
Capture of the Lamb: Di�using Predators Seeking a Di�using PreyS. Redner and P. L. KrapivskyCenter for BioDynami
s, Center for Polymer Studies, and Department of Physi
s,Boston University, Boston, MA 02215We study the 
apture of a di�using \lamb" by di�using \lions" in one dimension. The 
apturedynami
s is exa
tly soluble by probabilisti
 te
hniques when the number of lions is very small, andis tra
table by extreme statisti
s 
onsiderations when the number of lions is very large. However,the exa
t solution for the general 
ase of three or more lions is still not known.I. INTRODUCTIONWhat is the survival probability of a di�using lamb whi
h is hunted by N hungry lions? Although this 
apturepro
ess is appealingly simple to de�ne (see Fig. 1), its long-time behavior1{3 poses a theoreti
al 
hallenge be
auseof the deli
ate interplay between the positions of the lamb and the 
losest lion. This model also illustrates a generalfeature of nonequilibrium statisti
al me
hani
s: life is ri
her in low dimensions. For spatial dimension d > 2, it isknown that the 
apture pro
ess is \unsu

essful" (in the terminology of Ref. 1), as there is a nonzero probability forthe lamb to survive to in�nite time for any initial spatial distribution of the lions. This result is a 
onsequen
e of thetransien
e of di�usion for d > 2,4;5 whi
h means that two nearby di�using parti
les in an unbounded d > 2 domainmay never meet. For d = 2, 
apture is \su

essful", as the lamb dies with 
ertainty. However, di�using lions in d = 2are su
h poor predators that the average lifetime of the lamb is in�nite! Also, the lions are essentially independent,1so that the survival probability of a lamb in the presen
e of N lions in two dimensions is SN (t) / S1(t)N , where S1(t),the survival probability of a lamb in the presen
e of a single lion, de
ays as5 (ln t)�1.
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timeFIG. 1. Spa
e-time evolution in one dimension of N = 4 di�using lions (dotted lines) whi
h all start at x = 0 and a singledi�using lamb (dashed) whi
h starts at x = x0. The traje
tory of the 
losest (\last") lion, whose individual identity may
hange with time, is indi
ated by the heavy solid path.Lions are more eÆ
ient predators in d = 1 be
ause of the re
urren
e of di�usion,4;5 whi
h means that two di�usingparti
les are 
ertain to meet eventually. The d = 1 
ase is also spe
ial be
ause there are two distin
t generi
 
ases.When the lamb is surrounded by lions, the survival probability at a �xed time de
reases rapidly with N be
ausethe safe zone whi
h remains unvisited by lions at �xed time shrinks rapidly in N . This arti
le fo
uses on the moreinteresting situation of N lions all to one side of the lamb (Fig. 1), for whi
h the lamb survival probability de
ays asa power law in time with an exponent that grows only logarithmi
ally in N .We begin by 
onsidering a lamb and a single stationary lion in Se
tion II. The survival probability of the lambS1(t) is 
losely related to the �rst-passage probability of one-dimensional di�usion4;5 and leads to S1(t) � t�1=2. Itis also instru
tive to 
onsider general lion and lamb di�usivities. We treat this two-parti
le system by mapping itonto an e�e
tive single-parti
le di�usion problem in two dimensions with an absorbing boundary to a

ount for thedeath of the lamb when it meets the lion,6 and then solving the two-dimensional problem by the image method. Weapply this approa
h in Se
tion III by mapping a di�using lamb and two di�using lions onto a single di�using parti
lewithin an absorbing wedge whose opening angle depends on the parti
le di�usivities,7 and then solving the di�usionproblem in this absorbing wedge by 
lassi
al methods. 1



In Se
tion IV, we study N � 1 di�using lions.2;3 An essential feature of this system is that the motion of the
losest (\last") lion to the lamb is biased towards the lamb, even though ea
h lion di�uses isotropi
ally. The many-parti
le system 
an be re
ast as a two-parti
le system 
onsisting of the lamb and an absorbing boundary whi
h, fromextreme statisti
s,8 moves to the right as p4DLt lnN , where DL is the lion di�usivity. Be
ause this time dependen
emat
hes that of the lamb's di�usion, the survival probability depends intimately on these two motions,9{11 withthe result that SN (t) � t��N and �N / lnN . The logarithmi
 dependen
e of �N on N re
e
ts the fa
t that ea
hadditional lion poses a progressively smaller marginal peril to the lamb | it matters little whether the lamb is huntedby 99 or 100 lions. Amusingly, the value of �N implies an in�nite lamb lifetime for N � 3 and a �nite lifetimeotherwise. In the terminology of Ref. 1, the 
apture pro
ess 
hanges from \su

essful" to \
omplete" when N � 4.We 
lose with some suggestions for additional resear
h on this topi
.II. SURVIVAL IN THE PRESENCE OF ONE LIONA. Stationary Lion and Di�using LambWe begin by treating a lamb whi
h starts at x0 > 0 and a stationary lion at x = 0. In the 
ontinuum limit, theprobability density p(x; t) that the lamb is at any point x > 0 at time t satis�es the di�usion equation�p(x; t)�t = D` �2p(x; t)�x2 ; (1)where D` is the di�usivity (or di�usion 
oeÆ
ient). The probability density satis�es the boundary 
ondition p(x =0; t) = 0 to a

ount for the death of the lamb if it rea
hes the lion at x = 0, and the initial 
ondition p(x; t = 0) =Æ(x � x0). Equation (1) may be easily solved by the familiar image method.5 For x > 0, p(x; t) is the superpositionof a Gaussian 
entered at x0 and an \image" anti-Gaussian 
entered at �x0:p(x; t) = 1p4�D`t he�(x�x0)2=4D`t � e�(x+x0)2=4D`ti : (2)The image 
ontribution ensures that the boundary 
ondition at x = 0 is automati
ally satis�ed, while the full solutionsatis�es both the initial 
ondition and the di�usion equation. Thus Eq. (2) gives the probability density of the lambfor x > 0 in the presen
e of a stationary lion at x = 0.The probability that the lamb meets the lion at time t equals the di�usive 
ux to x = 0 at time t. The 
ux isF (t) = +D`�p(x; t)�x ����x=0 = x0p4�D`t3 e�x20=4D`t: (3)The 
ux F (t) is also the �rst-passage probability to the origin, namely, the probability that a di�using lamb whi
hstarts at x0 rea
hes x = 0 for the �rst time at time t. Note that in the long time limit, de�ned by D`t � x20, the�rst-passage probability redu
es to F (t) ! x0=t3=2. This t�3=2 time dependen
e is a 
hara
teristi
 feature of the�rst-passage probability in one dimension.5The probability that the lamb dies by time t is the time integral of F (t) up to time t. The survival probabilityis just the 
omplementary fra
tion of these doomed lambs, that is,S1(t) = 1�Z t0 F (t0) dt0;= 1�Z t0 x0p4�D`t03 e�x20=4D`t0 dt0: (4)The integral in Eq. (4) 
an be redu
ed to a standard form by the substitution u = x0=p4D`t0 to giveS1(t) = erf� x0p4D`t� � x0p�D`t as t!1; (5)where erf(z) = (2=p�)R z0 e�u2 du is the error fun
tion.12 The same expression for S1(t) 
an be obtained by integratingthe spatial probability distribution in Eq. (2) over all x > 0.An amusing feature of the t�1=2 de
ay of the lamb survival probability is that although the lamb dies with
ertainty, its average lifetime, de�ned as hti = R10 t F (t) dt = R10 S(t) dt � R1 t�1=2 dt, is in�nite. This in�nite2



lifetime arises be
ause the small fra
tion of lambs whi
h survive tend to move relatively far away from the lion. Morepre
isely, the superposition of the Gaussian and anti-Gaussian in Eq. (2) leads to a lamb probability distributionwhi
h is peaked at a distan
e (D`t)1=2 from the origin, while its spatial integral de
ays as (D`t)�1=2.B. Both Spe
ies Di�usingWhat is the survival probability of the lamb when the lion also di�uses? In the rest frame of the lamb, thelion now moves if either a lion or a lamb hopping event o

urs, and their separation di�uses with di�usivity equalto D` +DL (see for example, Ref. 5), where DL is the lion di�usivity. From the dis
ussion of Se
tion IIA, the lambsurvival probability has the asymptoti
 time dependen
e S1(t) � x0=p�(D` +DL)t.
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FIG. 2. Mapping of the lion and lamb 
oordinates in one dimension to the planar 
oordinates y1 = xL=pDL andy2 = x`=pD`. The initial y-
oordinates of the lion-lamb pair, (0;pD`), and its image are indi
ated by the solid and open
ir
les, respe
tively. Survival of the lamb, y1pDL < y2pD`, translates to the di�using parti
le in the plane remaining aboveand to the left of the absorbing line y1pDL = y2pD`.It is also instru
tive to determine the spatial probability distribution of the lamb. This distribution may befound 
onveniently by mapping the two-parti
le intera
ting system of lion at xL and lamb at x` in one dimension toan e�e
tive single-parti
le system in two dimensions6 and then applying the image method to solve the latter (seeFig. 2). To 
onstru
t this mapping, we introdu
e the s
aled 
oordinates y1 = xL=pDL and y2 = x`=pD` to render thetwo-dimensional di�usive traje
tory (y1; y2) isotropi
. The probability density in the plane, p(y1; y2; t), must satisfyan absorbing boundary 
ondition when y2pD` = y1pDL, 
orresponding to the death of the lamb when it meets thelion. For simpli
ity and without loss of generality, we assume that the lion and lamb are initially at xL(0) = 0 andx`(0) = 1 respe
tively, that is, y1(0) = 0 and y2(0) = pD`. The probability density is therefore the sum of a Gaussian
entered at (y1(0); y2(0)) = (0;pD`) and an anti-Gaussian image. From the orientation of the absorbing boundary(Fig. 2), this image is 
entered at (pD` sin 2�;�pD` 
os 2�), where � = tan�1pDL=D`.
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FIG. 3. Probability distribution of the lamb in one dimension at time t = 10 (Eq. (8)) when the lion and lamb are initiallyat xL = 0 and x` = 1, respe
tively. The 
ases shown are r = D`=DL = 0:1, 1, and 10 (bottom to top).From this image representation, the probability density in two dimensions isp(y1; y2; t) = 14�t he�[y21+(y2�pD`)2℄=4t � e�[(y1�pD` sin 2�)2+(y2+pD` 
os 2�)2℄=4ti : (6)The probability density for the lamb to be at y2 is the integral of the two-dimensional density over the a

essible3



range of the lion 
oordinate y1: p(y2; t) =Z y2 
ot ��1 p(y1; y2; t) dy1: (7)If we substitute the result (6) for p(y1; y2; t), the integral in Eq. (7) 
an be expressed in terms of the error fun
tion.We then transform ba
k to the original lamb 
oordinate x` = y2pD` by using p(x`; t) dx` = p(y2; t) dy2 to obtainp(x`; t) = 1p16�D`t�e�(x`�1)2=4D`t erf
��x` 
ot �p4D`t �� e�(x`+
os 2�)2=4D`t erf
� sin 2� � x` 
ot �p4D`t ��; (8)where erf
(z) = 1� erf(z) is the 
omplementary error fun
tion. A plot of p(x`; t) is shown in Fig. 3 for various valuesof the di�usivity ratio r � D`=DL. The �gure shows that the survival probability of the lamb rapidly de
reases asthe lion be
omes more mobile. Note that when the lion is stationary, � = 0, and Eq. (8) redu
es to Eq. (2).III. TWO LIONSTo �nd the lamb survival probability in the presen
e of two di�using lions, we generalize the above approa
h tomap the three-parti
le intera
ting system in one dimension to an e�e
tive single di�using parti
le in three dimensionswith boundary 
onditions that re
e
t the death of the lamb whenever a lion is en
ountered.7 Let us label the lions asparti
les 1 and 2, and the lamb as parti
le 3, with respe
tive positions x1, x2, and x3, and respe
tive di�usivities Di.It is again useful to introdu
e the s
aled 
oordinates yi = xi=pDi whi
h renders the di�usion in the yi 
oordinatesspatially isotropi
. In terms of yi, lamb survival 
orresponds to y2pD2 < y3pD3 and y1pD1 < y3pD3. These
onstraints mean that the e�e
tive parti
le in three-spa
e remains behind the plane y2pD2 = y3pD3 and to theleft of the plane y1pD1 = y3pD3 (Fig. 4(a)); this geometry is a wedge region of opening angle � de�ned by theinterse
tion of these two planes. If the parti
le hits one of the planes, then one of the lions has killed the lamb.
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ê

2

n
13

^

1y

23

13

^

^

n

(b)

Θ

φ

n
1

22 3D= y3Dy
3DD 3=y y1FIG. 4. (a) Mapping between the 
oordinates xi of three di�using parti
les on the line and a single isotropi
ally di�usingparti
le in the three-dimensional spa
e yi = xi=pDi, subje
t to the 
onstraints y1pD1 < y3pD3 and y2pD2 < y3pD3. Thelamb survives if it remains within the wedge-shaped region of opening angle �. (b) Proje
tion of the wedge onto a planeperpendi
ular to the ê axis de�ned by the interse
tion of the two planes.This mapping therefore provides the lamb survival probability, sin
e it is known that the survival probability ofa di�using parti
le within this absorbing wedge asymptoti
ally de
ays as134



Swedge(t) � t��=2�: (9)For 
ompleteness, we derive this asymptoti
 behavior by mapping the di�usive system onto a 
orresponding ele
tro-stati
 system in Appendix A. To determine the value of � whi
h 
orresponds to our 3-parti
le system, noti
e thatthe unit normals to the planes y1pD1 = y3pD3 and y2pD2 = y3pD3 are n̂13 = (�pD1; 0;pD3)=pD1 +D3 andn̂23 = (0;�pD2;pD3)=pD2 +D3, respe
tively. Consequently 
os� = n̂13 � n̂23 (Fig. 4(b)), and the wedge angle is� = � � � = � � 
os�1[D3=p(D1 +D3)(D2 +D3)℄. If we take D1 = D2 = DL for identi
al lions, and D3 = D`, thesurvival exponent for the lamb is �2(r) = �2� = �2� 2� 
os�1 r1 + r��1 ; (10)where r = D`=DL.
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FIG. 5. The survival exponent �2(r) given by Eq. (10) versus the di�usivity ratio r.The dependen
e of �2(r) on the di�usivity ratio r is shown in Fig. 5. This exponent monotoni
ally de
reases from1 at r = 0 to 1/2 for r !1. The former 
ase 
orresponds to a stationary lamb, where the two lions are statisti
allyindependent and S2(t) = S1(t)2. On the other hand, when r ! 1 the lamb di�uses rapidly and the motion of thelions be
omes irrelevant. This limit therefore redu
es to the di�usion of a lamb and a stationary absorber, for whi
hS2(t) = S1(t). Finally, for D` = DL, �2 = 3=4 < 2�1, and equivalently, S2(t) > S1(t)2. This inequality re
e
ts thefa
t that the in
remental threat to the lamb from the se
ond lion is less than the �rst.IV. MANY LIONSThe above 
onstru
tion 
an, in prin
iple, be extended by re
asting the survival of a lamb in the presen
e ofN lionsas the survival of a di�using parti
le in N+1 dimensions within an absorbing hyper-wedge de�ned by the interse
tionof the N half-spa
es xi < xN+1, i = 1; 2; : : : ; N . This approa
h has not led to a tra
table analyti
al solution. On theother hand, numeri
al simulations1 indi
ate that the exponent �N grows slowly with N , with �3 � 0:91, �4 � 1:03,and �10 � 1:4. The understanding of the slow dependen
e of �N on N is the fo
us of this se
tion.A. LOCATION OF THE LAST LIONOne way to understand the behavior of the survival probability is to fo
us on the lion 
losest to the lamb, be
ausethis last lion ultimately kills the lamb. As was shown in Fig. 1, the individual identity of this last lion 
an 
hangewith time due to the 
rossing of di�erent lion traje
tories. In parti
ular, 
rossings between the last lion and its leftneighbor lead to a systemati
 rightward bias of the last lion. This bias is stronger for in
reasing N , due to the largernumber of 
rossings of the last lion, and this high 
rossing rate also leads to xlast(t) be
oming smoother as N in
reases(Fig. 6). This approa
h of the last lion to the lamb is the me
hanism whi
h leads to the survival probability of thelamb de
aying as t��N , with �N a slowly in
reasing fun
tion of N .
5
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FIG. 6. Time dependen
e of xlast for a single realization of N = 4, 64, and 1028 lions (bottom to top). This data wasgenerated by tra
king the position of the rightmost among N lions, ea
h of whi
h performs a nearest-neighbor dis
rete-timerandom walk starting from x = 0. The 
oin
iden
e of the data and the linear early-time growth of xlst are artifa
ts of thedis
rete random walk motion. The straight line of slope 1/2 indi
ates the expe
ted long-time behavior.To determine the properties of this last lion, suppose that N � 1 lions are initially at the origin. If the lionsperform nearest-neighbor, dis
rete-time random walks, then at short times, xlast(t) = t. This trivial dependen
epersists as long as the number of lions at the last site in their spatial distribution is mu
h greater than one. In this
ase there is a large probability that one of these lions will hop to the right, thus maintaining the deterministi
 growthof xlast. This growth will 
ontinue as long as Np4�DLte�t2=4DLt � 1, that is, for t � 4DL lnN . At long times, anestimate for the lo
ation of the last lion is provided by the 
ondition8Z 1xlast Np4�DLt e�x2=4DLt dx = 1: (11)Equation (11) spe
i�es that there is one lion out of an initial group of N lions whi
h is in the range [xlast;1℄. Althoughthe integral in Eq. (11) 
an be expressed in terms of the 
omplementary error fun
tion, it is instru
tive to evaluate itexpli
itly by writing x = xlast + � and re-expressing the integrand in terms of �. We �nd thatZ 1xlast Np4�DLt e�x2last=4DLt e�xlast�=2DLt e��2=4DLt d� = 1: (12)Over the range of � for whi
h the se
ond exponential fa
tor is non-negligible, the third exponential fa
tor is nearlyequal to unity. The integral in Eq. (12) thus redu
es to an elementary form, with the resultNp4�DLt e�x2last=4DLt 2DLtxlast = 1: (13)If we de�ne y = xlast=p4DLt and M = N=p4�, the 
ondition in Eq. (13) 
an be simpli�ed toyey2 = M; (14)with the solution y = plnM �1� 14 ln(lnM)lnM + : : :�: (15)In addition to obtaining the mean lo
ation of the last lion, extreme statisti
s 
an be used to �nd the spatial probabilityof the last lion. For 
ompleteness, this 
al
ulation is presented in Appendix B.6



To lowest order, Eq. (15) gives xlast(t) �p4DL lnN t �pAN t; (16)for �nite N . For N = 1, xlast(t) would always equal t if an in�nite number of dis
rete random walk lions wereinitially at the origin. A more suitable initial 
ondition therefore is a 
on
entration 
0 of lions uniformly distributedfrom �1 to 0. In this 
ase, only N / p
20DLt of the lions are \dangerous," that is, within a di�usion distan
efrom the edge of the pa
k and thus potential 
andidates for killing the lamb. Consequently, for N !1, the leadingbehavior of xlast(t) be
omes xlast(t) �q2DL ln(
20DLt) t : (17)As we dis
uss in Se
tion IVB, the survival probability of the lamb in the presen
e of many lions is essentially determinedby this behavior of xlast.B. LAMB SURVIVAL PROBABILITY FOR LARGE NAn important feature of the time dependen
e of xlast is that 
u
tuations de
rease for large N (Fig. 6). Thereforethe lamb and N di�using lions 
an be re
ast as a two-body system of a lamb and an absorbing boundary whi
hdeterministi
ally advan
es toward the lamb as xlast(t) = pAN t.To solve this two-body problem, it is 
onvenient to 
hange 
oordinates from [x; t℄ to [x0 = x�xlast(t); t℄ to �x theabsorbing boundary at the origin. By this 
onstru
tion, the di�usion equation for the lamb probability distributionis transformed to the 
onve
tion-di�usion equation�p(x0; t)�t � xlast2t �p(x0; t)�x0 = D` �2p(x0; t)�x02 ; (0 � x0 <1) (18)with the absorbing boundary 
ondition p(x0 = 0; t) = 0. In this referen
e frame whi
h is �xed on the average positionof the last lion, the se
ond term in Eq. (18) a

ounts for the bias of the lamb towards the absorber with a \velo
ity"�xlast=2t. Be
ause xlast � pAN t and x0 � pD`t) have the same time dependen
e, the lamb survival probabilitya
quires a nontrivial dependen
e on the dimensionless parameter AN=D`.9{11 Su
h a dependen
e is in 
ontrast to the
ases xlast � x0 or xlast � x0, where the asymptoti
 time dependen
e of the lamb survival is 
ontrolled by the fasterof these two 
o-ordinates. Su
h a phenomenon o

urs whenever there is a 
oin
iden
e of fundamental length s
ales inthe system (see, for example, Ref. 14).Equation (18) 
an be transformed into the paraboli
 
ylinder equation by the following steps.3 First introdu
ethe dimensionless length � = x0=xlast and make the following s
aling ansatz for the lamb probability density,p(x0; t) � t��N�1=2F (�): (19)The power law prefa
tor in Eq. (19) ensures that the integral of p(x0; t) over all spa
e, namely the survival probability,de
ays as t��N , and F (�) expresses the spatial dependen
e of the lamb probability distribution in s
aled length units.This ansatz 
odi�es the fa
t that the probability density is not a fun
tion of x0 and t separately, but is a fun
tiononly of the dimensionless ratio x0=xlast(t). The s
aling ansatz provides a simple but powerful approa
h for redu
ingthe 
omplexity of a wide 
lass of systems with a divergent 
hara
teristi
 length s
ale as t!1.14If we substitute Eq. (19) into Eq. (18), we obtainD`AN d2Fd�2 + 12(� + 1)dFd� + ��N + 12�F = 0: (20)Now introdu
e � = (� + 1)pAN=2D` and F (�) = e��2=4D(�) in Eq. (20). This substitution leads to the paraboli

ylinder equation of order 2�N15 d2D2�Nd�2 + �2�N + 12 � �24 �D2�N = 0; (21)subje
t to the boundary 
ondition, D2�N (�) = 0 for both � = pAN=2D` and � = 1. Equation (21) has the formof a S
hr�odinger equation for a quantum parti
le of energy 2�N + 12 in a harmoni
 os
illator potential �2=4 for7



� >pAN=2D`, but with an in�nite barrier at � =pAN=D`.16 For the long time behavior, we want the ground stateenergy in this potential. For N � 1, we may approximate this energy as the potential at the 
lassi
al turning point,that is, 2�N + 12 ' �2=4. We therefore obtain �N � AN=16D`. Using the value of AN given in Eqs. (16) and (17)gives the de
ay exponent �N � 8<: DL4D` lnN; N �niteDL8D` ln t: N =1 (22)The latter dependen
e of �N implies that for N !1, the survival probability has the log-normal formS1(t) � exp�� DL8D` ln2 t� : (23)Although we obtained the survival probability exponent �N for arbitrary di�usivity ratio r = D`=DL, simple
onsiderations give di�erent behavior for r � 1 and r � 1. For example, for r = 0 (stationary lamb) the survivalprobability de
ays as t�N=2. Therefore Eq. (22) 
an no longer apply for r < N�1, where �N (r) be
omes of orderN . Conversely, for r = 1 (stationary lions), the survival probability of the lamb de
ays as t�1=2. Thus Eq. (22)will again 
ease to be valid for r > lnN , where �N (r) be
omes of order unity. By a

ounting for these limits,3 thedependen
e of �N on the di�usivity ratio r is expe
ted to be�N (r) = (N=2 r � 1=N(1=4r) ln(4N) 1=N � r � lnN1=2 r � lnN . (24)The r dependen
e of �N in the intermediate regime of 1=N � r � lnN generalizes the exponents given in Eq. (10)for the three-parti
le system to general N .V. DISCUSSIONWe investigated di�usive 
apture of a lamb in one dimension by using of several essential te
hniques of nonequi-librium statisti
al me
hani
s in
luding �rst-passage properties of di�usion, extreme value statisti
s, ele
trostati
analogies, s
aling analysis, and moving boundary value theory. These tools provide an appealing physi
al des
riptionfor the survival probability of the lamb in the presen
e of N lions for the 
ases of very small and very large N .Nevertheless, the exa
t solution to 
apture of the lamb remains elusive for N � 3.We 
lose by suggesting several avenues for further study:1. Better Simulation Methods. Previous simulations of this system1 followed the random walk motion of one lamband N lions until the lamb was killed. This type of simulation is simple to 
onstru
t. One merely pla
esthe lamb and lions on a one-dimensional latti
e and have them perform independent nearest-neighbor randomwalks until one lion lands on the same site as the lamb. The survival probability is obtained by averagingover a large number of realizations of this pro
ess. However, following the motion of dis
rete random walks isineÆ
ient, be
ause it is unlikely for the lamb to survive to long times and many realizations of the pro
ess mustbe simulated to obtain a

urate long-time data. In prin
iple, a mu
h better approa
h would be to propagatethe exa
t probability distribution of the parti
les in the system.17 Can su
h an approa
h be developed for thelamb-lion 
apture pro
ess? Another possibility is to devise a simple dis
rete random-walk pro
ess to simulatethe motion of the last lion. Su
h a 
onstru
tion would permit 
onsideration of just the lamb and the last lion,thus providing signi�
ant 
omputational eÆ
ien
y.2. The Last Lion. Extreme value statisti
s provides the spatial probability distribution of the last lion. We mayalso ask other basi
 questions: How long is a given lion the \last" one? How many lead 
hanges of the last liono

ur up to time t? How many di�erent lions may be in the lead up to time t? What is the probability that aparti
ular lion is never in the lead? Methods to investigate some of these issues are also outlined in the arti
leby S
hmittmann and Zia18 in this journal issue.3. Spatial Probability Distribution of the Lamb. As we have seen for the 
ase of one lion, the spatial distributionof the lamb is a useful 
hara
teristi
 of the 
apture pro
ess. What happens for large N? In prin
iple, thisinformation is 
ontained in the solution to the paraboli
 
ylinder equation for the s
aled probability distribution(Eq. (21)). The most interesting behavior is the form of the distribution 
lose to the absorbing boundary, where8



the intera
tion between the lions and the lamb is strongest. For N = 1 lion, this distribution de
ays linearly tozero as a fun
tion of the distan
e to the lion, while for N = 2, the distribution has a power law de
ay in thedistan
e to the last lion whi
h depends on the di�usivity ratio D`=DL. What happens for general N and forgeneral di�usivity ratio? Is there a physi
al way to determine this behavior?4. Two-Sided Problem. If N lions are lo
ated on both sides of the lamb, then the lamb is relatively short-livedbe
ause there is no es
ape route. One 
an again 
onstru
t a mapping between the N + 1-parti
le rea
tingsystem and the di�usion of an e�e
tive parti
le in an absorbing wedge-shaped domain in N + 1 dimensions.From this mapping, SN (t) de
ays as t�
N , but the dependen
e of 
N on N and di�usivity ratio is unknown. Itis 
lear, however, that the optimal strategy for the surrounded lamb is to remain still, in whi
h 
ase the lionsare statisti
ally independent and we then re
over SN (t) � t�N=2. Is there a simple approa
h that provides thedependen
e of 
N on N for arbitrary di�usivity ratio? Finally, S1(t) exhibits a stret
hed exponential de
ay intime, exp(�t1=2).19;20 What is that nature of the transition from �nite N to in�nite N behavior?5. Intelligent Predators and Prey. In a more realisti
 
apture pro
ess, lions would 
hase the lamb, while the lambwould attempt to run away. What are physi
ally-reasonable and analyti
ally-tra
table rules for su
h dire
tedmotion whi
h would lead to new and interesting kineti
 behaviors?ACKNOWLEDGMENTSWe gratefully a
knowledge NSF grant DMR9632059 and ARO grant DAAH04-96-1-0114 for partial support ofthis resear
h.APPENDIX A: SURVIVAL PROBABILITY OF A DIFFUSING PARTICLE WITHIN A WEDGEThe survival probability of a di�using parti
le within an absorbing wedge 
an be derived by solving the di�usionequation in this geometry.7;13 We provide an alternative derivation of this result 
an also be obtained by developinga 
orresponden
e between di�usion and ele
trostati
s in the same boundary geometry. Although the logi
 underlyingthe 
orresponden
e is subtle, the result is simple and has wide appli
ability.The 
orresponden
e rests on the fa
t that the integral of the di�usion equation over all time redu
es to thePoisson equation. This time integral isZ 10 �Dr2p(r; �; t) = �p(r; �; t)�t � dt: (25)If one de�nes an ele
trostati
 potential by �(r; �) =R10 p(r; �; t) dt, Eq. (25) 
an be written asr2�(r; �) = � 1D [p(r; �; t =1)� p(r; �; t = 0)℄ : (26)For a boundary geometry su
h that the asymptoti
 survival probability in the di�usive system is zero, then Eq. (26) isjust the Poisson equation, with the initial 
ondition in the di�usive system 
orresponding to the 
harge distribution inthe ele
trostati
 system, and with absorbing boundaries in the di�usive system 
orresponding to grounded 
ondu
tors.To exploit this analogy, we �rst note that the ele
trostati
 potential in the wedge de
ays as �(r; �) � r��=� forr !1, for any lo
alized 
harge distribution.21 Be
ause the survival probability of a di�using parti
le in the absorbingwedge is given by S(t) = R p(r; �; t) dA, where the integral is over the area of the wedge, we �nd the following basi
relation between S(t) and the ele
trostati
 potential in the same boundary geometryZ t0 S(t) dt =Z t0 dtZ p(r; �; t) dA�Z pDt0 r drZ �0 d� �(r; �)�Z pDt0 r1��=� dr/ t1��=2�: (27)In evaluating the time integral of the survival probability, we use the fa
t that parti
les have time to di�use to radialdistan
e pDt but no further. Thus in the se
ond line of Eq. (27), the time integral of the probability distribution9



redu
es to the ele
trostati
 potential for r < pDt and is essentially zero for r > pDt. Finally, by di�erentiating thelast equality in Eq. (27) with respe
t to time we re
over Eq. (9).APPENDIX B: SPATIAL DISTRIBUTION OF THE LAST LION BY EXTREME STATISTICSIt is instru
tive to apply extreme statisti
s to determine the probability distribution for the lo
ation of the lastlion from an ensemble of N lions.8 Let p(x) = 1p4�DLte�x2=4DLt be the (Gaussian) probability distribution of asingle lion. Then p>(x) � R1x p(x0) dx0 is the probability that a di�using lion is in the range [x;1℄ and similarlyp<(x) = 1� p>(x) is the probability that the lion is in the range [�1; x℄. Let LN (x) be the probability that the lastlion out of a group of N is lo
ated at x. This extremal probability is given byLN(x) = Np(x)p<(x)N�1: (28)That is, one of the N lions is at x, while the remaining N �1 lions are in the range [�1; x℄. If we evaluate the fa
torsin Eq. (28), we obtain a double exponential distribution:8LN (x) = Np4�DLte�x2=4DLt �1�Z 1x 1p4�DLte�x2=4DLt dx�N�1 ;� Np4�DLte�x2=4DLt exp�� N � 1p4�DLtZ 1x e�x2=4DLt dx� : (29)When N is large, then x=p4DLt is also large, and we 
an asymptoti
ally evaluate the integral in the exponential inEq. (29). Following Eq. (14), it is 
onvenient to express the probability distribution in terms of M = N=p4� andy = xlast=p4DLt. If we use LN (y) dy = LN(x) dx, we obtainLN(y) ' 2Me�y2 exp(�Me�y2=y): (30)The most probable value of xlast is determined by the requirement that L0N(y) = 0. This 
ondition reprodu
esyey2 =M given in Eq. (14).We may also estimate the width of the distribution from its in
e
tion points, that is, when L00M (y) = 0. Bystraightforward 
al
ulation, L00N (y) = 0 aty� 'pln(M=k�) � plnM�1� ln k�lnM �; (31)where k� = (3�p5)=2. Therefore as N !1, the width of LN(y) vanishes as 1=plnM . This behavior is qualitativelyillustrated in Fig. 6, where the 
u
tuations in xlast(t) de
rease dramati
ally as N in
reases. This de
rease 
an also beunderstood from the form of the extreme distribution LN(x) in Eq. (29). The large-x de
ay of LN(x) is governed byp(x), while the double exponential fa
tor be
omes an in
reasingly sharp step at xstep � p4DLt lnN as N in
reases.The produ
t of these two fa
tors leads to LN (x) essentially 
oin
iding with p(x) for x > xstep and LN(x) � 0 forx < xstep.
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