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Survival probability in a random velocity field
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The time dependence of the survival probabifiy) is determined for diffusing particles in two dimensions
which are also driven by a random unidirectional zero-mean velocity figlg). For a semi-infinite system
with unboundedy andx>0, and with particle absorption at=0, a qualitative argument is presented which
indicates thaS(t)~t =Y This prediction is supported by numerical simulations. A heuristic argument is also
given which suggests that the longitudinal probability distribution of the surviving particles has the scaling
form P(x,t)~t~*u3g(u). Here the scaling variablexx/t>* so that the overall time dependenceRtix,t)
is proportional tat >4 and the scaling functiog(u) has the limiting dependencegu)«const asui—0, and
g(u)~exp(u*3) asu—ox. This argument also suggests an effective continuum equation of motion for the
infinite system which reproduces the correct asymptotic longitudinal probability distribution.
[S1063-651%97)01911-9
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I. INTRODUCTION no net longitudinal bias, it is not immediately obvious how
the behavior ofS(t) will be affected. Naively, one might

Consider a diffusing particle in the semi-infinite planar expect that the dominant contribution $¢t) will arise from
domain &>0,y) which is absorbed whex=0 is reached. In  those velocity configurations whose average bias is directed
addition to the diffusion, the particle is driven by a unidirec- away from the boundary. This is indeed the case, and, from
tional random velocity field in whichy,(y) is a random, this starting point, we present a simple argument which sug-
zero-mean function of only (Fig. 1). This type of stochastic 9€Sts that the su_rwv_al prc_)bab|llty, gverage_dllg)ver _aII realiza-
motion was introduced by Matheron and de MargNydM) tpn_ of Fhe_ velocity field, is proportl_onal o " T_hls pre-

[1] to describe the hydrodynamic dispersion of a dynami_dlctlon is in excellgT/Elagreement with our numerlcq[ results.
cally neutral tracer in a sedimentary layered rock formation, Interestingly, &~ =" decay of the survival probability has
Although the longitudinal bias averaged over an infinitePeen found previously for diffusing particles in a semi-
number of transverse layers is zero, the typical bias over Hfinite two dimensional system with a unidirectional zero
finite number of layers is a fluctuating quantity which is abPias, but deterministic velocity field of the form,(y)=
decreasing function of the number of layers that a random U}(llz y) [6]. Although the mechanism that leads $6t)
walk visits. This nonvanishing residual bias underlies the™t =" in this class of velocity fields is different from that
faster than diffusive transport of the model. In an infinite for the MdM model, the two systems share the feature that
system it has been established that the typical horizontal dis-
placement xy,,ct¥* [2—4], and that the configuration-
averaged distribution of longitudinal displacements has the
form P(x,t)~t~¥* exg —(X/t¥*%*3]. There are also strong S
fluctuations in the probability distribution between different )
samples of the velocity field, as well as a very slow conver-
gence to the asymptotic limit.

While much is now understood about transport in the
MdM model, we wish to investigate its first passage proper-
ties. Specifically, we consider the semi-infinite two- y
dimensional systemx>>0 with an absorbing boundary at
=0, and study the time dependence of the particle survival

probability S(t). The survival probability in a finite system x=0 X
with absorbing boundaries at= =L and the same unidirec-
tional random velocity field has been studied previojisly FIG. 1. The random velocity field in a realization of the MdM

however, this system exhibits a fundamentally different begdel on a finite width square lattice strip. On the horizontal bonds,
havior from the semi-infinite system that is treated here.  the direction of the velocity field is indicated by the arrows. In a

In the absence of a velocity field, it is well known that in single time step, a particiheavy dot can move equiprobably only
the semi-infinite systen$(t) asymptotically decays in time to one of the two target sites indicated. Particles are absorbed at
ast~Y2[5]. Because the velocity field in the MdM model has =0.
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their velocity fields have no average biasxnlIt would be  Hence S(t) should “stick” at the value attained wheh

interesting to determine whethet a'/* decay of the survival =D/v?. This implies that the asymptotic behavior of the
probability is characteristic of all semi-infinite systems with survival probability is simplyS(t=)xvXy/D. This same
a zero-mean longitudinal velocity field. result can also be obtained with additional effort from a more

In Sec. Il, we give a heuristic argument which suggestsigorous approach in which one solves the one-dimensional
that S(t)«t~ Y4 We then present corroborating numerical convection-diffusion equation on the domair0 with the
simulations in Sec. Ill. We also find that the spatial probabil-initial condition P(x,t=0)= 8(x—Xg), and then computes
ity distribution of the surviving particles provides insight S(t) by integrating this probability density over adf>0.
into the formulation of a continuum equation of motion for ~ For the MdM model, we now average over all relevant
the longitudinal probability distribution in an unbounded ge-velocity configurations to determirg(t). That is,
ometry. Thus, in Sec. IV, we infer this equation of motion
and, from its solution, determine the correct asymptotic lon- = vxa 1 [Dt| Y4 v \2/Dt\ 2
gitudinal probability distribution in the unbounded geometry. s(t)~f 0= ( ) ex;{ —(—> ( ) }dv

12 12

We conclude with a brief discussion in Sec. V. o D v Vo
1 ugxg [ 12|14
Il. CONFIGURATION-AVERAGED SURVIVAL =D |bt ot~ 14, 2
PROBABILITY t

We first present our argument for the the time dependence
of S(t). The basic idea is that the dominant contribution to ll. NUMERICAL SIMULATIONS
this average arises from the subset of all velocity configura-
tions whose net bias is away from the boundary, i.e., in th%
+x direction. Conversely, configurations with a bias along
—x will give individual contributions toS(t) which decay
exponentially in time and thus should be asymptotically neg
ligible.

To determine which of the positively biased velocity con-
figurations give the dominant contribution$6t), consider a
discrete realization of the MdM model on the square lattic
in which the velocity is either-vy or —vq with equal prob-
ability for a given value ofy (Fig. 1). Periodic boundary
conditions in the transverse direction are employed, so that
the system is a semi-infinite cylinder consistingvofrows. 1
For concreteness, the initial condition ip(x,y,t=0) POy, t+1)=5pKx—I sgriv(y=Dly=1.1)
= (1/w) &y, i.e., a ring of particles is initially placed at
=|, wherel is the lattice spacing. In this system, the prob-
ability that there are, positively biased rows and_ nega-
tively biased rows isP(m) (1/yw) e ™M with m=n,
—n_. In atimet, the number of layers visited by a random For each velocity configuration, probability propagation

walk is woe \Dt/l, whereD is the transversémicroscopi¢  vyields the exact distribution in the presence of the absorbing
diffusivity. By transforming fromm to the velocity v boundary up to the maximum time specified.

We now present numerical evidence to support the pre-
iction thatS(t)=t~ ¥4 For simulating the particle motion,
we propagate the probability distribution for each velocity
configuration exactly7]. The microscopic motion is defined
by the rule that in a single time step, a particle hops
equiprobably by*1| in the y direction and by a distance
sgriv(y)]l in thex direction on the square lattice, wheréy)
is the velocity field at the/ coordinate of the particle before
Sthe hopping eventFig. 1). Accordingly, the probability that
a particle is atx,y) at timet evolves according to

1
+§p(x—l sgiuv(y+D],y+1,t). (3)

=muo,/w, the distribution of velocities withinwv layers is We have performed the average over velocity configura-
U4 ) 12 tions in two complementary ways—either an average over a
1 (Dt v Dt representative sample of velocity configurations, or an ex-
P)e— || expg—|—]| |7z 1) - - - - )
vo \ | vo) \ I haustive average over all velocity configurations for rela

tively small systems. The former is straightforward to imple-
Because this distribution is strongly cut off when the argu-ment, but the effect of rare configurations on the results is
ment of the exponential is greater than 1, we expect that thenknown. The latter, on the other hand, gives the exact result
dominant contribution t&(t) will arise from those velocity  for an infinite system, albeit only for short times. This exact-
configurations whose net bias is within the rang&0 ness allows one to test for systematic trends in the data, an
<vo(I2/Dt)Y4, analysis which is not feasible when averaging over a repre-

For a positively biased velocity configuration, we now sentative set of velocity configurations.

estimate the residual survival probability in the long-time A typical result forS(t) up tot=4095, based on an av-
limit under the assumption that is finite. In this case, the erage over 50 velocity configurations on a cylinder of width
particle will uniformly sample the transverse extent of the400, is shown in Fig. 2. The average bias of these 50 con-
system, and it is sensible to characterize the bias by its medigurations turns out to be-0.004. Beyond approximately
valuev. If v is small, or more properly the Peclet number 50 time steps, the data for the survival probability are quite
vXo/D is small, then foit<D/v? the bias is irrelevant and, linear, and a least-squares power-law fit to the data in this
consequentlyS(t) ~xo/+/Dt, wherex, is the initial position  time range yields the exponent of0.2491. Further, the
of the particle[5]. However, fort>D/v?, convection domi- slope between successive data points, or local exponent esti-
nates, and returns to the origin become extremely unlikelymate
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FIG. 2. Plot ofS(t) vst on a double, logarithmic scale, based on  FIG. 3. The local slope o6(t) vst on a double-logarithmic
averaging the exact probability distribution over a finite number ofscale, based on averaging the exact probability distribution over all
velocity configurations for the system discussed in the text. Thevelocity configurations for systems of widih=15,17, .. .,29. The
inset shows the local slopes between neighboring data points.  data for different values ok coincide for larger 1/ but then sepa-

rate at progressively smallertl#sw increases.

_In[S(t)/S(t—1)]
T n[t/(t—1)]

ay (4) We therefore typically carried out the probability propa-
gation for up tot~2w time steps, and exploited the cross-
over in §(t) to interpret our results. A plot of I8(t) versus
, ) Int should initially show power-law behavior, indicative of
deviates from—0.25 by less than 0.002 for50 (insed. To  he jnfinite system behavior, and then cross over to a nonzero
check that finite width effects do not substantially affect theconstant because of finite width effects. Thus a plot of the
results, we also considered shorter times,1600, and a |gcal exponentr,(t) (here defined as the slope between ev-
slightly narrower systemvw(=300), and averaged over 250 ery other data poifitversus 1t should initially provide an
realizations. The average bias of these configurations turnsstimate of the exponent &(t), while the crossover effect
out to be+0.002. This case yielded a best-fit exponent ofdetermines the time range over which the exact data is rel-
—0.2503. These two data sets strongly suggest 8{gt  evant for the infinite system. In Fig. 3, this local slope is
=t~ in the long-time limit. However, because the averageplotted versus t/for system widthsv between 15 and 29.
is performed only over an infinitesimal fraction of all veloc- Initially, «,/(t) is decreasing nearly linearly intl/but sub-
ity configurations, it is possible that extreme configurationssequently there is the expected crossover to the asymptotic
could alter the results. For this reason, we now investigat¥alue of zero. In the regime where the data are relatively
the exact behavior o8(t) for short times by averaging over linear, we compute the intercepts of successive data points at
all velocity configurations. 14=0 as an estimate of the asymptotic value of the exponent
In this complete enumeration, we consider odd values ofFig. 4. Asw increases, this data exhibits) nonmonotonic
w for convenience. Because of the periodic transvers&€nds in the datée.g., the location of the minimunwhich
boundary conditions, many of th&'Zonfigurations are iden- disappear only fow=25, (i) more stable extrapolated val-
tical up to cyclic permutation and reflection symmetry. ToU€S asw increases, andii) the minimum value of the ex-
carry out the enumeration, we first encode each velocity Cont_rapolated exponent—_wh|ch we adop_t as the best est|ma_te of
figuration as a binary sequence. Using bit manipulation techt-he e'xponent for a given value W—mcreases_ systemgtl-
niques, we identify the “irreducible” representation of this caIIIy inw and appears to convergego(r)].ZS. Whrlll'er;the.re IS
binary sequence, defined as the smallest equivalent integ?rS ow (_:((j)nvebrlgencg_ to _as_ym_ptor:lc € law_or w ICb ?IVGS rAse
number obtained by performing all possible cyclic permuta-0 considerable subjectivity In the analysis, we believe that
. o . -the trends in the data support the hypothesis tBg)
tions of the initial binary sequence. This same procedure iS_ ¢~ 1/a
then repeated on the reversed initial binary sequence. Thus to
each binary sequence there is a unique irreducible binary
sequence. By this mapping, we only need consider the irre- IV. PROBABILITY DISTRIBUTION
ducible configurations and weight each by their degeneracy
in performing the average over velocity configurations. For In addition to investigatingS(t), we also examined the
example forw=23, 25, 27, and 29, the number of irreduc- probability distribution of the surviving particles. This quan-
ible configurations are 92205, 337594, 1246 863, andity provides an alternative understanding for the first-
4 636 390, compared, e.g., 1% 536 870, 912. For each passage process, as well as useful fundamental insights about
irreducible configuration, we then perform the exact prob-the continuum description of the MdM model. Specifically,
ability distribution propagation. This complete enumerationwe studyP(x,t)=[p(X,y,t)dy, the configuration-averaged
provides the exact value &(t) for an infinite system up to longitudinal probability distribution of particles which have
w—1 time steps, while finite width crossover effects gradu-not yet been absorbed by tinte We expect that this prob-
ally begin to play a role for later times. ability distribution can be written in a scaling form
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FIG. 4. Linear extrapolation of the local slope from Fig. 3 for FIG. 5. The scaling functiofi(u) vs u.
w=15,17,...,29. Theminimum value progressively increases
with w.
P(x,t) = Af(x/(x)) (5) initial condition, the first passage probability coincides with

the flux tox=0. Now, asx—0, Eq.(7) gives

where(x)=(x(t)) is the average longitudinal displacement

of the survivors at tim¢. Monte Carlo simulations clearly P(X,t)% —r
indicate that x)=t** as in the case when there is no absorb- ()
ing boundary presefil—4]. Because{ P(x,t)dx=S(t), we ) . . , .
can determine the coefficieAtby integrating Eq(5) overx, Smce t_he flux IS ol_)ta_me_c_i by performlng an appropriate spa-
and thereby write tial derivative of this limiting probability distribution, an op-

eration which does not affect the temporal behavior, we con-
clude thatu= 2 to recover the corredt %4 time dependence
S(t)
P(X,t) = —— F(X/(X)), (6) for the flux. o o _
(X)Fo However, the data in Fig. 5 do not exhibit this behavior
because of finite-time effects. For smaill the numerical
whereFo= [gduf(u). Because of the absorbing boundary, value ofg(u) atx=1 is nonzero but decreasing with time.
P(x=0,t) must equal zero, leading to the expectation thatCorrespondingly, the value af at this first data point is
f(u) will vanish as a power law as— 0. Consequently, we nonzero but also decreasing with time. This anomaly in the
write smallu data renders a simple power-law fit inadequate.
However, such a naive fit to the data in the range1/2
X | & gives the estimates 0.483, 0.479, 0.476, 0.470, and 0.464,
W) g(x/(x)), (7 respectively, for the exponeptin P(x,t) for the five afore-
mentioned time values. Other analyses, such as computing
the first derivative off (u) (which should diverge as~??)
and determining the exponent of the smaldependence,

lead to a similar quantitative conclusion. While the antici-
1

X/’“Mt71/473(1+“)/4xlu_ (8)

S(t)

P(X,t) = <X>—Fo

with g(u)—const. asu—0, andg(u) vanishing faster than
any power law foru—oo.

_A plot of the scaling functiorf(u) versusu is shown in - n4ie4 valuew=1 is not obtained, we believe that better
Fig. 5 for t=255, 1023, and 4095. There is a small butygeement with theory would emerge if it were practical to
systematic variation in the data for different times, with the oytand our Monte Carlo simulations to much longer times.
smallu behavior steepening and the lagéail growing for The existence of this power-law prefactor further suggests

larger time. Nevertheless, reasonable data collapse is Ot in a continuum description, the configuration averaged
tained in which f(u) qualitatively exhibits the expected f,x to the origin can be obtained via

power-law and rapid cutoff asymptotic behaviors for small

and largeu, respectively. We attribute the small deviation

) SN IP(x,t) IP(x,t)
from scaling on slow convergence to the asymptotic limit F(t)yoe — ——5— o« —x23 ) 9)
(see below. Such a phenomenon was observed previously in 28 x=0 2 x=0

the probability distribution for an infinite systef@,3], and
similar slow convergence effects can be anticipated here &Such a scale-dependent diffusivity can be heuristically justi-
well. fied by appealing to a Taylor diffusion description of the
The exponenj in Eq. (7) can be obtained by demanding motion in the MdM mode[8]. In a timet, a particle typi-
consistency between the time dependenc8(of and that of  cally exploresw~ Dt transverse layers. The typical bias
the first-passage probability. B(t)«t™ ¥4 then from the within this number of layers is then proportionalwo ¥/ or
general relatio5] betweenS(t) and the first passage prob- (Dt) Y4 Thus, on a time scalg the typical longitudinal
abilty to the boundary, F(t), we have F(t) distance traveled by a particle ds~vtoct¥4 Because these
= — [d(t)/dt] «t~54 On the other hand, for a normalized segments of lengtd are randomly in the+ x or —x direc-
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tion and the time interval between segments is of otdere  probability density of the surviving particleB(x,t). Inter-

infer an effective longitudinal diffusiofor dispersioncoef-  estingly, although the numerical evidence supporting the pre-

ficient D, ~12/t=tY2cx? as written in Eq(9). diction that S(t)=t~Y* is strong, the numerical data for
Let us now pursue the consequences of this scaleP(x,t) indicate slow convergence to the scaling limit, and

dependent diffusion coefficient for the longitudinal motion. some inconsistency with the behavior $(t) itself. Similar

If the longitudinal flux j(x,t) is indeed proportional to  anomalies in the probability distribution occur in the un-

[ —x%39P(x,t)/9x], then substituting this into the continuity bounded geometrf2—4], due to the contribution of extreme

equation velocity configurations in the average. It is surprising that the
behavior ofS(t) is apparently relatively insensitive to the
IP(x,t)  dj(x,t) contribution of such extreme configurations.
g T o =0 (10 An interesting byproduct of the spatial distribution of the
surviving particles is that the form- 9P(x,t)/9x*? is sug-
leads to the effective equation of motion gested as the appropriate expression for the particle flux.

This leads to a scale dependent diffusion coefficient which is
P(XL) 9 dP(X,1) proportional tox?3, as well as the continuum equation of
FrEr e gVt (1))  motion, Eq.(11), for the longitudinal spatial probability dis-
tribution in an unbounded geometry. The solution to this
equation of motion is simple to obtain and reproduces the

We can easily solve this equation by applying scaling. In : : )
an unbounded system, the normalization of the Iongitudinall(nown asymptotic form oP(x,{) in the unbounded geom

probability distribution implies that it can now be written in stry [2_.4]' There IS one caveat to th|s_ apprpach, however.
Y YN . The derivation of a scale-dependent diffusivity proportional
the form P(x,t)oct~3*h(x/t34 [in constrast to that given to x2/3 implicitly based ideri inal ticl
=0, (7 for an absorbing boundayusing i, v reurte 111 TP b on coneteio 8 e parice
the partial derivatives i andt in terms of a derivative with 9 X yorg 9

.34 ) . this line of reasoning to a general scale-dependent diffusivity
respect tau=x/t*" to recast the equation of motion as which varies as’® has yet to be established.

s L o, , As an application of this equation of motion, we find new
— 2 [uh(u)]" =[u"h"(W)]". (12 predictions for steady-state transport properties. For ex-
ample, for a steady input of particles @=L and particle
Here the prime denotes differentiation with respeat t®ne absorption atx=0, the steady solution to Eq11) gives a
integration immediately yields configuration-averaged density profile which varies¥3 It
will be worthwhile to test this prediction and also the general

o o3, prescription for obtaining an effective equation of motion
4[uh(u)]—[u h(w] (13 from the behavior of the particle flux near an absorbing
boundary.
The constant of integration equals zero becabg)—0 Finally, the behavior ofS(t) for a semi-infinite system

faster than any power law as—«. A second integration Wwith a longitudinal MdM velocity field can be easily gener-
then givesh(u)<exp(—u*?), from which we conclude that alized to arbitrary spatial dimensieh From classical results

the longitudinal probability distribution has the form [5], the number of distinct longitudinal rows visited by a
random walk in timet varies ast(®~%" for dimension 2
P(x,t)oct~3* exd — (x/t34 3], (14  <d<3 (i.e,, a transverse spatial dimension between 1 and

2), ast/In t for d=3, and ag for d> 3. Following closely the
This functional form coincides with that obtained previously approach in Sec. ll, this then leads to
by a different method2,3] in which the dominant contribu-

tion to the larged tail of P(x,t) arises from extreme {1/ d=2

“stretched” trajectories in unlikely velocity configurations. (-4

Thus the observation of the largetail for P(x,t) from the S(t)~ t I 2<d<3 (15)
numerical data in Fig. 5 can again be anticipated to be prob- (Int/t)™, d=3

lematical; much more extensive simulation would be needed. t~12 d>3.

It is gratifying, however, that consideration of the flux to a

boundary provides a simple approach to obtain the longitu- . . . .
dinal probability distribution in an infinite system. Thus, above three dimensions, the survival probability expo-

nent value is not affected by the presence of a random ve-

locity field.
V. DISCUSSION

We have investigated the time dependence of the configu-
ration averaged survival probabilitg(t) in a semi-infinite
two-dimensional system for diffusing particles which are | thank P. L. Krapivsky for many helpful discussions, and
also driven by a unidirectional random zero-mean velocityJ. Koplik and P. L. Krapivsky for a critical reading of the
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