
Capture of the Lamb: Di�using Predators Seeking a Di�using PreyS. Redner and P. L. KrapivskyCenter for BioDynamis, Center for Polymer Studies, and Department of Physis,Boston University, Boston, MA 02215We study the apture of a di�using \lamb" by di�using \lions" in one dimension. The apturedynamis is exatly soluble by probabilisti tehniques when the number of lions is very small, andis tratable by extreme statistis onsiderations when the number of lions is very large. However,the exat solution for the general ase of three or more lions is still not known.I. INTRODUCTIONWhat is the survival probability of a di�using lamb whih is hunted by N hungry lions? Although this aptureproess is appealingly simple to de�ne (see Fig. 1), its long-time behavior1{3 poses a theoretial hallenge beauseof the deliate interplay between the positions of the lamb and the losest lion. This model also illustrates a generalfeature of nonequilibrium statistial mehanis: life is riher in low dimensions. For spatial dimension d > 2, it isknown that the apture proess is \unsuessful" (in the terminology of Ref. 1), as there is a nonzero probability forthe lamb to survive to in�nite time for any initial spatial distribution of the lions. This result is a onsequene of thetransiene of di�usion for d > 2,4;5 whih means that two nearby di�using partiles in an unbounded d > 2 domainmay never meet. For d = 2, apture is \suessful", as the lamb dies with ertainty. However, di�using lions in d = 2are suh poor predators that the average lifetime of the lamb is in�nite! Also, the lions are essentially independent,1so that the survival probability of a lamb in the presene of N lions in two dimensions is SN (t) / S1(t)N , where S1(t),the survival probability of a lamb in the presene of a single lion, deays as5 (ln t)�1.
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timeFIG. 1. Spae-time evolution in one dimension of N = 4 di�using lions (dotted lines) whih all start at x = 0 and a singledi�using lamb (dashed) whih starts at x = x0. The trajetory of the losest (\last") lion, whose individual identity mayhange with time, is indiated by the heavy solid path.Lions are more eÆient predators in d = 1 beause of the reurrene of di�usion,4;5 whih means that two di�usingpartiles are ertain to meet eventually. The d = 1 ase is also speial beause there are two distint generi ases.When the lamb is surrounded by lions, the survival probability at a �xed time dereases rapidly with N beausethe safe zone whih remains unvisited by lions at �xed time shrinks rapidly in N . This artile fouses on the moreinteresting situation of N lions all to one side of the lamb (Fig. 1), for whih the lamb survival probability deays asa power law in time with an exponent that grows only logarithmially in N .We begin by onsidering a lamb and a single stationary lion in Setion II. The survival probability of the lambS1(t) is losely related to the �rst-passage probability of one-dimensional di�usion4;5 and leads to S1(t) � t�1=2. Itis also instrutive to onsider general lion and lamb di�usivities. We treat this two-partile system by mapping itonto an e�etive single-partile di�usion problem in two dimensions with an absorbing boundary to aount for thedeath of the lamb when it meets the lion,6 and then solving the two-dimensional problem by the image method. Weapply this approah in Setion III by mapping a di�using lamb and two di�using lions onto a single di�using partilewithin an absorbing wedge whose opening angle depends on the partile di�usivities,7 and then solving the di�usionproblem in this absorbing wedge by lassial methods. 1



In Setion IV, we study N � 1 di�using lions.2;3 An essential feature of this system is that the motion of thelosest (\last") lion to the lamb is biased towards the lamb, even though eah lion di�uses isotropially. The many-partile system an be reast as a two-partile system onsisting of the lamb and an absorbing boundary whih, fromextreme statistis,8 moves to the right as p4DLt lnN , where DL is the lion di�usivity. Beause this time dependenemathes that of the lamb's di�usion, the survival probability depends intimately on these two motions,9{11 withthe result that SN (t) � t��N and �N / lnN . The logarithmi dependene of �N on N reets the fat that eahadditional lion poses a progressively smaller marginal peril to the lamb | it matters little whether the lamb is huntedby 99 or 100 lions. Amusingly, the value of �N implies an in�nite lamb lifetime for N � 3 and a �nite lifetimeotherwise. In the terminology of Ref. 1, the apture proess hanges from \suessful" to \omplete" when N � 4.We lose with some suggestions for additional researh on this topi.II. SURVIVAL IN THE PRESENCE OF ONE LIONA. Stationary Lion and Di�using LambWe begin by treating a lamb whih starts at x0 > 0 and a stationary lion at x = 0. In the ontinuum limit, theprobability density p(x; t) that the lamb is at any point x > 0 at time t satis�es the di�usion equation�p(x; t)�t = D` �2p(x; t)�x2 ; (1)where D` is the di�usivity (or di�usion oeÆient). The probability density satis�es the boundary ondition p(x =0; t) = 0 to aount for the death of the lamb if it reahes the lion at x = 0, and the initial ondition p(x; t = 0) =Æ(x � x0). Equation (1) may be easily solved by the familiar image method.5 For x > 0, p(x; t) is the superpositionof a Gaussian entered at x0 and an \image" anti-Gaussian entered at �x0:p(x; t) = 1p4�D`t he�(x�x0)2=4D`t � e�(x+x0)2=4D`ti : (2)The image ontribution ensures that the boundary ondition at x = 0 is automatially satis�ed, while the full solutionsatis�es both the initial ondition and the di�usion equation. Thus Eq. (2) gives the probability density of the lambfor x > 0 in the presene of a stationary lion at x = 0.The probability that the lamb meets the lion at time t equals the di�usive ux to x = 0 at time t. The ux isF (t) = +D`�p(x; t)�x ����x=0 = x0p4�D`t3 e�x20=4D`t: (3)The ux F (t) is also the �rst-passage probability to the origin, namely, the probability that a di�using lamb whihstarts at x0 reahes x = 0 for the �rst time at time t. Note that in the long time limit, de�ned by D`t � x20, the�rst-passage probability redues to F (t) ! x0=t3=2. This t�3=2 time dependene is a harateristi feature of the�rst-passage probability in one dimension.5The probability that the lamb dies by time t is the time integral of F (t) up to time t. The survival probabilityis just the omplementary fration of these doomed lambs, that is,S1(t) = 1�Z t0 F (t0) dt0;= 1�Z t0 x0p4�D`t03 e�x20=4D`t0 dt0: (4)The integral in Eq. (4) an be redued to a standard form by the substitution u = x0=p4D`t0 to giveS1(t) = erf� x0p4D`t� � x0p�D`t as t!1; (5)where erf(z) = (2=p�)R z0 e�u2 du is the error funtion.12 The same expression for S1(t) an be obtained by integratingthe spatial probability distribution in Eq. (2) over all x > 0.An amusing feature of the t�1=2 deay of the lamb survival probability is that although the lamb dies withertainty, its average lifetime, de�ned as hti = R10 t F (t) dt = R10 S(t) dt � R1 t�1=2 dt, is in�nite. This in�nite2



lifetime arises beause the small fration of lambs whih survive tend to move relatively far away from the lion. Morepreisely, the superposition of the Gaussian and anti-Gaussian in Eq. (2) leads to a lamb probability distributionwhih is peaked at a distane (D`t)1=2 from the origin, while its spatial integral deays as (D`t)�1=2.B. Both Speies Di�usingWhat is the survival probability of the lamb when the lion also di�uses? In the rest frame of the lamb, thelion now moves if either a lion or a lamb hopping event ours, and their separation di�uses with di�usivity equalto D` +DL (see for example, Ref. 5), where DL is the lion di�usivity. From the disussion of Setion IIA, the lambsurvival probability has the asymptoti time dependene S1(t) � x0=p�(D` +DL)t.
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FIG. 2. Mapping of the lion and lamb oordinates in one dimension to the planar oordinates y1 = xL=pDL andy2 = x`=pD`. The initial y-oordinates of the lion-lamb pair, (0;pD`), and its image are indiated by the solid and openirles, respetively. Survival of the lamb, y1pDL < y2pD`, translates to the di�using partile in the plane remaining aboveand to the left of the absorbing line y1pDL = y2pD`.It is also instrutive to determine the spatial probability distribution of the lamb. This distribution may befound onveniently by mapping the two-partile interating system of lion at xL and lamb at x` in one dimension toan e�etive single-partile system in two dimensions6 and then applying the image method to solve the latter (seeFig. 2). To onstrut this mapping, we introdue the saled oordinates y1 = xL=pDL and y2 = x`=pD` to render thetwo-dimensional di�usive trajetory (y1; y2) isotropi. The probability density in the plane, p(y1; y2; t), must satisfyan absorbing boundary ondition when y2pD` = y1pDL, orresponding to the death of the lamb when it meets thelion. For simpliity and without loss of generality, we assume that the lion and lamb are initially at xL(0) = 0 andx`(0) = 1 respetively, that is, y1(0) = 0 and y2(0) = pD`. The probability density is therefore the sum of a Gaussianentered at (y1(0); y2(0)) = (0;pD`) and an anti-Gaussian image. From the orientation of the absorbing boundary(Fig. 2), this image is entered at (pD` sin 2�;�pD` os 2�), where � = tan�1pDL=D`.
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FIG. 3. Probability distribution of the lamb in one dimension at time t = 10 (Eq. (8)) when the lion and lamb are initiallyat xL = 0 and x` = 1, respetively. The ases shown are r = D`=DL = 0:1, 1, and 10 (bottom to top).From this image representation, the probability density in two dimensions isp(y1; y2; t) = 14�t he�[y21+(y2�pD`)2℄=4t � e�[(y1�pD` sin 2�)2+(y2+pD` os 2�)2℄=4ti : (6)The probability density for the lamb to be at y2 is the integral of the two-dimensional density over the aessible3



range of the lion oordinate y1: p(y2; t) =Z y2 ot ��1 p(y1; y2; t) dy1: (7)If we substitute the result (6) for p(y1; y2; t), the integral in Eq. (7) an be expressed in terms of the error funtion.We then transform bak to the original lamb oordinate x` = y2pD` by using p(x`; t) dx` = p(y2; t) dy2 to obtainp(x`; t) = 1p16�D`t�e�(x`�1)2=4D`t erf��x` ot �p4D`t �� e�(x`+os 2�)2=4D`t erf� sin 2� � x` ot �p4D`t ��; (8)where erf(z) = 1� erf(z) is the omplementary error funtion. A plot of p(x`; t) is shown in Fig. 3 for various valuesof the di�usivity ratio r � D`=DL. The �gure shows that the survival probability of the lamb rapidly dereases asthe lion beomes more mobile. Note that when the lion is stationary, � = 0, and Eq. (8) redues to Eq. (2).III. TWO LIONSTo �nd the lamb survival probability in the presene of two di�using lions, we generalize the above approah tomap the three-partile interating system in one dimension to an e�etive single di�using partile in three dimensionswith boundary onditions that reet the death of the lamb whenever a lion is enountered.7 Let us label the lions aspartiles 1 and 2, and the lamb as partile 3, with respetive positions x1, x2, and x3, and respetive di�usivities Di.It is again useful to introdue the saled oordinates yi = xi=pDi whih renders the di�usion in the yi oordinatesspatially isotropi. In terms of yi, lamb survival orresponds to y2pD2 < y3pD3 and y1pD1 < y3pD3. Theseonstraints mean that the e�etive partile in three-spae remains behind the plane y2pD2 = y3pD3 and to theleft of the plane y1pD1 = y3pD3 (Fig. 4(a)); this geometry is a wedge region of opening angle � de�ned by theintersetion of these two planes. If the partile hits one of the planes, then one of the lions has killed the lamb.
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3DD 3=y y1FIG. 4. (a) Mapping between the oordinates xi of three di�using partiles on the line and a single isotropially di�usingpartile in the three-dimensional spae yi = xi=pDi, subjet to the onstraints y1pD1 < y3pD3 and y2pD2 < y3pD3. Thelamb survives if it remains within the wedge-shaped region of opening angle �. (b) Projetion of the wedge onto a planeperpendiular to the ê axis de�ned by the intersetion of the two planes.This mapping therefore provides the lamb survival probability, sine it is known that the survival probability ofa di�using partile within this absorbing wedge asymptotially deays as134



Swedge(t) � t��=2�: (9)For ompleteness, we derive this asymptoti behavior by mapping the di�usive system onto a orresponding eletro-stati system in Appendix A. To determine the value of � whih orresponds to our 3-partile system, notie thatthe unit normals to the planes y1pD1 = y3pD3 and y2pD2 = y3pD3 are n̂13 = (�pD1; 0;pD3)=pD1 +D3 andn̂23 = (0;�pD2;pD3)=pD2 +D3, respetively. Consequently os� = n̂13 � n̂23 (Fig. 4(b)), and the wedge angle is� = � � � = � � os�1[D3=p(D1 +D3)(D2 +D3)℄. If we take D1 = D2 = DL for idential lions, and D3 = D`, thesurvival exponent for the lamb is �2(r) = �2� = �2� 2� os�1 r1 + r��1 ; (10)where r = D`=DL.
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FIG. 5. The survival exponent �2(r) given by Eq. (10) versus the di�usivity ratio r.The dependene of �2(r) on the di�usivity ratio r is shown in Fig. 5. This exponent monotonially dereases from1 at r = 0 to 1/2 for r !1. The former ase orresponds to a stationary lamb, where the two lions are statistiallyindependent and S2(t) = S1(t)2. On the other hand, when r ! 1 the lamb di�uses rapidly and the motion of thelions beomes irrelevant. This limit therefore redues to the di�usion of a lamb and a stationary absorber, for whihS2(t) = S1(t). Finally, for D` = DL, �2 = 3=4 < 2�1, and equivalently, S2(t) > S1(t)2. This inequality reets thefat that the inremental threat to the lamb from the seond lion is less than the �rst.IV. MANY LIONSThe above onstrution an, in priniple, be extended by reasting the survival of a lamb in the presene ofN lionsas the survival of a di�using partile in N+1 dimensions within an absorbing hyper-wedge de�ned by the intersetionof the N half-spaes xi < xN+1, i = 1; 2; : : : ; N . This approah has not led to a tratable analytial solution. On theother hand, numerial simulations1 indiate that the exponent �N grows slowly with N , with �3 � 0:91, �4 � 1:03,and �10 � 1:4. The understanding of the slow dependene of �N on N is the fous of this setion.A. LOCATION OF THE LAST LIONOne way to understand the behavior of the survival probability is to fous on the lion losest to the lamb, beausethis last lion ultimately kills the lamb. As was shown in Fig. 1, the individual identity of this last lion an hangewith time due to the rossing of di�erent lion trajetories. In partiular, rossings between the last lion and its leftneighbor lead to a systemati rightward bias of the last lion. This bias is stronger for inreasing N , due to the largernumber of rossings of the last lion, and this high rossing rate also leads to xlast(t) beoming smoother as N inreases(Fig. 6). This approah of the last lion to the lamb is the mehanism whih leads to the survival probability of thelamb deaying as t��N , with �N a slowly inreasing funtion of N .
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FIG. 6. Time dependene of xlast for a single realization of N = 4, 64, and 1028 lions (bottom to top). This data wasgenerated by traking the position of the rightmost among N lions, eah of whih performs a nearest-neighbor disrete-timerandom walk starting from x = 0. The oinidene of the data and the linear early-time growth of xlst are artifats of thedisrete random walk motion. The straight line of slope 1/2 indiates the expeted long-time behavior.To determine the properties of this last lion, suppose that N � 1 lions are initially at the origin. If the lionsperform nearest-neighbor, disrete-time random walks, then at short times, xlast(t) = t. This trivial dependenepersists as long as the number of lions at the last site in their spatial distribution is muh greater than one. In thisase there is a large probability that one of these lions will hop to the right, thus maintaining the deterministi growthof xlast. This growth will ontinue as long as Np4�DLte�t2=4DLt � 1, that is, for t � 4DL lnN . At long times, anestimate for the loation of the last lion is provided by the ondition8Z 1xlast Np4�DLt e�x2=4DLt dx = 1: (11)Equation (11) spei�es that there is one lion out of an initial group of N lions whih is in the range [xlast;1℄. Althoughthe integral in Eq. (11) an be expressed in terms of the omplementary error funtion, it is instrutive to evaluate itexpliitly by writing x = xlast + � and re-expressing the integrand in terms of �. We �nd thatZ 1xlast Np4�DLt e�x2last=4DLt e�xlast�=2DLt e��2=4DLt d� = 1: (12)Over the range of � for whih the seond exponential fator is non-negligible, the third exponential fator is nearlyequal to unity. The integral in Eq. (12) thus redues to an elementary form, with the resultNp4�DLt e�x2last=4DLt 2DLtxlast = 1: (13)If we de�ne y = xlast=p4DLt and M = N=p4�, the ondition in Eq. (13) an be simpli�ed toyey2 = M; (14)with the solution y = plnM �1� 14 ln(lnM)lnM + : : :�: (15)In addition to obtaining the mean loation of the last lion, extreme statistis an be used to �nd the spatial probabilityof the last lion. For ompleteness, this alulation is presented in Appendix B.6



To lowest order, Eq. (15) gives xlast(t) �p4DL lnN t �pAN t; (16)for �nite N . For N = 1, xlast(t) would always equal t if an in�nite number of disrete random walk lions wereinitially at the origin. A more suitable initial ondition therefore is a onentration 0 of lions uniformly distributedfrom �1 to 0. In this ase, only N / p20DLt of the lions are \dangerous," that is, within a di�usion distanefrom the edge of the pak and thus potential andidates for killing the lamb. Consequently, for N !1, the leadingbehavior of xlast(t) beomes xlast(t) �q2DL ln(20DLt) t : (17)As we disuss in Setion IVB, the survival probability of the lamb in the presene of many lions is essentially determinedby this behavior of xlast.B. LAMB SURVIVAL PROBABILITY FOR LARGE NAn important feature of the time dependene of xlast is that utuations derease for large N (Fig. 6). Thereforethe lamb and N di�using lions an be reast as a two-body system of a lamb and an absorbing boundary whihdeterministially advanes toward the lamb as xlast(t) = pAN t.To solve this two-body problem, it is onvenient to hange oordinates from [x; t℄ to [x0 = x�xlast(t); t℄ to �x theabsorbing boundary at the origin. By this onstrution, the di�usion equation for the lamb probability distributionis transformed to the onvetion-di�usion equation�p(x0; t)�t � xlast2t �p(x0; t)�x0 = D` �2p(x0; t)�x02 ; (0 � x0 <1) (18)with the absorbing boundary ondition p(x0 = 0; t) = 0. In this referene frame whih is �xed on the average positionof the last lion, the seond term in Eq. (18) aounts for the bias of the lamb towards the absorber with a \veloity"�xlast=2t. Beause xlast � pAN t and x0 � pD`t) have the same time dependene, the lamb survival probabilityaquires a nontrivial dependene on the dimensionless parameter AN=D`.9{11 Suh a dependene is in ontrast to theases xlast � x0 or xlast � x0, where the asymptoti time dependene of the lamb survival is ontrolled by the fasterof these two o-ordinates. Suh a phenomenon ours whenever there is a oinidene of fundamental length sales inthe system (see, for example, Ref. 14).Equation (18) an be transformed into the paraboli ylinder equation by the following steps.3 First introduethe dimensionless length � = x0=xlast and make the following saling ansatz for the lamb probability density,p(x0; t) � t��N�1=2F (�): (19)The power law prefator in Eq. (19) ensures that the integral of p(x0; t) over all spae, namely the survival probability,deays as t��N , and F (�) expresses the spatial dependene of the lamb probability distribution in saled length units.This ansatz odi�es the fat that the probability density is not a funtion of x0 and t separately, but is a funtiononly of the dimensionless ratio x0=xlast(t). The saling ansatz provides a simple but powerful approah for reduingthe omplexity of a wide lass of systems with a divergent harateristi length sale as t!1.14If we substitute Eq. (19) into Eq. (18), we obtainD`AN d2Fd�2 + 12(� + 1)dFd� + ��N + 12�F = 0: (20)Now introdue � = (� + 1)pAN=2D` and F (�) = e��2=4D(�) in Eq. (20). This substitution leads to the paraboliylinder equation of order 2�N15 d2D2�Nd�2 + �2�N + 12 � �24 �D2�N = 0; (21)subjet to the boundary ondition, D2�N (�) = 0 for both � = pAN=2D` and � = 1. Equation (21) has the formof a Shr�odinger equation for a quantum partile of energy 2�N + 12 in a harmoni osillator potential �2=4 for7



� >pAN=2D`, but with an in�nite barrier at � =pAN=D`.16 For the long time behavior, we want the ground stateenergy in this potential. For N � 1, we may approximate this energy as the potential at the lassial turning point,that is, 2�N + 12 ' �2=4. We therefore obtain �N � AN=16D`. Using the value of AN given in Eqs. (16) and (17)gives the deay exponent �N � 8<: DL4D` lnN; N �niteDL8D` ln t: N =1 (22)The latter dependene of �N implies that for N !1, the survival probability has the log-normal formS1(t) � exp�� DL8D` ln2 t� : (23)Although we obtained the survival probability exponent �N for arbitrary di�usivity ratio r = D`=DL, simpleonsiderations give di�erent behavior for r � 1 and r � 1. For example, for r = 0 (stationary lamb) the survivalprobability deays as t�N=2. Therefore Eq. (22) an no longer apply for r < N�1, where �N (r) beomes of orderN . Conversely, for r = 1 (stationary lions), the survival probability of the lamb deays as t�1=2. Thus Eq. (22)will again ease to be valid for r > lnN , where �N (r) beomes of order unity. By aounting for these limits,3 thedependene of �N on the di�usivity ratio r is expeted to be�N (r) = (N=2 r � 1=N(1=4r) ln(4N) 1=N � r � lnN1=2 r � lnN . (24)The r dependene of �N in the intermediate regime of 1=N � r � lnN generalizes the exponents given in Eq. (10)for the three-partile system to general N .V. DISCUSSIONWe investigated di�usive apture of a lamb in one dimension by using of several essential tehniques of nonequi-librium statistial mehanis inluding �rst-passage properties of di�usion, extreme value statistis, eletrostatianalogies, saling analysis, and moving boundary value theory. These tools provide an appealing physial desriptionfor the survival probability of the lamb in the presene of N lions for the ases of very small and very large N .Nevertheless, the exat solution to apture of the lamb remains elusive for N � 3.We lose by suggesting several avenues for further study:1. Better Simulation Methods. Previous simulations of this system1 followed the random walk motion of one lamband N lions until the lamb was killed. This type of simulation is simple to onstrut. One merely plaesthe lamb and lions on a one-dimensional lattie and have them perform independent nearest-neighbor randomwalks until one lion lands on the same site as the lamb. The survival probability is obtained by averagingover a large number of realizations of this proess. However, following the motion of disrete random walks isineÆient, beause it is unlikely for the lamb to survive to long times and many realizations of the proess mustbe simulated to obtain aurate long-time data. In priniple, a muh better approah would be to propagatethe exat probability distribution of the partiles in the system.17 Can suh an approah be developed for thelamb-lion apture proess? Another possibility is to devise a simple disrete random-walk proess to simulatethe motion of the last lion. Suh a onstrution would permit onsideration of just the lamb and the last lion,thus providing signi�ant omputational eÆieny.2. The Last Lion. Extreme value statistis provides the spatial probability distribution of the last lion. We mayalso ask other basi questions: How long is a given lion the \last" one? How many lead hanges of the last lionour up to time t? How many di�erent lions may be in the lead up to time t? What is the probability that apartiular lion is never in the lead? Methods to investigate some of these issues are also outlined in the artileby Shmittmann and Zia18 in this journal issue.3. Spatial Probability Distribution of the Lamb. As we have seen for the ase of one lion, the spatial distributionof the lamb is a useful harateristi of the apture proess. What happens for large N? In priniple, thisinformation is ontained in the solution to the paraboli ylinder equation for the saled probability distribution(Eq. (21)). The most interesting behavior is the form of the distribution lose to the absorbing boundary, where8



the interation between the lions and the lamb is strongest. For N = 1 lion, this distribution deays linearly tozero as a funtion of the distane to the lion, while for N = 2, the distribution has a power law deay in thedistane to the last lion whih depends on the di�usivity ratio D`=DL. What happens for general N and forgeneral di�usivity ratio? Is there a physial way to determine this behavior?4. Two-Sided Problem. If N lions are loated on both sides of the lamb, then the lamb is relatively short-livedbeause there is no esape route. One an again onstrut a mapping between the N + 1-partile reatingsystem and the di�usion of an e�etive partile in an absorbing wedge-shaped domain in N + 1 dimensions.From this mapping, SN (t) deays as t�N , but the dependene of N on N and di�usivity ratio is unknown. Itis lear, however, that the optimal strategy for the surrounded lamb is to remain still, in whih ase the lionsare statistially independent and we then reover SN (t) � t�N=2. Is there a simple approah that provides thedependene of N on N for arbitrary di�usivity ratio? Finally, S1(t) exhibits a strethed exponential deay intime, exp(�t1=2).19;20 What is that nature of the transition from �nite N to in�nite N behavior?5. Intelligent Predators and Prey. In a more realisti apture proess, lions would hase the lamb, while the lambwould attempt to run away. What are physially-reasonable and analytially-tratable rules for suh diretedmotion whih would lead to new and interesting kineti behaviors?ACKNOWLEDGMENTSWe gratefully aknowledge NSF grant DMR9632059 and ARO grant DAAH04-96-1-0114 for partial support ofthis researh.APPENDIX A: SURVIVAL PROBABILITY OF A DIFFUSING PARTICLE WITHIN A WEDGEThe survival probability of a di�using partile within an absorbing wedge an be derived by solving the di�usionequation in this geometry.7;13 We provide an alternative derivation of this result an also be obtained by developinga orrespondene between di�usion and eletrostatis in the same boundary geometry. Although the logi underlyingthe orrespondene is subtle, the result is simple and has wide appliability.The orrespondene rests on the fat that the integral of the di�usion equation over all time redues to thePoisson equation. This time integral isZ 10 �Dr2p(r; �; t) = �p(r; �; t)�t � dt: (25)If one de�nes an eletrostati potential by �(r; �) =R10 p(r; �; t) dt, Eq. (25) an be written asr2�(r; �) = � 1D [p(r; �; t =1)� p(r; �; t = 0)℄ : (26)For a boundary geometry suh that the asymptoti survival probability in the di�usive system is zero, then Eq. (26) isjust the Poisson equation, with the initial ondition in the di�usive system orresponding to the harge distribution inthe eletrostati system, and with absorbing boundaries in the di�usive system orresponding to grounded ondutors.To exploit this analogy, we �rst note that the eletrostati potential in the wedge deays as �(r; �) � r��=� forr !1, for any loalized harge distribution.21 Beause the survival probability of a di�using partile in the absorbingwedge is given by S(t) = R p(r; �; t) dA, where the integral is over the area of the wedge, we �nd the following basirelation between S(t) and the eletrostati potential in the same boundary geometryZ t0 S(t) dt =Z t0 dtZ p(r; �; t) dA�Z pDt0 r drZ �0 d� �(r; �)�Z pDt0 r1��=� dr/ t1��=2�: (27)In evaluating the time integral of the survival probability, we use the fat that partiles have time to di�use to radialdistane pDt but no further. Thus in the seond line of Eq. (27), the time integral of the probability distribution9



redues to the eletrostati potential for r < pDt and is essentially zero for r > pDt. Finally, by di�erentiating thelast equality in Eq. (27) with respet to time we reover Eq. (9).APPENDIX B: SPATIAL DISTRIBUTION OF THE LAST LION BY EXTREME STATISTICSIt is instrutive to apply extreme statistis to determine the probability distribution for the loation of the lastlion from an ensemble of N lions.8 Let p(x) = 1p4�DLte�x2=4DLt be the (Gaussian) probability distribution of asingle lion. Then p>(x) � R1x p(x0) dx0 is the probability that a di�using lion is in the range [x;1℄ and similarlyp<(x) = 1� p>(x) is the probability that the lion is in the range [�1; x℄. Let LN (x) be the probability that the lastlion out of a group of N is loated at x. This extremal probability is given byLN(x) = Np(x)p<(x)N�1: (28)That is, one of the N lions is at x, while the remaining N �1 lions are in the range [�1; x℄. If we evaluate the fatorsin Eq. (28), we obtain a double exponential distribution:8LN (x) = Np4�DLte�x2=4DLt �1�Z 1x 1p4�DLte�x2=4DLt dx�N�1 ;� Np4�DLte�x2=4DLt exp�� N � 1p4�DLtZ 1x e�x2=4DLt dx� : (29)When N is large, then x=p4DLt is also large, and we an asymptotially evaluate the integral in the exponential inEq. (29). Following Eq. (14), it is onvenient to express the probability distribution in terms of M = N=p4� andy = xlast=p4DLt. If we use LN (y) dy = LN(x) dx, we obtainLN(y) ' 2Me�y2 exp(�Me�y2=y): (30)The most probable value of xlast is determined by the requirement that L0N(y) = 0. This ondition reproduesyey2 =M given in Eq. (14).We may also estimate the width of the distribution from its inetion points, that is, when L00M (y) = 0. Bystraightforward alulation, L00N (y) = 0 aty� 'pln(M=k�) � plnM�1� ln k�lnM �; (31)where k� = (3�p5)=2. Therefore as N !1, the width of LN(y) vanishes as 1=plnM . This behavior is qualitativelyillustrated in Fig. 6, where the utuations in xlast(t) derease dramatially as N inreases. This derease an also beunderstood from the form of the extreme distribution LN(x) in Eq. (29). The large-x deay of LN(x) is governed byp(x), while the double exponential fator beomes an inreasingly sharp step at xstep � p4DLt lnN as N inreases.The produt of these two fators leads to LN (x) essentially oiniding with p(x) for x > xstep and LN(x) � 0 forx < xstep.
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