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Majority versus minority dynamics: Phase transition in an interacting two-state spin system
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~Received 4 June 2003; published 9 October 2003!

We introduce a simple model of opinion dynamics in which binary-state agents evolve due to the influence
of agents in a local neighborhood. In a single update step, a fixed-size group is defined and all agents in the
group adopt the state of the local majority with probabilityp or that of the local minority with probability 1
2p. For group sizeG53, there is a phase transition atpc52/3 in all spatial dimensions. Forp.pc , the
global majority quickly predominates, while forp,pc , the system is driven to a mixed state in which the
densities of agents in each state are equal. Forp5pc , the average magnetization~the difference in the density
of agents in the two states! is conserved and the system obeys classical voter model dynamics. In one
dimension and within a Kirkwood decoupling scheme, the final magnetization in a finite-length system has a
nontrivial dependence on the initial magnetization for allpÞpc , in agreement with numerical results. Atpc ,
the exact two-spin correlation functions decay algebraically toward the value 1 and the system coarsens as in
the classical voter model.
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I. INTRODUCTION

In this paper, we investigate the properties of a sim
model of opinion formation. The model consists ofN agents,
each of which can assume one of two opinion states of11
or 21. These agents evolve according to the following ru
~Fig. 1!.

~1! Pick a group ofG agents~spins! from the system, with
G an odd number. This group could be anyG spins in the
mean-field limit, or it could be a randomly chosen contig
ous cluster of spins in finite-dimensional systems.

~2! With probabilityp, the spins in the group all adopt th
state of the local majority. With probability 12p, the spins
all adopt the state of the local minority.

~3! Repeat the group selection and attendant spin up
until the system necessarily reaches a final state of con
sus.

We term this process themajority-minority ~MM ! model,
in keeping with the feature that evolution can be control
either by the local majority or the local minority. The MM
model represents a natural outgrowth of recent analyt
work on themajority rule model of opinion formation@1#,
which, in turn, represents a particular limit of a class of mo
els introduced by Galam@2#. In majority rule, the opinion
evolution of any group is controlled only by the local majo
ity within that group. Thus majority rule corresponds to t
p51 limit of the present MM model.

A basic motivation for this type of modeling is to inco
porate, within a minimalist description, some realistic a
pects of the manner in which members of an interact
population form consensus on some issue. In this spirit,
MM model allows for the possibility that a forceful and/o
charismatic minority can sometimes dominate the opinion
a group, an experience that many of us have had in
everyday lives. The limit wherep is close to 1 is probably
closer to socially realistic situations. Part of our interest
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considering the case of generalp is to understand the chang
in dynamics as a function ofp and the kinetic phase trans
tion that occurs atpc .

We shall see that the interplay between minority and m
jority rules leads to three distinct kinetic phases in which
approach to ultimate consensus is governed by differ
mechanisms. As in the earlier work on majority rule@1#, we
seek to understand the long-time opinion evolution. We w
be primarily concerned with determining the probability
reaching a given final state~the exit probability! as a func-
tion of p and the initial densities of each opinion state.

To provide perspective for this paper, we briefly revie
related work on opinion dynamics models. Perhaps the s
plest such example in this spirit is the classical voter mo
@3#. Here a two-state spin is selected at random and it ad
the opinion of a randomly chosen neighbor. This step is
peated until a finite system necessarily reaches consen
One can think of each spin as an agent with zero s
confidence who merely adopts the state of one of its ne
bors.

An attractive feature of the voter model~in contrast to the
familiar Ising model with Glauber kinetics@4#! is that it is
exactly soluble in all spatial dimensions. For a finite syst
of N spins in d dimensions, the time to reach consens
scales asN for d.2, asN ln N for d52 ~the critical dimen-
sion of the voter model!, and asN2 in d51 @3,5,6#. In d

FIG. 1. Evolution of a group ofG53 spins according to MM
dynamics. Majority rule applies with probabilityp and minority rule
applies with probability 12p.
©2003 The American Physical Society06-1
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51 and 2, an infinite system coarsens so that conse
emerges on progressively larger length scales, while fod
.2, an infinite system approaches a steady state of m
opinions. Because the average magnetization is conse
@3#, the probability that the system eventually ends with
plus spins equals the initial density of plus spins in all spa
dimensions.

From a more practically minded viewpoint, there has be
a recent upsurge of interest in kinetic spin-based statis
physics models that attempt to incorporate some realistic
ciological features. One such example is Galam’s rumor
mation model@2,7#, in which a population is partitioned into
variable-sized groups, and in each update step the spin
each group may adopt the majority state or the minority s
of the group depending on additional interactions. Our m
jority model represents a special case in which only a sin
group of fixed sizeG is updated at each step. Another prom
nent example is the Sznajd model, where spins evolve o
when local regions of consensus exist@8#. In the basic ver-
sion of the model, when two neighboring spins are in
same state, this local consensus persuades a neighboring
to join in. Such a rule naturally leads to eventual glob
consensus except in the anomalous case of an antiferro
netic initial state. The generic questions posed above a
opinion evolution in the MM model are also of basic intere
in the Sznajd model@9# and considerable work has recent
appeared to quantify its basic properties@9–13#. There is
also a wide variety of kinetic spin models of social intera
tions that incorporate, for example, multiple traits@14#, in-
compatibility @15,16#, and other relevant features@17#.

An inportant feature of our MM model is that the comp
tition between majority and minority rules leads to a kine
phase transition in all spatial dimensionsd at a critical value
of pc52/3 for group sizeG53. The existence of such
transition can be easily understood by considering the a
age change of the magnetization in a single update ste
group undergoing an update must consist of two spins of
sign and a single spin of the opposite sign. According to F
1, the magnetization change in such a group is proportio
to 2p24(12p), which is zero whenp5pc52/3. For p
.pc and for all d>2, the system quickly evolves towar
global consensus where the magnetization equals61 @18#.
For p5pc , the average magnetization is conserved, as in
voter model. Consensus is again always reached, but the
until consensus grows as a power law in time. Forp,pc ,
the system is driven toward a state with equal densities
the two species of agents. Since consensus is still the
absorbing state of the dynamics, consensus is eventu
reached in a finite system, but the time needed grows ex
nentially with the system size. It bears emphasizing that
all p and for all d, a finite-size system necessarily reach
consensus in the MM model. There are no metastable s
that prevent the attainment of ultimate consensus as in
related majority vote process@3# or in the zero-temperatur
Ising Model with Glauber kinetics@19#.

The MM model exhibits special behavior in one dime
sion in which the magnetization quickly approaches a st
value that depends only on the initial magnetization. If o
focuses on the interfaces between domains of agents in
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same state, these domain wall particles undergo the diffu
annihilation reactionA1A→0, but with constraints in the
motion of domain walls, when they are nearby, that refl
the constraints of the MM dynamical rules. Our understa
ing of this intriguing aspect of the problem is still incom
plete.

In Sec. II, we investigate the exit probability and ex
times in the mean-field limit of the MM model. We then tur
to the case of one dimension in Sec. III. We first write t
master equation for the configurational probability distrib
tion, following the original Glauber formalism. We apply
Kirkwood decoupling scheme@20# for correlation functions
to compute the final magnetization as a function of the ini
magnetization. Finally, we show that in the exactly solva
case ofp5pc5 2

3 , the two-spin correlation functioncr(t)
[^Si(t)Si 1r(t)& approaches one ast21/2 for all r. Thus the
system exhibits diffusive coarsening, as in the traditio
voter model. We give a summary and discussion in Sec.
Calculational details are given in the appendices.

II. THE MEAN-FIELD LIMIT

A. Exit probability

Following the approach developed in Ref.@1#, we first
study the exit probabilityEn , namely, the probability that a
system that initially containsn up spins in a system ofN total
spins ends with all spins up. This exit probability obeys
simple recursion relation in whichEn can be expressed in
terms of the exit probabilities after one step of the MM pr
cess@21#.

To construct this recursion relation, we note that

pn[3pS N23

n22 D Y S N

n D and qn[3pS N23

n21 D Y S N

n D
are the respective probabilities that a group of three sp
contains 2 plus and 1 minus spins or contains 1 plus an
minus spins, and that the majority rule is applied to t
group. Thuspn is the probability that there is a chang
n→n11 and qn is the probability that there is a chang
n→n21 in a single step of the MM process. Similarly

p̄n[3qS N23

n21 D Y S N

n D and q̄n[3qS N23

n22 D Y S N

n D ,

with q512p, are the respective probabilities forn to
change by62 steps due to minority rule being applied to th
group. The master equation for the exit probability is@21#

En5 p̄nEn121pnEn111qnEn211q̄nEn22 . ~1!

While the exact solution to this discrete recursion relat
was given in Ref.@1# ~for p51), it is much simpler to con-
sider the continuum limit ofn,N→` with x5n/N finite. In
this limit, the hopping probabilities reduce to

pn53px2~12x!, qn53px~12x!2,

p̄n53qx~12x!2, q̄n53qx2~12x!,
6-2
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MAJORITY VERSUS MINORITY DYNAMICS: PHASE . . . PHYSICAL REVIEW E 68, 046106 ~2003!
and after some straightforward steps, the continuum ver
of the master equation simplifies to

~3p22! Nm E8~m!1~423p! E9~m!50, ~2!

wherem52x21 is the magnetization and the prime deno
differentiation with respect tom. This equation can be easil
integrated and the final result is

E~m!5
1

2 S 11
I ~m!

I ~1! D , ~3!

where

I ~m!5E
0

Am
e2Nay2/2 dy,

with a5(3p22)/(423p).
The behavior ofE(m) versusm is sketched in Fig. 2 and

it merely represents the continuum version of the cor
sponding result given in Ref.@1#. For p.pc , the exit prob-
ability approaches a step function asN→` with a character-
istic width that scales asN21/2. This feature reflects the fac
that whenumu.N21/2, the hopping process underlying th
exit probability is controlled by the global bias. Converse
for p,pc , the exit probability approaches 1/2 for nearly a
initial values of m except for a thin region of widthe2N

aboutm561. This reflects the fact that minority rule tend
to drive the system toward zero magnetization. Thus the
probability is independent of the initial state unless the s
tem begins at an exponentially small distance~in N) from
consensus.

B. Magnetization

The average magnetization also obeys a simple rate e
tion in the continuum limit. With probability 3x2(12x),
wherex5n/N, a group of three consists of 2 plus spins a
1 minus spin. If this group is picked, then majority rule a
plies with probabilityp and the magnetization increases by
while with probabilityq, the magnetization decreases by 4

FIG. 2. Sketch of the exit probabilityE(m) that a finite system
with initial magnetizationm ends with all spins plus forp.pc

52/3 ~solid!, p5pc ~dashed!, andp,pc ~dotted!. Also indicated is
the N dependence of the deviation of the first and last curves fr
a step function.
04610
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complementary reasoning applies to a group with 2 min
spins and 1 plus spin. Thus the rate equation for the mag
tization is

dm

dt
56x2~12x!~p22q!26x~12x!2~p22q!

56~3p22! m~12m2!, ~4!

where againm52x21. This approximate equation becom
an exact description in the limitN→`. The long-time solu-
tion is

m~ t !.5
6H 12F12m2~0!

m2~0!
Ge236(p2pc)tJ , p.pc

m~0!, p5pc

m~0!

A12m2~0!
e218(pc2p)t, p,pc ,

~5!

where in the first line, the6 sign occurs ifm(0).0 or
m(0),0, respectively.

For p.pc , majority rule prevails and the dynamics
essentially the same as in the original majority rule mo
@1#. The approach to the asymptotic behavior is exponen
in time with a relaxation timetM5@36(p2pc)#21. This cor-
responds to an exit time that scales logarithmically in
system size. Conversely, whenp,pc the dynamics is domi-
nated by the rule of the minority so that the asymptotic m
netization vanishes@for m(0)Þ61]. The approach towards
this steady state is again exponential, but with a relaxa
time tm5@18(pc2p)#21 that is twice as large astM . In
spite of the bias away from consensus, this state is nece
ily reached in a finite system, because this is the only abs
ing state of the dynamics, but the time required to rea
consensus grows exponentially in the system size. Finally
the critical pointpc52/3, the average magnetization remai
invariant, as in the voter model@3#.

III. MM MODEL IN ONE DIMENSION

A. Equations of motion

In one dimension, the original formalism of the Ising
Glauber model@4# can be exploited to obtain the equation
motion for the magnetization, as well as that for higher-ord
spin correlation functions. We consider only the simple
case of group size equal to 3 and denote the spins in a gr
which can take the values61, by S, S8, andS9. Then the
rate at which spinS flips according to majority rule is@1#

W~S→2S!511S8S92S~S81S9!. ~6!

This rate expresses the fact thatS8 andS9 must be equal but
opposite toS for spin S to flip. Conveniently, this same ex
pression also gives the rate at which the spinsS8 andS9 flip
according to minority rule dynamics. Thus for minority ru
the spin-flip rate w(S8,S9→2S8,2S9)[w(S8,S9)5
W(S→2S).
6-3
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First consider majority rule dynamics. In this case a giv
spin Sj belongs to the three groups (Sj 22 ,Sj 21 ,Sj ),
(Sj 21 ,Sj ,Sj 11), and (Sj ,Sj 11 ,Sj 12). This then leads to the
total flip rate@1#

W~Sj→2Sj !531Sj 22Sj 211Sj 21Sj 111Sj 11Sj 12

2Sj@2Sj 2112Sj 111Sj 221Sj 12#. ~7!

On the other hand, for minority rule, the spin-flip rates ar

w~Sj 22 ,Sj 21!511Sj 21Sj 222Sj~Sj 211Sj 22!,

w~Sj 21 ,Sj 11!511Sj 21Sj 112Sj~Sj 211Sj 11!,

w~Sj 11 ,Sj 12!511Sj 11Sj 122Sj~Sj 111Sj 12!. ~8!

The kinetics of the system is described by the mas
equation for the probability distribution for a given spin co
figuration$S%. The derivation of this master equation is sta
dard but tedious and the details are given in Appendix
From the master equation, we can then compute the
equation for the magnetization@Eq. ~A2!#. For the present
discussion, we only study a spatially homogeneous sys
In this case Eq.~A2! simplifies considerably and the resu
ing rate equation is

dm1~ t !

dt
56 ~3p22! @m1~ t !2m3~ t !#, ~9!

with the magnetizationm1(t)[^Sj (t)& written as the first
moment of the spin expectation value, andm3(t)
[^Sj (t)Sj 11(t)Sj 12(t)& is the three-spin correlation func
tion.

Notice that this equation has a very similar structure
Eq. ~4!, the mean-field equation for the magnetization.
fact, Eq.~9! reduces to Eq.~4! if we neglect fluctuations and
assume thatm35m1

3. From Eq.~9!, we deduce several bas
facts.

~1! For p5pc5 2
3 and; m1(0), themagnetization is con-

served. This conservation, valid in all spatial dimensio
relies on the fact that the group size equals 3. Thus atpc we
expect kinetics similar to that in the classical voter mode

~2! For any p, a system that is initially in consensu
@m1(0)561# or a system with zero initial magnetizatio
@m1(0)50# does not evolve. That is,m1(t)5m1(0)561 in
the former case andm1(t)5m1(0)50 in the latter.

~3! The magnetization is generallynot conserved, excep
for the initial statem1(0)50 or 61. This nonconservation
leads to unusual kinetics of the interfaces between region
plus and minus spins. While these domain walls diffuse
they are widely separated, MM dynamics leads to additio
interactions between walls when their distance is less tha
equal to 2.

~4! For pÞpc , the equation for the magnetization is n
closed but involves the three-spin correlation function.
turn, the equation for this correlation function involve
higher-order correlations, thus giving rise to an insolub
infinite equation hierarchy.

To make analytical progress for the behavior of the m
netization in one dimension, we need to truncate this eq
04610
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tion hierarchy. In the following section, we implement such
truncation within the Kirkwood approximation scheme.

B. Kirkwood approximation for the final magnetization

We now study the behavior of the magnetization in o
dimension. Contrary to the case of spatial dimensiond.1,
the magnetization quickly approaches a saturation value
has a smooth and nontrivial dependence onm1(0) @1#. We
implement a Kirkwood decoupling scheme to the exact m
ter equation to obtain the mean magnetizationm(t). We shall
see that this uncontrolled approximation gives surprisin
accurate results.

Our approach is based on writing the exact equation
motion for m2(t)5^Sj (t)Sj 11(t)& and then, in the spirit of
the Kirkwood approximation@20#, factorizing the four-point
functions that appear in this equation as products of tw
point functions. Such an approach has proven quite succ
ful in a variety of applications to reaction kinetics@22–24#.
By solving the resulting nonlinear but closed equation,
obtain an approximate expression form2. Then in Eq.~9! for
the magnetization, we factorize the three-point functionm3

asm1m2 ~instead ofm1
3 as in the usual mean-field analysis!.

We now determine the equation of motion for the cor
lation functionm2 from the master equation~A1!. Following
the same steps as those followed to find the equation for
mean magnetization, we find, after a number of straightf
ward steps~see Appendix B!,

dm2

dt
54@2~11p!2~41p!m21p~c21c3!#

14~223p! m4 , ~10!

where we have used the shorthand notations~for a transla-
tionally invariant system! cr(t)[^Sj (t)Sj 1ur u(t)& and
m4(t)[^Sj (t)Sj 11(t)Sj 12(t)Sj 13(t)&. In general, we re-
serve the notationm2k to denote the average value of a cha
of 2k contiguous spins andcr for the correlation function
between two spins that are separated by a distancer. Thus
when the separation between the two spins equals 1, we
that c1(t)5m2(t)[^Sj (t)Sj 61(t)&.

In spite of the fact that Eq.~10! is exact, the two-spin
correlation functioncr(t) is coupled to higher-order correla
tions and it is therefore difficult to compute these quantit
exactly. However atpc5 2

3 , this equation is closed in that i
involves two-spin correlation functions only~see Sec. III C!.
For pÞpc we simply writem4 asm2

2 in Eq. ~10!, following
the Kirkwood approximation. Since we are mainly interest
in the stationary state att5`, where the variation in the
two-point function as a function ofr is weak, we also make
the assumption thatc2'c3'm2.

We show in Sec. III D that this approximation is accura
for the voter model limit ofp5pc and our numerical results
also show that this approximation continues to give a reas
able description for the properties of the final state wh
p'pc . It is true, however, that this approach does not p
vide a good description of the time dependence of the m
netization.
6-4
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With these approximations and forpÞ 2
3 , Eq. ~10! be-

comes

dm2

dt
54~223p!F ~m221!S m22

2~11p!

223p D G . ~11!

Equation~11! admitsm2(`)51 as the unique and physicall
acceptable fixed point.@The other fixed points are

m2* 5
2~11p!

223p
.1

for 0,p, 2
3 and

m2* 5
2~11p!

223p
,21

for p. 2
3 .# The general solution to Eq.~11!, for 0,p<1 and

pÞpc5 2
3 , is

m2~ t !5
A1b e220pt

A2e220pt
, ~12!

where

b5
pc~11p!

p2pc
and A5

m2~0!1b

m2~0!21
.

At pc5 2
3 , we obtainm2(t)512@12m2(0)#e240t/3. Thus,

for all p, m2(t)→1 ast→`.
We now exploit this result to compute the final magne

zation. In the exact equation~9! for m1, we write m3 as
m1m2 to give

dm1

dt
56~3p22!m1 ~12m2!. ~13!

Notice a crucial difference between this equation of mot
and the mean-field equation~4!. In the stationary state
Eq. ~13! predicts that eitherm1(`)50 or m2(`)51.
Since m2(t)Þm1(t)2 in the Kirkwood approximation, this
means thatm1(`) can be a nontrivial function, even i
m2(`)51.

Integrating Eq.~13! gives the formal expression for th
final magnetization,

m1~`!5m1~0!expH 18~p2pc!E
0

`

dt8@12m2~ t8!#J .

~14!

Substituting the expression form2(t) in Eq. ~12!, we thereby
obtain

m1~`!5m1~0!S b11

b1m2~0! D
3/2

. ~15!

For an initially uncorrelated and random system,m2(0)
5m1(0)2, and

m1~`!5m1~0!S b11

b1m1~0!2D 3/2

. ~16!
04610
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Thus the Kirkwood approximation predicts a final magne
zation that is a nontrivial function of the initial magnetizatio
~Fig. 3!. As p→pc5 2

3 this approximation correctly predict
that the average magnetization is conserved, that
m1(t)5m1(0). When p→0, this approximation also pre
dicts @for m1(0)Þ61] that the final magnetization vanishe
@i.e.,m1(`)50]. Figure 3 shows that the Kirkwood approx
mation is quantitatively accurate for intermediate values op
but is only qualitative forp close to either 0 or 1.

C. Two-spin correlation function at pc

At pc5 2
3 , Eq. ~9! shows that the magnetization of th

MM is conserved. This same conservation law occurs in
voter model which has a consequence that the correla
function ^Sj (t)Sj 1r(t)&21 vanishes ast21/2 in one dimen-
sion. We now show that this same type of coarsening a
occurs in the MM by computing the two-spin correlatio
functions atpc . The equations of motion for these correl
tion functions are cumbersome and they are written in A
pendix B.

For our purposes, we concentrate on translationally
variant and symmetric systems. Then in the equations of
tion for the two-point function@Eqs.~B1!–~B3!#, the coordi-
natesj 1 , j 2 , j 3 , j 4 in the four-point functions always appea
as three consecutive positions, then a gap of sizer, followed
by the coordinate of the last spin. This gap can either oc
on the left or the right side of the spin group. To simplify th
notation, we therefore write these four-point ‘‘gap’’ function
of the form ^Sj 22(t)Sj 21(t)Sj (t)Sj 1r(t)& and
^Sj (t)Sj 1r(t)Sj 1r 11(t)Sj 1r 12(t)& asGr(t). With these sim-
plifications Eq.~B1! gives, for the case of majority rule~i.e.,
p51) and forur u.2,

dcr

dt
54~cr 121cr 2212cr 1112cr 2123cr !

24~Gr1Gr 211Gr 22!. ~17!

For r 51, Eq. ~B2! gives

dc1

dt
54~c21c31425c12G1!, ~18!

FIG. 3. The final magnetization as a function of the initial ma
netization. Shown are the results of numerical simulations for
cases p50.1(1), 0.25(¹), 0.4(D), 0.8(h), and 1 (s). The
smooth curves are the corresponding results from the Kirkw
approximation@Eq. ~16!#.
6-5
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while Eq. ~B3! gives

dc2

dt
54~21c112c31c424c2!24~G11G2!. ~19!

Together withc0(t)51, Eqs.~17!–~19! are the equations o
motion for cr(t) for the translationally invariant majority
model.

For the minority model (p50) we proceed in a simila
manner to write the analog of Eq.~B1!. After straightforward
but lengthy computations the equation of motion is~for
ur u.2)

dcr

dt
58~Gr1Gr 211Gr 22!224cr , ~20!

while for r 51

dc1

dt
58~122c11G1!, ~21!

and for r 52 we have

dc2

dt
58~123c21G11G2!. ~22!

These equations again have to be supplemented by
boundary conditionc0(t)51.

The equation of motion for the two-spin correlation fun
tion in the MM model can now be obtained by takingp times
Eq. ~17! and 12p times Eq.~20!. For generalp, this leads to
an open equation hierarchy. However, atp5pc5 2

3 , the four-
spin correlation functions arising from both the majority a
minority modelscancel for all values ofr. Thus atp5pc ,
we obtain much simpler equations of motion for the two-s
correlation function. Forur u.2, we obtain

dcr

dt
5

8

3
@cr 121cr 2212~cr 111cr 21!26cr #. ~23!

For r 51 we obtained previously@Eq. ~10!#

dc1

dt
5

8

3
~51c21c327c1!, ~24!

while for r 52 we have

dc2

dt
5

8

3
~31c412c31c127c2!. ~25!
04610
he

Equations~23!–~25!, together with the boundary conditio
c0(t)51, constitute a closed and soluble set of coupled
ear differential-difference equations for the two-spin corre
tion functions.

D. Solution for the two-spin correlation function

To solve Eqs.~23!–~25!, first notice that these couple
equations can be recast as the single equation for the a
iary quantitygr(t)[cr(t)21,

dgr

dt
5gr 121gr 2212~gr 111gr 21!26gr

2~g212g1!~d r ,11d r ,21!2~g11g2!~d r ,21d r ,22!

22~g212g1!d r ,0 , ~26!

where for simplicity we have also rescaled the time acco
ing to t→ 8

3 t.
Before proceeding, it is instructive to recall that in th

one-dimensional voter model, the equation for the two-s
correlation functioncr

vm(t) for a translationally invariant sys
tem has the form of the discrete diffusion equation@4#

d

dt
cr

vm5cr 11
vm 1cr 21

vm 22cr
vm ~27!

for ur u>1, supplemented by the boundary conditio
c0

vm(t)51. The solution to this equation is

cr
vm~ t !511e22t(

l 51

`

@cl
vm~0!21#@ I r 2 l~2t !2I r 1 l~2t !#,

~28!

whereI r(t) is the modified Bessel function of first kind@25#.
For the MM model, Eq.~26! is also a discrete diffusion

equation but with second-neighbor hopping. Thus we exp
that this equation can be solved by similar techniques
those used in the voter model. Therefore we introduce
following integral representation that generalizes the mo
fied Bessel function of the first kind:

Ir~ t ![
1

pE0

p

dq cos~qr !e2t[cos 2q12cosq] . ~29!

It is easy to check thatIr(t) satisfies the basic recursio
property İr(t)5Ir 22(t)1Ir 12(t)12@Ir 21(t)1Ir 11(t)#.
Also in analogy with the modified Bessel function of fir
kind, ( r 52`

1` Ir(t)5e6t andIr(0)5d r ,0 . With these proper-
ties, the formal solution of Eq.~26! is
gr~ t !5e26t (
r 852`

1`

gr 8~0!Ir 2r 8~ t !

2E
0

t

dt8g1~ t2t8!e26t8F4Ir~ t8!12(
r 1

Ir 1
~ t8!1(

r 2

Ir 2
~ t8!G

2E
0

t

dt8g2~ t2t8! e26t8F2Ir~ t8!1(
r 1,2

Ir 1,2
~ t8!G , ~30!
6-6
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where in the second line the sums are over the nearest
next-nearest neighbors ofr, respectively, while in the third
line the sum is over both nearest and next-nearest neighb

Since the right-hand side of Eq.~30! still depends ong1
andg2, we have to consider the casesr 51 and 2 separately
to obtain the general solution. This is done in Appendix C
using Laplace transforms. In the long-time and large-dista
limit, the full solution to Eq.~30! quoted in Eq.~C9! reduces
to the much simpler expression

cr~ t !.m1~0!21@12m1~0!2# erfcS r

8At
D ~31!

that clearly shows the scaling behavior inr and t. For com-
parison, the two-spin correlation function of the voter mod
in the same limit and with the same initial condition
cr

vm(0)5m0
2 , is

cr
vm~ t !.m0

22
~12m0

2!

2Apt
(

1< l<2r
e2(r 2 l )2/4t. ~32!

Comparing these two results, we see that the MM mo
shares many of the asymptotic features of the voter mo
The correlation between spins that are separated by a fi
distancer both approach the value 1, with the deviation fro
the asymptotic value decaying ast21/2. As in the voter
model, the density of domain walls between regions of p
and minus spins, that is,@12c1(t)#/2 decays ast21/2 @see
Eq. ~C8!#. Thus in the one-dimensional MM there is coar
ening with typical domains growing ast1/2, as in the voter
model @26#.

Our exact results also shed light on the basic nature of
Kirkwood approximation. This approximation gavec1(t)
512@12m1(0)2#e240t/3, whereas the exact result of E
~C8! predicts thatc1(t) approaches 1 with a correction ter
proportional to t21/2. Although both expressions give th
same asymptotic state of consensus, the incorrect time
pendence in the Kirkwood approximation appears to s
from our assumption thatc1(t)'c2(t)'c3(t). Although this
is valid in the stationary state, it is certainly incorrect in t
transient regime where this assumption is at odds with
diffusive nature of the problem. As confirmed by numeric
results, we thus expect that the Kirkwood approximat
should give good results for the stationary magnetization,
not for the approach to this state.

IV. SUMMARY AND DISCUSSION

We introduced a simple model of opinion dynamics
termed the MM model—in which a fixed-size group
agents is specified and all members of the group adopt
local majority state with probabilityp or the local minority
state with probability 12p. We considered the simplest ca
where the group sizeG53. In the mean-field limit, the prob
ability that the system ends with all spins plus as a funct
of the initial magnetization of the system~the exit probabil-
ity! can be readily obtained. Forp.pc5 2

3 , this exit prob-
ability changes abruptly from21 for initial magnetization
m(0),0 to 11 for m(0).0. Conversely, forp,pc , this
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exit probability is 1/2 for almost allm(0). These behaviors
reflect the inherent biases of majority and minority rules.

In one dimension, the magnetization quickly approache
fixed value that depends only on the initial magnetizatio
This then immediately determines the exit probabili
Within a Kirkwood decoupling scheme for the infinite hie
archy of equations for correlation functions, we obtained
reasonable approximation for the dependence of the fi
magnetization~equivalently the exit probability! on the ini-
tial magnetization. It is worth noting that other decouplin
schemes can also be applied. One such example is the
called ‘‘simple method’’@27#, where the three- and four-poin
correlation functions are decoupled according tom3

5m2
2/m1 andm45m2

2. While this approach sometimes give
superior results to the Kirkwood scheme@23#, this approach
turns out to be ill suited to determining the initial densi
dependence of the final magnetization in one dimension.

At the critical point ofpc5 2
3 , we obtained the exact two

spin correlation function and showed that it exhibits the sa
t1/2 coarsening as in the classical voter model. Although
two-spin correlation function has the same behavior as in
voter model, it is possible that two-time correlation fun
tions, such aŝ S(t)S(t8)&, or quantities related to persis
tence phenomena, will give behavior different than the vo
model.

We would like to suggest several directions for furth
research. First, it would be worthwhile to understand
MM model in finite spatial dimensions strictly greater than
In the special case where the majority exclusively rulesp
51), numerical evidence suggested that the upper crit
dimension of the system is greater than 4@1#. On the other
hand, the upper critical dimension for the voter model equ
2 and this appears to coincide with the behavior of the M
model for p5pc . It should be instructive to understand th
nature of the crossover between these two behaviors.

Another question involves the dependence of the kine
on the group size. For group sizeG.3, a sharp transition
between majority-dominated and minority-dominated kin
ics can be engineered by the following somewhat baro
construction. For a group that containsk plus spins andG
2k minus spins, apply majority rule with probabilityk/G
and minority rule with probability 12k/G. It is easy to
verify that this rule gives zero net magnetization change
each elemental group update. Thus this construction sh
lead to kinetics similar to that of the voter model. Howev
in the more natural situation where the probabilities of a
plying the majority or minority rules are independent
group composition, we do not yet understand the nature
the change between majority-dominated and minor
dominated dynamics.

The kinetics in one dimension presents an intriguing ch
lenge. Within the Glauber formalism, the MM model appea
to be insoluble because correlation functions of different
ders are coupled in the equations of motion. However,
evolution of interfaces between domain walls obeys re
tively simple kinetics that closely resembles the diffusio
limited reactionA1A→0. For the MM model, it is easy to
see that, in addition to diffusion of domain walls, there a
specific constraints in their motion when domain walls a
6-7
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either nearest-neighbor or next-nearest neighbor. In spit
these complications, we would hope that this model is
actly soluble in one dimension.

Finally, it should be worthwhile to extend the model
allow for agents that have an intrinsic identity. In the M
model, the state of an agent is determined only by the lo
environment. However, it is much more realistic for ind
viduals to inherently prefer one of the two states so that
transition rates depend both on this factor as well as on
04610
of
-

al

e
e

state of its neighbors. This seems a natural step to bring
MM model a bit closer to political reality.
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APPENDIX A: MASTER EQUATION

We write the master equation for the probability distribution of a given spin configuration and then use this to obt
equation of motion for the magnetization. From the definition of the MM, the master equation is

d

dt
P~$S%,t !5p(

k
@W~2Sk→Sk!P~$S%k ,t !2W~Sk→2Sk!P~$S%,t !#

1~12p!(
k

@w~2Sk22 ;2Sk21!P~$S%k22,k21 ,t !2w~Sk22 ;Sk21!P~$S%,t !#

1~12p!(
k

@w~2Sk21 ;2Sk11!P~$S%k21,k11 ,t !2w~Sk21 ;Sk11!P~$S%,t !#

1~12p!(
k

@w~2Sk11 ;2Sk12!P~$S%k11,k12 ,t !2w~Sk11 ;Sk12!P~$S%,t !#. ~A1!

Here P($S%,t) denotes the probability for the spin configuration$S% at time t and P($S%k ,t) is the probability for the
configuration$S%k where spinSk is reversed compared to$S%. Similarly P($S%k1 ,k2

,t) is the probability of the configuration

where spinsSk1
andSk2

are reversed compared to$S%.
From this master equation, and with the help of Eqs.~7! and~8!, it follows that the mean magnetization obeys the equat

of motion

d

dt
^Sj&5(

$S%
Sj

d

dt
P~$S%,t !

52p@^Sj 22&1^Sj 12&12^Sj 21&12^Sj 11&23^Sj&#

22p@^SjSj 11Sj 12&1^Sj 21SjSj 11&1^Sj 22Sj 21Sj&#

22~12p!@6^Sj&22^Sj 22Sj 21Sj&22^Sj 21SjSj 11&22^SjSj 11Sj 12&#. ~A2!

To arrive at this equation, we have taken the thermodynamic limit, made some obvious cancellations, and used the
relations:

(
$S%

Sj P~$S% j !52^Sj&; (
{ S}

Sj P~$S%kÞ j !5^Sj&,

(
$S%

Sj P~$S% j ,k8Þ j !52^Sj&; (
{ S}

Sj P~$S%kÞ j ,k8Þ j !5^Sj&,

(
$S%

SjSj 8P~$S% j , j 8!5^SjSj 8&

APPENDIX B: EQUATIONS OF MOTION FOR TWO-SPIN CORRELATION FUNCTIONS

We write the general equations of motion for the two-spin correlation functions. For simplicity consider the case of m
rule ~i.e., p51). In this case, we have
6-8
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d

dt
^Sj~ t !Sj 1r~ t !&522^SjSj 1rW~Sj→2Sj !&22^Sj Sj 1r W~Sj 1r→2Sj 1r !&

52@^Sj 22~ t !Sj 1r~ t !&1^Sj 12~ t !Sj 1r~ t !&12^Sj 21~ t !Sj 1r~ t !&12^Sj 11~ t !Sj 1r~ t !&26^Sj~ t !Sj 1r~ t !&#

12@^Sj~ t !Sj 1r 22~ t !&1^Sj~ t !Sj 1r 12~ t !&12^Sj~ t !Sj 1r 21~ t !&12^Sj~ t !Sj 1r 11~ t !&#

22@^Sj 22~ t !Sj 21~ t !Sj~ t !Sj 1r~ t !&1^Sj 21~ t !Sj~ t !Sj 11~ t !Sj 1r~ t !&1^Sj~ t !Sj 11~ t !Sj 12~ t !Sj 1r~ t !&#

22@^Sj~ t !Sj 1r 22~ t !Sj 1r 21~ t !Sj 1r~ t !&1^Sj~ t !Sj 1r 21~ t !Sj 1r~ t !Sj 1r 11~ t !&

1^Sj~ t !Sj 1r~ t !Sj 1r 11~ t !Sj 1r 12~ t !&#. ~B1!

This equation applies forrÞ0,61,62. Forr 50 we have simplŷ Sj (t)
2&51. The casesr 561 andr 562 have to be dealt

with separately. Forr 51, we have

d

dt
^Sj~ t !Sj 11~ t !&52@81^Sj 22~ t !Sj 11~ t !&210̂ Sj~ t !Sj 11~ t !&1^Sj~ t !Sj 12~ t !&

1^Sj 21~ t !Sj 11~ t !&1^Sj~ t !Sj 13~ t !&#

22@^Sj 22~ t !Sj 21~ t !Sj~ t !Sj 11~ t !&1^Sj~ t !Sj 11~ t !Sj 12~ t !Sj 13~ t !&# ~B2!

and the equationr 521 has a very similar form. Forr 52 we obtain

d

dt
^Sj~ t !Sj 12~ t !&52@428^Sj~ t !Sj 12~ t !&12^Sj~ t !Sj 13~ t !&12^Sj 21~ t !Sj 12~ t !&1^Sj~ t !Sj 14~ t !&#

12@^Sj 22~ t !Sj 12~ t !&1^Sj~ t !Sj 11~ t !&1^Sj 11~ t !Sj 12~ t !&#

22@^Sj 22~ t !Sj 21~ t !Sj~ t !Sj 12~ t !&1^Sj 21~ t !Sj~ t !Sj 11~ t !Sj 12~ t !&#

22@^Sj~ t !Sj 11~ t !Sj 12~ t !Sj 13~ t !&1^Sj~ t !Sj 12~ t !Sj 13~ t !Sj 14~ t !&#, ~B3!

and similarly forr 522. For a translationally invariant system, Eqs.~B1!–~B3! reduce, respectively, to Eqs.~17!–~19!.
The equations of motion for minority rule~wherep50) are obtained in a similar manner by starting with the analog of

~B1! when the minority rule hopping rates are used. For the translationally invariant minority model, the equations of
for the correlation functions are then given by Eqs.~20!–~22!.

APPENDIX C: SOLUTION FOR THE CORRELATION FUNCTION

In this appendix, we solve Eq.~30!. For this purpose it is convenient to introduce the Laplace transform. For an uncorre
but random initial state wherecr(0)5m1(0)2, and using the properties of the functionsI introduced in Eq.~29!, the Laplace
transform ofgr(t) is

ĝr~s![E
0

`

dt e2st gr~ t !

52
12@m1~0!#2

s
2@4Îr~s!12Îr 11~s!12Îr 21~s!1Îr 12~s!1Îr 22~s!#ĝ1~s!

2@2Îr~s!1Îr 11~s!1Îr 21~s!1Îr 12~s!1Îr 22~s!#ĝ2~s!, ~C1!

where

Îr~s![E
0

`

dt e2st@e26tIr~ t !#

5E
0

pdq

p

cosqr

s1622$cos 2q12 cosq%

5 i R
G

dz

2p

zr 11

z412z32~s16!z212z11
, ~C2!
046106-9
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andG denotes the unit circle in the complex plane centered at the origin. In principle, integral~C2! can be computed by the
residue theorem. However, we shall see that this calculation is unnecessary for determining the long-time behavi
correlation functions.

By substitutingr 51 andr 52 into Eq.~C1! we obtain a linear system of two equations that is readily solved and gives
the Laplace transforms ofg1(t) andg2(t),

ĝ1~s!5$12@m1~0!#2%
J2~s!2K2~s!21

@11J1~s!1K2~s!2J2~s!K1~s!1J1~s!K2~s!#s
,

ĝ2~s!5$12@m1~0!#2%
K1~s!2J1~s!21

@11J1~s!1K2~s!2J2~s!K1~s!1J1~s!K2~s!#s
, ~C3!

where we have introduced the following quantities:

J1~s![2Î0~s!15Î1~s!12Î2~s!1Î3~s!,

K1~s![Î0~s!13Î1~s!1Î2~s!1Î3~s!,

J2~s![Î0~s!12Î1~s!14Î2~s!12Î3~s!1Î4~s!,

K2~s![Î0~s!1Î1~s!12Î2~s!1Î3~s!1Î4~s!. ~C4!

Since we are mainly interested in the long-time behavior of the two-spin correlation functions, we focus on thes
dependence of the quantities in Eq.~C4!. For s→0 integral~C2! diverges forq→0. Clearly, the main contribution to thi
integral in the long-time limit~equivalentlys→0) is obtained by expanding the integrand forq→0 before performing the
integration. We obtain

Îr~s! →
s→0

E
0

pdq

p

cos~qr !

s16q2
.E

0

`dq

p

cos~qr !

s16q2
5

e2rAs/6

2A6s
. ~C5!

Substituting this expression into Eq.~C3! and expanding the resulting exponential terms gives

ĝ1~s! →
s→0

2
2

25
@12m1~0!2#A6

s
,

ĝ2~s! →
s→0

2
12m1~0!2

5
A6

s
. ~C6!

The expressions forĝ1 and ĝ2, together with Eq.~C1!, provide the Laplace transform ofĝr(r ) in the s→0 regime.
For finite r .2, we substitute Eqs.~C5! and ~C6! into Eq. ~C1!, expands the exponential terms asrAs→0, and obtain

ĝr~s! →
s→0

2@12m1~0!2#
5r 24

5A6s
. ~C7!

Laplace inverting Eqs.~C6! and ~C7! then gives, fort→`, with r 2!t,

c1~ t !512
3@12m1~0!2#

25Apt
,

c2~ t !512
3@12m1~0!2#

10Apt
,

cr~ t !512@12m1~0!2#
5r 24

20Apt
~r>2!, ~C8!

where we have restored the original time scale, i.e.,t→ 3
8 t.

In the limit r→` ands→0, with rAs kept fixed, we substitute Eqs.~C6! into Eq. ~C1!, and obtain, after inverse Laplac
transforming,
046106-10
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cr~ t !5@m1~0!#21
12@m1~0!#2

50 F18 erfcS r

8At
D 17 erfcS r 12

8At
D 17 erfcS r 22

8At
D G

1
9$12@m1~0!#2%

50 FerfcS r 11

8At
D 1erfcS r 21

8At
D G , ~C9!

where erfc(t)[(2/Ap)* t
`dz e2z2

is the complementary error function, and we used the fact that the inverse Laplace tran

of e2Asa/s is erfc(1
2 Aa/t) @25#. Equation~C9! simplifies considerably if we make ther→` approximationr'r 61'r 62. In

this limit, we obtain the expression quoted in Eq.~31!.
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