18Pt P<Pc,

L V1- m?%(0)
(3p—2) NmE (m)+(4—3p) E"(m=0, (2 ®)

_ o _ where in the first line, thet sign occurs ifm(0)>0 or
wherem=2x—1 is the magnetization and the prime denotesm(0)<0, respectively.

differentiation with respect ton. This equation can be easily  For p>p., majority rule prevails and the dynamics is

integrated and the final result is

essentially the same as in the original majority rule model
[1]. The approach to the asymptotic behavior is exponential
in time with a relaxation timery, =[36(p— p.)]~ 1. This cor-

_1( I(m))
E(m)—z l+|(—1) ) ©)

responds to an exit time that scales logarithmically in the
system size. Conversely, wh@r<p. the dynamics is domi-
where nated by the rule of the minority so that the asymptotic mag-
netization vanishefor m(0)+# *=1]. The approach towards
this steady state is again exponential, but with a relaxation
time 7,=[18(p.—p)] ! that is twice as large asy . In
spite of the bias away from consensus, this state is necessar-
ily reached in a finite system, because this is the only absorb-
with a=(3p—2)/(4—3p). ing state of the dynamics, but the time required to reach
The behavior of(m) versusmis sketched in Fig. 2 and consensus grows exponentially in the system size. Finally, at
it merely represents the continuum version of the correthe critical pointp,= 2/3, the average magnetization remains
sponding result given in Refl]. For p>p., the exit prob-  jnvariant, as in the voter modgs].
ability approaches a step function lds-o with a character-

istic width that scales al~ 2. This feature reflects the fact
that when|m|>N~%2, the hopping process underlying the
exit probability is controlled by the global bias. Conversely, A. Equations of motion

for p<p., the exit probability approaches 1/2 for nearly all | one dimension, the original formalism of the Ising-
initial values of m except for a thin region of widtt™™  Gjauber mode]4] can be exploited to obtain the equation of
aboutm= = 1. This reflects the fact that minority rule tends motion for the magnetization, as well as that for higher-order
to drive the system toward zero magnetization. Thus the exépin correlation functions. We consider only the simplest
probablllty is independent of the initial state unless the SYStase of group size equa| to 3 and denote the Spins ina group,
tem begins at an exponentially small distarige N) from  which can take the values1, by S S', andS’. Then the
consensus. rate at which spir§ flips according to majority rule ifl]

|(m)= f e Ry,
0

IIl. MM MODEL IN ONE DIMENSION

B. Magnetization W(S——-S)=1+5S'-S(S'+9"). (6)
The average magnetization also obeys a simple rate equd@his rate expresses the fact ti&tandS” must be equal but

tion in the continuum limit. With probability 8°(1—x), opposite toS for spin Sto flip. Conveniently, this same ex-

wherex=n/N, a group of three consists of 2 plus spins andpression also gives the rate at which the sgBhandS” flip

1 minus spin. If this group is picked, then majority rule ap-according to minority rule dynamics. Thus for minority rule

plies with probabilityp and the magnetization increases by 2,the spin-flip rate w(S',S'"—-5,-S")=w(5',5")=

while with probabilityq, the magnetization decreases by 4. AW(S— —S).
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First consider majority rule dynamics. In this case a givention hierarchy. In the following section, we implement such a
spin §; belongs to the three groupsSi(,,S;-1,S), truncation within the Kirkwood approximation scheme.
(Si-1,5;:5;+1), and §;,S;+1,S;+2). This then leads to the
total flip rate[1]

W(S—=§)=3+5 25151511+ 51152 We now study the behavior of the magnetization in one
—S[2S_1+2S,1+S_,+S,,]. (7) dimension. Contrary to the case of spatial dimensioni,
S ! ! ! the magnetization quickly approaches a saturation value that
On the other hand, for minority rule, the spin-flip rates are has a smooth and nontrivial dependencenoy{0) [1]. We
implement a Kirkwood decoupling scheme to the exact mas-
W(Sj-2,5-1)=1+5_1§ 2= §(§-1+5-2), ter equation to obtain the mean magnetizatit(h). We shall
W(S, 1S40 =1+5 1511~ S(S,_1+S;41), Z((a:gutrr;?é ';glssu;:;controlled approximation gives surprisingly
! SR ! . _c/a : Our approach is based on writing the exact equation of
WS84 =14 5182 §(Sut S0 B o o ma(t) =(S;(1)Sj+1(t)) and then, in the spirit of
The kinetics of the system is described by the mastethe Kirkwood approximation20], factorizing the four-point
equation for the probability distribution for a given spin con- functions that appear in this equation as products of two-
figuration{S}. The derivation of this master equation is stan-Point functions. Such an approach has proven quite success-
dard but tedious and the details are given in Appendix Aful in a variety of applications to reaction kinetifg2—24.
From the master equation, we can then compute the raf@y Solving the resulting nonlinear but closed equation, we
equation for the magnetizatioiEq. (A2)]. For the present Obtain an approximate expression fog. Then in Eq.(9) for
discussion, we only study a spatially homogeneous systenil€ magnetization, we factorize the three-point function
In this case Eq(A2) simplifies considerably and the result- asm;m; (instead ofm; as in the usual mean-field analysis

B. Kirkwood approximation for the final magnetization

ing rate equation is We now determine the equation of motion for the corre-
lation functionm, from the master equatio@\1). Following
dmy(t) —6(30—2 £)— ma(t 9 the same steps as those followed to find the equation for the
dt (3p=2) [my() =ms(V)], © mean magnetization, we find, after a number of straightfor-

ward stepgsee Appendix B
with the magnetizatiorm,(t)=(S;(t)) written as the first
moment of the spin expectation value, ana(t)
=(Sj(1)Sj11(1)Sj+2(t)) is the three-spin correlation func- dt
tion.

Notice that this equation has a very similar structure to
Eq. (4), the mean-field equation for the magnetization. In
fact, Eq.(9) reduces to Eq(4) if we neglect fluctuations and where we have used the shorthand notatiios a transla-
assume thamz;=m3. From Eq.(9), we deduce several basic tionally invariant systemn c,(t)=(S(t)S;,(t)) and
facts. My (1) =(S;(1)Sj+ 1(1) S 2(t) S+ 3(1)). In general, we re-

(1) Forp=p.=3% andV m,(0), themagnetization is con- Serve the notatiom,, to denote the average value of a chain
served. This conservation, valid in all spatial dimensionsof 2k contiguous spins and, for the correlation function
relies on the fact that the group size equals 3. Thyg.ate  between two spins that are separated by a distanéus
expect kinetics similar to that in the classical voter model. when the separation between the two spins equals 1, we have

(2) For anyp, a system that is initially in consensus thatcy(t)=my(t)=(S;(t)S;.1(t)).

[m;(0)==*1] or a system with zero initial magnetization ~ In spite of the fact that Eq(10) is exact, the two-spin
[m,(0)=0] does not evolve. That isp,(t)=m;(0)=+1in  correlation functiorc,(t) is coupled to higher-order correla-
the former case anoh,(t)=m;(0)=0 in the latter. tions and it is therefore difficult to compute these quantities

(3) The magnetization is generalhot conserved, except exactly. However ap.= %, this equation is closed in that it
for the initial statem;(0)=0 or +1. This nonconservation involves two-spin correlation functions onigee Sec. Il (.
leads to unusual kinetics of the interfaces between regions dfor p# p. we simply writem, as m3 in Eq. (10), following
plus and minus spins. While these domain walls diffuse ifthe Kirkwood approximation. Since we are mainly interested
they are widely separated, MM dynamics leads to additionain the stationary state d@t=<«, where the variation in the
interactions between walls when their distance is less than dwo-point function as a function af is weak, we also make
equal to 2. the assumption that,~cy~m,.

(4) For p#p., the equation for the magnetization is not We show in Sec. Il D that this approximation is accurate
closed but involves the three-spin correlation function. Infor the voter model limit ofp=p. and our numerical results
turn, the equation for this correlation function involves also show that this approximation continues to give a reason-
higher-order correlations, thus giving rise to an insolubleable description for the properties of the final state when
infinite equation hierarchy. p~p.. Itis true, however, that this approach does not pro-

To make analytical progress for the behavior of the magvide a good description of the time dependence of the mag-
netization in one dimension, we need to truncate this equanetization.

d
224[2(1+ p)—(4+p)my+p(ca+ca)]

+4(2—3p) My, (10
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With these approximations and fqr+ 2, Eq. (10) be- 1 =

comes o s i

dm, 2(1+p) o3 2

W=4(2—3p)[(m2—1)(m2— W” (11 @ . + *

g i
Equation(11) admitsm,(«) =1 as the unique and physically =
acceptable fixed poinfThe other fixed points are 035 18 2
2(1+p) N 2 | |
m; :W> L Dos 0 05 1
m,(0)

2
for 0<p<3 and FIG. 3. The final magnetization as a function of the initial mag-

2(1+p) netization. Shown are the results of numerical simulations for the
= <-1 cases p=0.1(+), 0.25(V), 0.4(A), 0.810), and 1 ©). The
smooth curves are the corresponding results from the Kirkwood
approximation Eg. (16)].

*

M2 =5 3p

for p>2.] The general solution to Eq11), for 0<p<1 and

=2
P#Pc=3.1s Thus the Kirkwood approximation predicts a final magneti-

A+ pBe 2 zation that is a nontrivial function of the initial magnetization
m,(t)= , (120  (Fig. 3. As p—p.=3 this approximation correctly predicts
that the average magnetization is conserved, that is,
m,(t)=m4(0). When p—0, this approximation also pre-
dicts[for m;(0)+# * 1] that the final magnetization vanishes

m,(0)+ B [i.e.,m;(e0)=0]. Figure 3 shows that the Kirkwood approxi-
A= My(0)—1° mation is quantitatively accurate for intermediate valuep of
2 but is only qualitative fomp close to either O or 1.

A—e" 20pt
where
_ Pc(1+4p)
P—Pc

At p.=2, we obtainm,(t)=1—[1—m,(0)]e **3, Thus,
for all p. my(t) -1 ast—=c<. C. Two-spin correlation function at p,

We now exploit this result to compute the final magneti- At p. =2, Eq. (9) shows that the magnetization of the
zation. In the exact equatio(®) for m;, we write m3 as VM is conserved. This same conservation law occurs in the

m;m, to give voter model which has a consequence that the correlation
m, function (S;(t)S;,(t))—1 vanishes as™ "2 in one dimen-
W=6(3p—2)m1(1—m2). (13 sion. We now show that this same type of coarsening also

occurs in the MM by computing the two-spin correlation

Notice a crucial difference between this equation of motionfunCtIonS atp.. The equations of motion for these correla-

and the mean-field equatiotd). In the stationary state, tionJ_unétions are cumbersome and they are written in Ap-
Eq. (13) predicts that eitherm;()=0 or my(x)=1. pendix b.

Sine ()£ m,()* n he Kriioad approsmaton, this  FO OUF puposes, we concepiate on vansiatonal
means thatm;(«) can be a nontrivial function, even if y y ) 9

M) =1 tion for the two-point functiofEgs.(B1)—(B3)], the coordi-
2Integraﬁng Eq.(13) gives the formal expression for the natesjy,j2,js,J4 in the four-point functions always appear

final ma netizatic;n as three consecutive positions, then a gap of isizellowed

9 ' by the coordinate of the last spin. This gap can either occur

® , on the left or the right side of the spin group. To simplify the
my () =m,(0)exp 18(p—p.) fo dt’[1-my(t)] ;. notation, we therefore write these four-point “gap” functions

(14) of the form (S_,(1)S_1(1)S;()S;.((t)) and

(S04 (1S 11 42(DSy1112(1)) A5G, (1). With these sim-

Substituting the expression fat,(t) in Eq. (12), we thereby  plifications Eq.(B1) gives, for the case of majority rulee.,

obtain p=1) and for|r|>2,

my(0)=m;(0) %)3/2 (15 %:4(Cr+2+Cr—2+20r+1+20r—1_30r)
For an initially uncorrelated and random system;(0) 4G+ G171 Gr-2). 17)
=my(0) and . Forr=1, Eq.(B2) gives

my () =my(0) ,gfm;l(lo)z) : (16) %:4(c2+c3+4—5c1—g1), (18)
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while Eq. (B3) gives Equations(23)—(25), together with the boundary condition
co(t)=1, constitute a closed and soluble set of coupled lin-
— 2 —A(2+c,+2Cs+C,—4C,)—4(G+G,). (19  ear differential-difference equations for the two-spin correla-
dt tion functions.

dc,

Together withcy(t) =1, Eqgs.(17)—(19) are the equations of D. Solution for the two-spin correlation function

motion for c,(t) for the translationally invariant majority To solve Egs.(23—(25), first notice that these coupled

model. o , _ . equations can be recast as the single equation for the auxil-
For the minority model j=0) we proceed in a similar iary quantityg, (t)=c, (t)—1

manner to write the analog of EB1). After straightforward

but lengthy computations the equation of motion (fer _r:gr+2+gr—2+2(gr+1+gr—1)_69r
Ir|>2) dt
dc —(92+291) (6 1+ 6, —1)—(91+92) (8, 2+ 6 _»)
d_a[rzs(gr+gr—1+gr—2)_24cr- (20 Q21 291)(0r 11 0r —1) = (917 02)(0r 2T 0 -2
—2(92+291) 6 0, (26)
while forr=1 where for simplicity we have also rescaled the time accord-
H 8
dc; Ing tot—3t. . o . .
W=8(1—201+g1), (21) Before proceeding, it is instructive to recall that in the

one-dimensional voter model, the equation for the two-spin
correlation functiorc} ™(t) for a translationally invariant sys-

and forr =2 we have tem has the form of the discrete diffusion equatidh

dc,

a 873Gt Gy, 2 e M= — 20T (27)
These equations again have to be supplemented by thgr |r|=1, supplemented by the boundary condition
boundary conditioree(t) =1. cy™(t)=1. The solution to this equation is

The equation of motion for the two-spin correlation func- "
tion in the MM model can now be obtained by takipgimes UMy s _ om
Eq.(17) and 1— p times Eq.(20). For generab,ythis Iggds to ¢ (h=1+e Ztgl Ler(0) = 111,120 = v (20)],
an open equation hierarchy. Howeverpatp.= %, the four- (28
spin correlation functions arising from both the majority and
minority modelscancelfor all values ofr. Thus atp=p.,
we obtain much simpler equations of motion for the two-spin
correlation function. Fofr|>2, we obtain

wherel ,(t) is the modified Bessel function of first kif@5s].

For the MM model, Eq(26) is also a discrete diffusion
equation but with second-neighbor hopping. Thus we expect
that this equation can be solved by similar techniques as
dc, 8 those used in the voter model. Therefore we introduce the
di ~ 3lCreatCrat2(CrigtCg)—6¢]. (23 following integral representation that generalizes the modi-
fied Bessel function of the first kind:

Forr=1 we obtained previousljEg. (10)] 1(n
()= —f dqcog qr)e?lcos +2cosa] (29
dCl 8 )
W:§(5+C2+C3_701)’ (29
It is easy to check thaf,(t) satisfies the basic recursion
while for r=2 we have property I (t) =Z, _o(t) + Ly o(t) + 2[ Z; 1 () + L 1 (1) ]
g g Also in analogy with the modified Bessel function of first
C2 kind, = _7.(t)=€% andZ,(0)= 6, ,. With these proper-
— = _(34¢c,+ +c,— . ) 1 A= —or ) r _r,O
gt 3(3tCat2ctemcy) @9 ties, the formal solution of Eq26) is

—+ oo

g()=e"% > g (0)Z,_ (1)

r'=—w

t ’
—f dt'gy(t—t")e ®
0

AT(1)+22 T, (1) + L;t')}

t ’
—f dt’g,(t—t") e ©
0

27,(t) + 2 Zrlyz(t’)}, (30)
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where in the second line the sums are over the nearest amit probability is 1/2 for almost alin(0). These behaviors
next-nearest neighbors of respectively, while in the third reflect the inherent biases of majority and minority rules.
line the sum is over both nearest and next-nearest neighbors. In one dimension, the magnetization quickly approaches a
Since the right-hand side of EQO0) still depends org, fixed value that depends only on the initial magnetization.
andg,, we have to consider the cases1 and 2 separately This then immediately determines the exit probability.
to obtain the general solution. This is done in Appendix C byWithin a Kirkwood decoupling scheme for the infinite hier-
using Laplace transforms. In the long-time and large-distancarchy of equations for correlation functions, we obtained a
limit, the full solution to Eq.(30) quoted in Eq(C9) reduces reasonable approximation for the dependence of the final
to the much simpler expression magnetizationequivalently the exit probabilifyon the ini-
tial magnetization. It is worth noting that other decoupling
2 2 r schemes can also be applied. One such example is the so-
¢ ()=my(0)"+[1-m,(0)7] erf 8t (8D called “simple method27], where the three- and four-point
correlation functions are decoupled according o,
that clearly shows the scaling behaviorrimndt. For com-  =m3/m; andm,=mj3. While this approach sometimes gives
parison, the two-spin correlation function of the voter model,superior results to the Kirkwood scherf8], this approach
in the same limit and with the same initial condition of turns out to be ill suited to determining the initial density
cfm(o):mg, is dependence of the final magnetization in one dimension.
At the critical point ofp.= 3, we obtained the exact two-

(1- mé) N2 spin correlation function and showed that it exhibits the same
CM()=mi- ——- > e (hA (32 12 i i i
W P ' t*'< coarsening as in the classical voter model. Although the

two-spin correlation function has the same behavior as in the

Comparing these two results, we see that the MM modeYoter model, it is possible that two-time correlation func-
shares many of the asymptotic features of the voter modetions, such agS(t)S(t")), or quantities related to persis-
The correlation between spins that are separated by a fixégnce phenomena, will give behavior different than the voter
distancer both approach the value 1, with the deviation from model.
the asymptotic value decaying as'2 As in the voter We would like to suggest several directions for further
model, the density of domain walls between regions of plugesearch. First, it would be worthwhile to understand the
and minus spins, that i§1—c,(t)]/2 decays as "2 [see MM model in finite spatial dimensions strictly greater than 1.
Eq. (C8)]. Thus in the one-dimensional MM there is coars-In the special case where the majority exclusively rules (
ening with typical domains growing a4’ as in the voter =1), numerical evidence suggested that the upper critical
model[26]. dimension of the system is greater thafl4. On the other

Our exact results also shed light on the basic nature of thBand, the upper critical dimension for the voter model equals
Kirkwood approximation. This approximation gawg(t) 2 and this appears to coincide with the behavior of the MM
=1-[1-my(0)?]e **3 whereas the exact result of Eq. model forp=p.. It should be instructive to understand the
(C8) predicts that,(t) approaches 1 with a correction term nature of the crossover between these two behaviors._ _
proportional tot~ 2. Although both expressions give the Another question involves the dependence of the kinetics
same asymptotic state of consensus, the incorrect time dén the group size. For group sif&>3, a sharp transition
pendence in the Kirkwood approximation appears to stenpetween majority-dominated and minority-dominated kinet-
from our assumption that; (t) =~ c,(t) ~c(t). Although this ics can be engineered by the following somewhat baroque
is valid in the stationary state, it is certainly incorrect in theconstruction. For a group that contaiklus spins ands
transient regime where this assumption is at odds with the-k minus spins, apply majority rule with probability G
diffusive nature of the problem. As confirmed by numericaland minority rule with probability +k/G. It is easy to
results, we thus expect that the Kirkwood approximationverify that this rule gives zero net magnetization change in
should give good results for the stationary magnetization, bugach elemental group update. Thus this construction should

not for the approach to this state. lead to kinetics similar to that of the voter model. However,
in the more natural situation where the probabilities of ap-
IV. SUMMARY AND DISCUSSION plying the majority or minority rules are independent of

group composition, we do not yet understand the nature of

We introduced a simple model of opinion dynamics—the change between majority-dominated and minority-
termed the MM model—in which a fixed-size group of dominated dynamics.
agents is specified and all members of the group adopt the The kinetics in one dimension presents an intriguing chal-
local majority state with probability or the local minority  lenge. Within the Glauber formalism, the MM model appears
state with probability +p. We considered the simplest case to be insoluble because correlation functions of different or-
where the group siz&=3. In the mean-field limit, the prob- ders are coupled in the equations of motion. However, the
ability that the system ends with all spins plus as a functiorevolution of interfaces between domain walls obeys rela-
of the initial magnetization of the systefthe exit probabil- tively simple kinetics that closely resembles the diffusion-
ity) can be readily obtained. Far>p.=$, this exit prob- limited reactionA+A—0. For the MM model, it is easy to
ability changes abruptly from-1 for initial magnetization see that, in addition to diffusion of domain walls, there are
m(0)<0 to +1 for m(0)>0. Conversely, fop<p., this  specific constraints in their motion when domain walls are

046106-7



M. MOBILIAAND S. REDNER PHYSICAL REVIEW E68, 046106 (2003

either nearest-neighbor or next-nearest neighbor. In spite aftate of its neighbors. This seems a natural step to bring the
these complications, we would hope that this model is exMM model a bit closer to political reality.
actly soluble in one dimension.

Finally, it should be Worthwhlle_ to_ e>'<tend' the model to ACKNOWLEDGMENTS
allow for agents that have an intrinsic identity. In the MM
model, the state of an agent is determined only by the local We thank Paul Krapivsky for many helpful discussions
environment. However, it is much more realistic for indi- and advice. M.M. acknowledges the Swiss NSF, under Grant
viduals to inherently prefer one of the two states so that th&o. 81EL-68473, and S.R. acknowledges NSF, Grant No.
transition rates depend both on this factor as well as on thBMR0227670, for financial support of this research.

APPENDIX A: MASTER EQUATION

We write the master equation for the probability distribution of a given spin configuration and then use this to obtain the
equation of motion for the magnetization. From the definition of the MM, the master equation is

d

GiPUShD =P [W(=S—S)P({Sh,1) ~W(S— ~S)P({S} 1]
+(1- p)Ek [W(—Sk-2; = Sc- 1) P({Shk-2-1.1) =W(S-2: S 1) P({S}1)]
F(1=p) 2 W= S 13~ S ) PUShe 11,0 = WS- 138 ) PUSHD]

+(1- IO)Ek [W(= Sk 17— Sk 2) PUShkr 1k 2, 1) = W(Sk 1S+ 2) PUSHD . (A1)

Here P({S},t) denotes the probability for the spin configurati{® at timet and P({S},,t) is the probability for the
configuration{S}, where spinS, is reversed compared {&}. Similarly P({S}kl,kz,t) is the probability of the configuration

where spinsSkl and S, are reversed compared {8}.
From this master equation, and with the help of Eg@sand(8), it follows that the mean magnetization obeys the equation
of motion

d d
&(30:% S g PUSHY

=2p[(S;-2) T(S+2) T 2(§- 1)+ 2(S+ 1) —3(S)]
—2p[(S;Sj+1Sj+2) T (S-15S+1) +(§-25-15)]
—2(1-p)[6(S) —2(S;-25-15) —2(S;-15;Sj+ 1) — 2(5;5+ 15+ 2)]- (A2)

To arrive at this equation, we have taken the thermodynamic limit, made some obvious cancellations, and used the following
relations:

2 SPASH=—(S): X SP({Sh)=(S),
{s} {st
> SiP{S}j k) =—(S); > SP{ Sk k) =(S)),
s s
% $;S P{S},i)=(SS)

APPENDIX B: EQUATIONS OF MOTION FOR TWO-SPIN CORRELATION FUNCTIONS

We write the general equations of motion for the two-spin correlation functions. For simplicity consider the case of majority
rule (i.e., p=1). In this case, we have
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d
a<sj(t)sj+r(t)>: —2(§ 5, W(Sj— —§))) —2(S; S+t W(Sj 11— — Sj+1))

=2[(S-2(1) S+ 1 (1) + (S} 2(1) Sy (1)) + 2(S - 1() S 11 (1)) + 2(S;4 1(1) S (1)) = 6(S}(1) S} 1 (1)) ]
F2[(Sj()S) 41— 2()) H(S(1) S r+2(1) + 2(S(1) S 11— 1(1)) + 2(Sj(1) Sy 1 +1(1)) ]
—2[(Sj_2(1)Sj_1(1)S;(1) S} (1)) +(S;-1(1) S;(1) S+ 1.(1) S+ (1)) + (Sj(1) S+ 1(1) Sj 4 2(1) Sy (1)) ]
—2[(S;(1)Sj 4 2(1)Sj 11— 1(1) S+ (1)) +(Sj(1) S+~ 1(V) Sj 4 (1) S +2(1))
(US4 (DSj+r+1(D) S+ 2(D) ] (B1)
This equation applies far#0,+=1,=2. Forr=0 we have simplxsj(t)z)zl. The cases=*+1 andr=*+2 have to be dealt
with separately. For=1, we have

d
G1{Si0S1()=2[8+(S-2(1) S+ 1(1)) = 1AS;(D G4 1(1)) +(S(1) S+ 2(1))

+(S_1() S 1(1)) +(S;(1)S;+3(1))]
—2[(S;-2()S;- 1(1) Sj(1) S} 1 1(1)) +(S;(1) Sy 1(1) S 4 2(1) S} 1 3(1)) ] (B2)

and the equation=—1 has a very similar form. Far=2 we obtain
d
(SIS 42(0) =2[4=8(S(1)S; 1 2(1)) + 2(S(1) S} 4 3(D) + 2(S;-1(1) Sy 2(1)) + (D} 44(V)) ]

+2[(Sj_2(1)Sj 1 2(1)) +(S;(1) Sj 4 1()) +(Sj 1 1(1) S 2(1)) ]
—2[(§j_2(1)S;-1(1) §;(1) S+ 2(1)) + (S - 1(1) S (1) S+ 1(1) S+ 2(1) )]
—2[(S§(1) S} 1(1) S+ 2(1) S+ 3(1)) +(S(1) Sy 1 2(1) S+ 3(1) S+ 4(1)) ], (B3)

and similarly forr=—2. For a translationally invariant system, E¢B1)—(B3) reduce, respectively, to Eq&l7)—(19).

The equations of motion for minority rulgvherep=0) are obtained in a similar manner by starting with the analog of Eq.
(B1) when the minority rule hopping rates are used. For the translationally invariant minority model, the equations of motion
for the correlation functions are then given by E(0)—(22).

APPENDIX C: SOLUTION FOR THE CORRELATION FUNCTION

In this appendix, we solve E¢30). For this purpose it is convenient to introduce the Laplace transform. For an uncorrelated
but random initial state where (0)=m,(0)?, and using the properties of the functichintroduced in Eq(29), the Laplace
transform ofg,(t) is

ér(S)Ef;dt e ®g,(t)

- mOP L . . .
= - 459+ 28, 1(9+ 22 1(9)+ L o(9)+ T 2(9)181(9)

—[2Z(8)+Z, s 1(8)+ T, _1(8) + L, 1 o(S) + I, 2(5)192(S), (CY

where

7 (9)= f:dte*‘[e*ﬁtzrm]

_fwdq cosqr
"~ Jo 7 s+6—2{cos 2+ 2 cosq}

dz Zr+l
=i O — : (C2
ﬁZTF 2+ 22°—(s+6)22+2z+1
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andI" denotes the unit circle in the complex plane centered at the origin. In principle, inf€@atan be computed by the
residue theorem. However, we shall see that this calculation is unnecessary for determining the long-time behavior of the

correlation functions.
By substitutingr =1 andr =2 into Eq.(C1) we obtain a linear system of two equations that is readily solved and gives, for

the Laplace transforms @f(t) andg,(t),
Jo(s) = Ky(s)—1
e LU e O F OB ACTAGENACIECIS

- Ki(s)—Ji(s)—1
92(8) = {1- M0 T 7 5 T ()~ K8 F AT’

(C3

where we have introduced the following quantities:
Ji(8)=2Ty(S) +571(s) + 27,(s) + Z4(9),
K1(8)=To(s) + 3Z1(8) + In(S) + Z4(s),
To(8)=To(S) +271(S) + 4T,(8) + 2Z5(S) + Zu(S),
Ko(8)=To(S) + Zy(8) + 2Z5(S) + Z5(S) + Zu(S). (C4)

Since we are mainly interested in the long-time behavior of the two-spin correlation functions, we focus on the small-
dependence of the quantities in E4). For s—0 integral(C2) diverges forg—0. Clearly, the main contribution to this
integral in the long-time limitlequivalentlys—0) is obtained by expanding the integrand &pr-0 before performing the
integration. We obtain

=dq cogqr =dqcogqr) e "
Z,(s) — ad 49n) f < 14 ):—. (CH
so0do ™ s+6g2 Jo ™ s+6g2 2\6s
Substituting this expression into EGC3) and expanding the resulting exponential terms gives
- 2 1 0 2 \/6
91(5)5:0 2_5[ m;(0)7] s
. 1—m,(0)2 \f o6
G2(8) — ———5 < (o)

The expressions fa:ql and@z, together with Eq(C1), provide the Laplace transform (:th(r) in the s—0 regime.
For finiter>2, we substitute EqEC5) and(C6) into Eq.(C1), expands the exponential termsras—0, and obtain

. —4
, —[1-my(0 C
g (S)Sﬂ0 [1—my(0) J— (C7)
Laplace inverting Eqs(C6) and (C7) then gives, fot— o, with r2<t,
3[1-my(0)?]
=1-
Cl(t) 25\/— y
3[1—my(0)?]
= 1— —_—,
CZ(t) 10&
t)=1-[1-my(0) - 2) (C8)
c m r=2),
r( 1 20\/— (

where we have restored the original time scale, i-e.2t.
In the limit r —o ands—0, with r/s kept fixed, we substitute EqEC6) into Eq.(C1), and obtain, after inverse Laplace
transforming,
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t)=[m,(0 2+—1—[m1(0)]2 18 rf{—r +7 rfc{—r+2)+7 rf%—r_
Cr( )_[ l( )] 50 € 8\/E e 8\/f e 8\/E
9{1-[m,(0)]23 (r+l r—l)
+ ) erfc 8\ﬁ + erfc _8\ﬁ , (C9

where erfc()E(Z/\/F)f‘fdz e Zisthe complementary error function, and we used the fact that the inverse Laplace transform

of e” s is erfc(} J/a/t) [25]. Equation(C9) simplifies considerably if we make the-o approximatiorr ~r+1~r=+2. In

this limit, we obtain the expression quoted in Eg1).
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