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Survival probability in a random velocity field

S. Redner
Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215

~Received 24 June 1997!

The time dependence of the survival probabilityS(t) is determined for diffusing particles in two dimensions
which are also driven by a random unidirectional zero-mean velocity fieldvx(y). For a semi-infinite system
with unboundedy andx.0, and with particle absorption atx50, a qualitative argument is presented which
indicates thatS(t);t21/4. This prediction is supported by numerical simulations. A heuristic argument is also
given which suggests that the longitudinal probability distribution of the surviving particles has the scaling
form P(x,t);t21u1/3g(u). Here the scaling variableu}x/t3/4, so that the overall time dependence ofP(x,t)
is proportional tot25/4, and the scaling functiong(u) has the limiting dependencesg(u)}const asu→0, and
g(u);exp(2u4/3) asu→`. This argument also suggests an effective continuum equation of motion for the
infinite system which reproduces the correct asymptotic longitudinal probability distribution.
@S1063-651X~97!01911-9#

PACS number~s!: 05.40.1j, 05.60.1w, 02.50.Ey
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I. INTRODUCTION

Consider a diffusing particle in the semi-infinite plan
domain (x.0,y) which is absorbed whenx50 is reached. In
addition to the diffusion, the particle is driven by a unidire
tional random velocity field in whichvx(y) is a random,
zero-mean function ofy only ~Fig. 1!. This type of stochastic
motion was introduced by Matheron and de Marsily~MdM!
@1# to describe the hydrodynamic dispersion of a dyna
cally neutral tracer in a sedimentary layered rock formati
Although the longitudinal bias averaged over an infin
number of transverse layers is zero, the typical bias ove
finite number of layers is a fluctuating quantity which is
decreasing function of the number of layers that a rand
walk visits. This nonvanishing residual bias underlies
faster than diffusive transport of the model. In an infin
system it has been established that the typical horizontal
placement xtyp}t3/4 @2–4#, and that the configuration
averaged distribution of longitudinal displacements has
form P(x,t);t23/4 exp@2(x/t3/4)4/3#. There are also strong
fluctuations in the probability distribution between differe
samples of the velocity field, as well as a very slow conv
gence to the asymptotic limit.

While much is now understood about transport in t
MdM model, we wish to investigate its first passage prop
ties. Specifically, we consider the semi-infinite tw
dimensional systemx.0 with an absorbing boundary atx
50, and study the time dependence of the particle surv
probability S(t). The survival probability in a finite system
with absorbing boundaries atx56L and the same unidirec
tional random velocity field has been studied previously@3#;
however, this system exhibits a fundamentally different
havior from the semi-infinite system that is treated here.

In the absence of a velocity field, it is well known that
the semi-infinite systemS(t) asymptotically decays in time
ast21/2 @5#. Because the velocity field in the MdM model ha
561063-651X/97/56~5!/4967~6!/$10.00
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no net longitudinal bias, it is not immediately obvious ho
the behavior ofS(t) will be affected. Naively, one migh
expect that the dominant contribution toS(t) will arise from
those velocity configurations whose average bias is direc
away from the boundary. This is indeed the case, and, fr
this starting point, we present a simple argument which s
gests that the survival probability, averaged over all reali
tion of the velocity field, is proportional tot21/4. This pre-
diction is in excellent agreement with our numerical resu

Interestingly, at21/4 decay of the survival probability ha
been found previously for diffusing particles in a sem
infinite two dimensional system with a unidirectional ze
bias, but deterministic velocity field of the formvx(y)5
2vx(2y) @6#. Although the mechanism that leads toS(t)
;t21/4 in this class of velocity fields is different from tha
for the MdM model, the two systems share the feature t

FIG. 1. The random velocity field in a realization of the MdM
model on a finite width square lattice strip. On the horizontal bon
the direction of the velocity field is indicated by the arrows. In
single time step, a particle~heavy dot! can move equiprobably only
to one of the two target sites indicated. Particles are absorbedx
50.
4967 © 1997 The American Physical Society
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4968 56S. REDNER
their velocity fields have no average bias inx. It would be
interesting to determine whether at21/4 decay of the survival
probability is characteristic of all semi-infinite systems w
a zero-mean longitudinal velocity field.

In Sec. II, we give a heuristic argument which sugge
that S(t)}t21/4. We then present corroborating numeric
simulations in Sec. III. We also find that the spatial probab
ity distribution of the surviving particles provides insig
into the formulation of a continuum equation of motion f
the longitudinal probability distribution in an unbounded g
ometry. Thus, in Sec. IV, we infer this equation of motio
and, from its solution, determine the correct asymptotic l
gitudinal probability distribution in the unbounded geomet
We conclude with a brief discussion in Sec. V.

II. CONFIGURATION-AVERAGED SURVIVAL
PROBABILITY

We first present our argument for the the time depende
of S(t). The basic idea is that the dominant contribution
this average arises from the subset of all velocity configu
tions whose net bias is away from the boundary, i.e., in
1x direction. Conversely, configurations with a bias alo
2x will give individual contributions toS(t) which decay
exponentially in time and thus should be asymptotically n
ligible.

To determine which of the positively biased velocity co
figurations give the dominant contribution toS(t), consider a
discrete realization of the MdM model on the square latt
in which the velocity is either1v0 or 2v0 with equal prob-
ability for a given value ofy ~Fig. 1!. Periodic boundary
conditions in the transverse direction are employed, so
the system is a semi-infinite cylinder consisting ofw rows.
For concreteness, the initial condition isp(x,y,t50)
5 (1/w) dx,l , i.e., a ring of particles is initially placed atx
5 l , wherel is the lattice spacing. In this system, the pro
ability that there aren1 positively biased rows andn2 nega-
tively biased rows isP(m)} (1/Aw) e2m2/w, with m5n1

2n2 . In a timet, the number of layers visited by a rando
walk is w}ADt/ l , whereD is the transverse~microscopic!
diffusivity. By transforming from m to the velocity v
5mv0 /w, the distribution of velocities withinw layers is

P~v !}
1

v0
S Dt

l 2 D 1/4

expF2S v
v0

D 2S Dt

l 2 D 1/2G . ~1!

Because this distribution is strongly cut off when the arg
ment of the exponential is greater than 1, we expect that
dominant contribution toS(t) will arise from those velocity
configurations whose net bias is within the range 0,v
,v0( l 2/Dt)1/4.

For a positively biased velocity configuration, we no
estimate the residual survival probability in the long-tim
limit under the assumption thatw is finite. In this case, the
particle will uniformly sample the transverse extent of t
system, and it is sensible to characterize the bias by its m
value v. If v is small, or more properly the Peclet numb
vx0 /D is small, then fort,D/v2 the bias is irrelevant and
consequently,S(t);x0 /ADt, wherex0 is the initial position
of the particle@5#. However, fort.D/v2, convection domi-
nates, and returns to the origin become extremely unlik
s
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Hence S(t) should ‘‘stick’’ at the value attained whent
5D/v2. This implies that the asymptotic behavior of th
survival probability is simply,S(t5`)}vx0 /D. This same
result can also be obtained with additional effort from a mo
rigorous approach in which one solves the one-dimensio
convection-diffusion equation on the domainx.0 with the
initial condition P(x,t50)5d(x2x0), and then computes
S(t) by integrating this probability density over allx.0.

For the MdM model, we now average over all releva
velocity configurations to determineS(t). That is,

S~ t !;E
0

` vx0

D

1

v0
S Dt

l 2 D 1/4

expF2S v
v0

D 2S Dt

l 2 D 1/2Gdv

5
1

2

v0x0

D S l 2

Dt D
1/4

}t21/4. ~2!

III. NUMERICAL SIMULATIONS

We now present numerical evidence to support the p
diction thatS(t)}t21/4. For simulating the particle motion
we propagate the probability distribution for each veloc
configuration exactly@7#. The microscopic motion is define
by the rule that in a single time step, a particle ho
equiprobably by6 l in the y direction and by a distance
sgn@v(y)#l in thex direction on the square lattice, wherev(y)
is the velocity field at they coordinate of the particle befor
the hopping event~Fig. 1!. Accordingly, the probability that
a particle is at (x,y) at time t evolves according to

p~x,y,t11!5
1

2
p„x2 l sgn@v~y2 l !#,y2 l ,t…

1
1

2
p„x2 l sgn@v~y1 l !#,y1 l ,t…. ~3!

For each velocity configuration, probability propagatio
yields the exact distribution in the presence of the absorb
boundary up to the maximum time specified.

We have performed the average over velocity configu
tions in two complementary ways—either an average ove
representative sample of velocity configurations, or an
haustive average over all velocity configurations for re
tively small systems. The former is straightforward to imp
ment, but the effect of rare configurations on the results
unknown. The latter, on the other hand, gives the exact re
for an infinite system, albeit only for short times. This exa
ness allows one to test for systematic trends in the data
analysis which is not feasible when averaging over a rep
sentative set of velocity configurations.

A typical result forS(t) up to t54095, based on an av
erage over 50 velocity configurations on a cylinder of wid
400, is shown in Fig. 2. The average bias of these 50 c
figurations turns out to be20.004. Beyond approximately
50 time steps, the data for the survival probability are qu
linear, and a least-squares power-law fit to the data in
time range yields the exponent of20.2491. Further, the
slope between successive data points, or local exponent
mate
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56 4969SURVIVAL PROBABILITY IN A RANDOM VELOCITY FIELD
aw~ t ![
ln@S~ t !/S~ t21!#

ln@ t/~ t21!#
, ~4!

deviates from20.25 by less than 0.002 fort*50 ~inset!. To
check that finite width effects do not substantially affect t
results, we also considered shorter times,t&1600, and a
slightly narrower system (w5300), and averaged over 25
realizations. The average bias of these configurations t
out to be10.002. This case yielded a best-fit exponent
20.2503. These two data sets strongly suggest thatS(t)
}t21/4 in the long-time limit. However, because the avera
is performed only over an infinitesimal fraction of all velo
ity configurations, it is possible that extreme configuratio
could alter the results. For this reason, we now investig
the exact behavior ofS(t) for short times by averaging ove
all velocity configurations.

In this complete enumeration, we consider odd values
w for convenience. Because of the periodic transve
boundary conditions, many of the 2w configurations are iden
tical up to cyclic permutation and reflection symmetry. T
carry out the enumeration, we first encode each velocity c
figuration as a binary sequence. Using bit manipulation te
niques, we identify the ‘‘irreducible’’ representation of th
binary sequence, defined as the smallest equivalent int
number obtained by performing all possible cyclic permu
tions of the initial binary sequence. This same procedur
then repeated on the reversed initial binary sequence. Th
each binary sequence there is a unique irreducible bin
sequence. By this mapping, we only need consider the
ducible configurations and weight each by their degener
in performing the average over velocity configurations. F
example forw523, 25, 27, and 29, the number of irredu
ible configurations are 92 205, 337 594, 1 246 863, a
4 636 390, compared, e.g., to 2295536 870, 912. For each
irreducible configuration, we then perform the exact pro
ability distribution propagation. This complete enumerati
provides the exact value ofS(t) for an infinite system up to
w21 time steps, while finite width crossover effects grad
ally begin to play a role for later times.

FIG. 2. Plot ofS(t) vs t on a double, logarithmic scale, based
averaging the exact probability distribution over a finite number
velocity configurations for the system discussed in the text. T
inset shows the local slopes between neighboring data points.
ns
f

e

s
te

f
e

n-
h-

er
-
is
to

ry
e-
y
r

d

-

-

We therefore typically carried out the probability prop
gation for up tot'2w time steps, and exploited the cros
over in S(t) to interpret our results. A plot of lnS(t) versus
ln t should initially show power-law behavior, indicative o
the infinite system behavior, and then cross over to a nonz
constant because of finite width effects. Thus a plot of
local exponentaw(t) ~here defined as the slope between e
ery other data point! versus 1/t should initially provide an
estimate of the exponent ofS(t), while the crossover effec
determines the time range over which the exact data is
evant for the infinite system. In Fig. 3, this local slope
plotted versus 1/t for system widthsw between 15 and 29
Initially, aw(t) is decreasing nearly linearly in 1/t, but sub-
sequently there is the expected crossover to the asymp
value of zero. In the regime where the data are relativ
linear, we compute the intercepts of successive data poin
1/t50 as an estimate of the asymptotic value of the expon
~Fig. 4!. As w increases, this data exhibits:~i! nonmonotonic
trends in the data~e.g., the location of the minimum! which
disappear only forw>25, ~ii ! more stable extrapolated va
ues asw increases, and~iii ! the minimum value of the ex-
trapolated exponent—which we adopt as the best estima
the exponent for a given value ofw—increases systemati
cally in w and appears to converge to20.25. While there is
a slow convergence to asymptotic behavior which gives
to considerable subjectivity in the analysis, we believe t
the trends in the data support the hypothesis thatS(t)
;t21/4.

IV. PROBABILITY DISTRIBUTION

In addition to investigatingS(t), we also examined the
probability distribution of the surviving particles. This qua
tity provides an alternative understanding for the fir
passage process, as well as useful fundamental insights a
the continuum description of the MdM model. Specifical
we studyP(x,t)[*p(x,y,t)dy, the configuration-average
longitudinal probability distribution of particles which hav
not yet been absorbed by timet. We expect that this prob
ability distribution can be written in a scaling form

f
e

FIG. 3. The local slope ofS(t) vs t on a double-logarithmic
scale, based on averaging the exact probability distribution ove
velocity configurations for systems of widthw515,17, . . . ,29. The
data for different values ofw coincide for larger 1/t, but then sepa-
rate at progressively smaller 1/t asw increases.
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4970 56S. REDNER
P~x,t !5A f~x/^x&!, ~5!

where^x&5^x(t)& is the average longitudinal displaceme
of the survivors at timet. Monte Carlo simulations clearly
indicate that̂ x&}t3/4, as in the case when there is no abso
ing boundary present@1–4#. Because*0

`P(x,t)dx5S(t), we
can determine the coefficientA by integrating Eq.~5! overx,
and thereby write

P~x,t !5
S~ t !

^x&F0
f ~x/^x&!, ~6!

whereF05*0
`du f(u). Because of the absorbing bounda

P(x50,t) must equal zero, leading to the expectation t
f (u) will vanish as a power law asu→0. Consequently, we
write

P~x,t !5
S~ t !

^x&F0
S x

^x& D
m

g~x/^x&!, ~7!

with g(u)→const. asu→0, andg(u) vanishing faster than
any power law foru→`.

A plot of the scaling functionf (u) versusu is shown in
Fig. 5 for t5255, 1023, and 4095. There is a small b
systematic variation in the data for different times, with t
small-u behavior steepening and the large-u tail growing for
larger time. Nevertheless, reasonable data collapse is
tained in which f (u) qualitatively exhibits the expecte
power-law and rapid cutoff asymptotic behaviors for sm
and largeu, respectively. We attribute the small deviatio
from scaling on slow convergence to the asymptotic lim
~see below!. Such a phenomenon was observed previousl
the probability distribution for an infinite system@2,3#, and
similar slow convergence effects can be anticipated her
well.

The exponentm in Eq. ~7! can be obtained by demandin
consistency between the time dependence ofS(t) and that of
the first-passage probability. IfS(t)}t21/4, then from the
general relation@5# betweenS(t) and the first passage prob
ability to the boundary, F(t), we have F(t)
52 @dS(t)/dt# }t25/4. On the other hand, for a normalize

FIG. 4. Linear extrapolation of the local slope from Fig. 3 f
w515,17, . . . ,29. Theminimum value progressively increase
with w.
-

,
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initial condition, the first passage probability coincides w
the flux tox50. Now, asx→0, Eq. ~7! gives

P~x,t !}
S~ t !

^x&11m xm}t21/423~11m!/4xm. ~8!

Since the flux is obtained by performing an appropriate s
tial derivative of this limiting probability distribution, an op
eration which does not affect the temporal behavior, we c
clude thatm5 1

3 to recover the correctt25/4 time dependence
for the flux.

However, the data in Fig. 5 do not exhibit this behav
because of finite-time effects. For smallu, the numerical
value ofg(u) at x51 is nonzero but decreasing with time
Correspondingly, the value ofu at this first data point is
nonzero but also decreasing with time. This anomaly in
small-u data renders a simple power-law fit inadequa
However, such a naive fit to the data in the rangeu,1/2
gives the estimates 0.483, 0.479, 0.476, 0.470, and 0.
respectively, for the exponentm in P(x,t) for the five afore-
mentioned time values. Other analyses, such as compu
the first derivative off (u) ~which should diverge asu22/3!
and determining the exponent of the small-u dependence,
lead to a similar quantitative conclusion. While the anti
pated valuem5 1

3 is not obtained, we believe that bette
agreement with theory would emerge if it were practical
extend our Monte Carlo simulations to much longer time

The existence of this power-law prefactor further sugge
that in a continuum description, the configuration averag
flux to the origin can be obtained via

F~ t !}2
]P~x,t !

]x1/3 U
x50

}2x2/3
]P~x,t !

]x U
x50

. ~9!

Such a scale-dependent diffusivity can be heuristically ju
fied by appealing to a Taylor diffusion description of th
motion in the MdM model@8#. In a time t, a particle typi-
cally exploresw'ADt transverse layers. The typical bia
within this number of layers is then proportional tow21/2 or
(Dt)21/4. Thus, on a time scalet, the typical longitudinal
distance traveled by a particle isd;vt}t3/4. Because these
segments of lengthd are randomly in the1x or 2x direc-

FIG. 5. The scaling functionf (u) vs u.
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56 4971SURVIVAL PROBABILITY IN A RANDOM VELOCITY FIELD
tion and the time interval between segments is of ordert, we
infer an effective longitudinal diffusion~or dispersion! coef-
ficient D i; l 2/t}t1/2}x2/3, as written in Eq.~9!.

Let us now pursue the consequences of this sc
dependent diffusion coefficient for the longitudinal motio
If the longitudinal flux j (x,t) is indeed proportional to
@2x2/3]P(x,t)/]x#, then substituting this into the continuit
equation

]P~x,t !

]t
1

] j ~x,t !

]x
50 ~10!

leads to the effective equation of motion

]P~x,t !

]t
5

]

]x
x2/3

]P~x,t !

]x
. ~11!

We can easily solve this equation by applying scaling.
an unbounded system, the normalization of the longitud
probability distribution implies that it can now be written
the form P(x,t)}t23/4h(x/t3/4) @in constrast to that given
Eq. ~7! for an absorbing boundary#. Using this, we rewrite
the partial derivatives inx andt in terms of a derivative with
respect tou[x/t3/4, to recast the equation of motion as

2 3
4 @uh~u!#85@u2/3h8~u!#8. ~12!

Here the prime denotes differentiation with respect tou. One
integration immediately yields

2
3

4
@uh~u!#5@u2/3h8~u!#. ~13!

The constant of integration equals zero becauseh(u)→0
faster than any power law asu→`. A second integration
then givesh(u)}exp(2u4/3), from which we conclude tha
the longitudinal probability distribution has the form

P~x,t !}t23/4 exp@2~x/t3/4!4/3#. ~14!

This functional form coincides with that obtained previous
by a different method@2,3# in which the dominant contribu
tion to the large-u tail of P(x,t) arises from extreme
‘‘stretched’’ trajectories in unlikely velocity configurations
Thus the observation of the large-u tail for P(x,t) from the
numerical data in Fig. 5 can again be anticipated to be pr
lematical; much more extensive simulation would be need
It is gratifying, however, that consideration of the flux to
boundary provides a simple approach to obtain the long
dinal probability distribution in an infinite system.

V. DISCUSSION

We have investigated the time dependence of the confi
ration averaged survival probabilityS(t) in a semi-infinite
two-dimensional system for diffusing particles which a
also driven by a unidirectional random zero-mean veloc
field vx(y). A qualitative argument suggests thatS(t)
}t21/4, a prediction which is in excellent agreement wi
numerical results. We also examined the longitudinal spa
e-
.

n
al

b-
d.

-

u-

y

al

probability density of the surviving particles,P(x,t). Inter-
estingly, although the numerical evidence supporting the p
diction that S(t)}t21/4 is strong, the numerical data fo
P(x,t) indicate slow convergence to the scaling limit, a
some inconsistency with the behavior ofS(t) itself. Similar
anomalies in the probability distribution occur in the u
bounded geometry@2–4#, due to the contribution of extrem
velocity configurations in the average. It is surprising that
behavior ofS(t) is apparently relatively insensitive to th
contribution of such extreme configurations.

An interesting byproduct of the spatial distribution of th
surviving particles is that the form2]P(x,t)/]x1/3 is sug-
gested as the appropriate expression for the particle fl
This leads to a scale dependent diffusion coefficient whic
proportional tox2/3, as well as the continuum equation o
motion, Eq.~11!, for the longitudinal spatial probability dis
tribution in an unbounded geometry. The solution to th
equation of motion is simple to obtain and reproduces
known asymptotic form ofP(x,t) in the unbounded geom
etry @2–4#. There is one caveat to this approach, howev
The derivation of a scale-dependent diffusivity proportion
to x2/3 was implicitly based on considering a single partic
which starts at the origin att-0. The validity of generalizing
this line of reasoning to a general scale-dependent diffusi
which varies asx2/3 has yet to be established.

As an application of this equation of motion, we find ne
predictions for steady-state transport properties. For
ample, for a steady input of particles atx5L and particle
absorption atx50, the steady solution to Eq.~11! gives a
configuration-averaged density profile which varies asx1/3. It
will be worthwhile to test this prediction and also the gene
prescription for obtaining an effective equation of motio
from the behavior of the particle flux near an absorbi
boundary.

Finally, the behavior ofS(t) for a semi-infinite system
with a longitudinal MdM velocity field can be easily gene
alized to arbitrary spatial dimensiond. From classical results
@5#, the number of distinct longitudinal rows visited by
random walk in timet varies ast (d21)/2 for dimension 2
,d,3 ~i.e., a transverse spatial dimension between 1
2!, ast/ ln t for d53, and ast for d.3. Following closely the
approach in Sec. II, this then leads to

S~ t !;H t21/4,
t2~d21!/4,
~ lnt/t !1/2,
t21/2,

d52
2,d,3
d53
d.3.

~15!

Thus, above three dimensions, the survival probability ex
nent value is not affected by the presence of a random
locity field.
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