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One-Dimensional Ising Chain with Competing 
Interactions: Exact Results and Connection with 
Other Statistical Models 
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We study the ground state properties of a one-dimensional Ising chain with a 
nearest-neighbor ferromagnetic interaction J l ,  and a kth neighbor anti- 
ferromagnetic interaction J~. When Jk /J i  = -- 1 /k ,  there exists a highly degen- 
erate ground state with a residual entropy per spin. For the finite chain with free 
boundary conditions, we calculate the degeneracy of this state exactly, and find 
that it is proportional to the (N + k - l)th term in a generalized Fibonacci 
sequence defined by, F~ ~)= F ~  l + F } ~ .  In addition, we show that this 
one-dimensional model is closely related to the following problems: (a) a fully 
frustrated two-dimensional Ising system with a periodic arrangement of nearest- 
neighbor ferro- and antiferromagnetic bonds, (b) close-packing of dimers on a 
ladder, a 2 • oo strip of the square lattice, and (c) "directed" self-avoiding walks 
on finite lattice strips. 
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1. INTRODUCTION 

Consider a one-dimensional Ising chain with nearest- and kth-neighbor 
interactions Jl and Jg, respectively. The Hamiltonian for this system is 

~C = - - J l s  Jk~aSiSi+ k (1)  
i i 
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For J1 > 0 and Jk < 0, the two interactions compete in determining the 
ground state of the system. This competition effect (1) is of current interest 
because of its possible relevance as the mechanism for both spin glass 
behavior 2 and helical ordering in many magnetic systems. 

To describe helical order in a d-dimensional system, one can consider 
a chain of (d - l)-dimensional ferromagnetically coupled layers, with inter- 
actions along the chain given by Eq. (1). Generally, the case of nearest- and 
second-neighbor interactions (k = 2) has been studied most often. The 
resulting model, which we call the RS model, (3) was first considered by 
Enz (4) and Elliott (5) to describe the magnetism of the rare earths. Recent 
investigations of this model have focused on the Lifshitz point, where there 
is a coexistence of disordered, ferromagnetic, and helical phases, (3'6'7) and 
on the striking features at low temperatures. (8'9'1~ Here an infinite sequence 
of commensurate phases occurs as J2/Jl varies, and as T o O  these phases 
coalesce into a single infinitely degenerate phase a t  J 2 / J l  = - 1 / 2 .  

This degenerate phase exhibits some very striking features; therefore 
we have studied the one-dimensional system where we can obtain exact 
results. In the thermodynamic limit, the exact solution for the k = 2 case 
(RS model) has been found previously, (11) but we are able to calculate 
exactly the ground state properties for both the finite and infinite chain for 
all values of k. We find that when J k / J  1 = - -1 /k ,  the ground state is 
highly degenerate for any number of spins N >/2k. Moreover, for finite N, 
we can express this degeneracy in terms of a simple generalization of the 
Fibonacci sequence. From the asymptotic behavior of this sequence, we 
derive very simply a closed-form expression for the entropy in the thermo- 
dynamic limit. In addition, we find that the Ising chain can be mapped 
onto several apparently different statistical models, leading to further exact 
results. 

2. THE GROUND STATE AND ITS DEGENERACY 

To begin, we consider the nature of ground state for J1 > 0 and 
varying Jk (see Fig. 1). For Jk < 0 but sufficiently small, ferromagnetism 
occurs. For Jk < 0 but large, every kth spin orders antiferromagnetically, 
and to obtain the ground state, the energy in the remaining ferromagnetic 
bonds must be a minimum. This happens when there are k spins 1", then k 
spins $, etc., and we denote this phase as (k )  J 

Now consider the c a s e  J k / J 1  ~- - -  1/k. In an infinite chain, the energy 
per spin of the ferromagnetic and ( k )  phases, Erect o = - J 1 - - J k  and 
E<k > = (2/k)J,, + [(k - 2 ) / k ] ( - J l  + Jk), respectively, are equal. Thus the 

2We use the notation of Ref. 8. 
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Fig. 1. The zero temperature phase diagram for the system described by the model Hamilto- 
nian of Eq. (1). The three ordered phases that occur are indicated schematically. 

ground state consists of a random mixture of ferromagnetic and ( k )  
phases, leading to a large degeneracy. We can describe this degenerate 
phase by the following simple picture: Starting with the ferromagnetic 
phase we may introduce a domain wall by flipping all the spins to one side 
of a given spin. Any number of such walls can be successively created with 
no energy cost as long as the walls are /> k lattice spacings apart (and also 
/> k lattice spacings from the end of the chain with free boundaries). 
Therefore this phase has domains of >/ k spins I", followed by domains of 
/> k spins $, etc., as indicated in Fig. 1. 

To find the degeneracy associated with this phase, we first describe our 
calculation for the RS model (k = 2), and then outline a simple generaliza- 
tion for arbitrary k. In what follows we employ free boundary conditions, 
and we also assume that the number of spins N in the chain is /> 2k. (For 
N < 2k, the ground state is only twofold degenerate.) 

Let a N be the total number of degenerate ground state spin configura- 
tions of a chain of N spins. This number equals b s ,  the number of 
configurations in which the last two spins are parallel, plus CN, the number 
of configurations in which the last two spins are antiparallel. Now b u can 
be obtained by adding an additional spin parallel to the (N - 1)th spin for 
any configuration in b u _  1 and c N_ i. Hence 

bN = bN-1  + CN-1 = a N - 1  (2a) 

We can obtain c N by adding a spin antiparallel to the ( N -  1)th spin for 
any configuration in b N_ 1" Therefore 

CN = b N -  1 (2b) 

(Notice that we cannot add an antiparallel spin to a configuration in c N 

because this would lead to an energetically unfavored domain of a single 
spin.) Combining (2a) and (2b) yields 

aN = bN + C N = ajv_ 1 + aN-2 (2c) 
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This is just the recursion relation for the Fibonacci sequence defined by 
FN (2)= FN(~I + FN(~2, and F(2) = F2 (2) = 1. We therefore obtain a N =  

2 FN(2+) 1 . 
For arbitrary k, we may add the Nth spin parallel to the (N - 1)th spin 

for any configuration in a N _  I. On the other hand if we add the Nth spin 
antiparallel to the previous spin, then at least spins N -  1 through N -  k 
must all be antiparaUel to the Nth spin. Because of the determinancy in 
these k spins, any such state of N - 1 spins corresponds uniquely to a state 
in a N _ k .  Hence we find 

aN = a N - 1  + a N - k  (2d) 

This recursion relation defines a "generalized" Fibonacci sequence FN (~) = 
F~(~I + F~(~, with F1 (~) = F2 (k) . . . . .  F f f  ) = 1. From this we obtain 

aN = 2F(Nk)+ k -  l " 
It is interesting to examine the k dependence of the entropy per spin 

S (~) in the thermodynamic limit. To obtain this limit, we first note that the 
Fibonacci sequence becomes purely geometric as N--> oc. This follows by 
writing FN(~I, FN(~2 . . . . .  FN(~k as the elements of a vector v N_ 1, and then 
writing the k • k transfer matrix transforming v N_ 1 to v N. This matrix has 
only one eigenvalue > 1, and this gives the multiple in the geometric 
sequence. Equivalently we can find this eigenvalue more easily by using 
F f f ) ~ x  N in the defining relation for the Fibonacci sequence. This yields 
the characteristic equation, x N = X N- 1 "1" X N- k, or x k = X ~- L + 1. From 
the largest root of this equation, we find S (2~ = log[(1 + V3-)/2]. This agrees 
with the entropy found from taking the exact expression for the free 
energy, (11~ and evaluating it at J 2 / J ~  -- - 1/2. For k > 2, the largest root 
of the characteristic equation yields S (3) =1og(1.4665 . . .  ), S (4) = 
log(1 .3802. . .  ), S (5) = log(1 .3247. . .  ), etc. As k---> o0, the spin domains 
become infinitely large, and this corresponds to the entropy approaching 0. 
In this limit, the degenerate and ( k )  phases become identical to the 
ferromagnetic phase. 

3. CONNECTION WITH OTHER STATISTICAL MODELS 

In addition to elucidating the striking features of the degenerate phase, 
we show that the Ising chain with competing interactions has close connec- 
tions with several apparently diverse problems. 

(a) A fully frustrated two-dimensional Ising model: The piled up 
dominoes (PUD) model introduced by Andr6 et  a/. ~12) is a two-dimensional 
Ising model with a per iod ic  arrangement of nearest-neighbor ferro- and 
antiferromagnetic interactions of different strengths J and J ' ,  respectively 
(see Fig. 2a). Every elementary plaquette consists of an odd number of 
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Fig. 2. (a) The PUD model: The single and double bonds represent ferromagnetic interac- 
tions J, and antiferromagnetic interactions J ' ,  respectively. (b) A section of the PUD model 
with the dual lattice shown dashed. The + and - signs indicate the spins in a typical ground 
state for [J'l > J. The antiferromagnetic vertical chains order "in phase," in one of two 
possible states. On the other hand, there is a large degeneracy associated with the possible 
states of the vertical ferromagnetic chains. (c) Under the transformation s i ~ titi+ ], the vertical 
ferromagnetic chain in (b) maps into a chain with alternating nearest-neighbor interactions 
(zig-zags), and ferromagnetic second-neighbor interactions (vertical). The + and - signs now 
indicate the signs of the new spin variables t i .  These are defined only up to an overall sign; 
consequently there is a two-to-one correspondence between the ground states of the RS model 
and a ferromagnetic chain in the PUD model. The open circles indicate the spins to be 
redefined in order to map the Ising chain to the RS model through a gauge transformation. 
(d) The RS model, with ferromagnetic nearest-neighbor interactions, and antiferromagnetic 
second-neighbor interactions. The + and - signs indicate the spin states obtained after the 
gauge transformation from (c). Shown dashed is the dual lattice. (e) The dual ladder of the 
PUD model and the spins states of the original lattice from (b). The close-packed dimer 
configurations that are derived from this spin state are indicated by the full lines. (f) The dual 
of the RS model with the close-packed dimer configuration corresponding to the spin state of 
(d). From this dimer configuration we can obtain the geometrically equivalent configuration 
(e) as follows: First we "straighten out" the dual lattice, and then slide alternate horizontal 
bonds to one side of the vertical chain. Finally, we add a second vertical dimer chain identical 
to the first one to obtain the dual ladder in the dimer state (e). 

a n t i f e r r o m a g n e t i c  bonds ,  h e n c e  e a c h  p l a q u e t t e  is f ru s t r a t ed  in the  g r o u n d  

state.(l)  Th is  m o d e l  is in te res t ing  b e c a u s e  it is e q u i v a l e n t  to a sp in-glass- l ike  

m o d e l  in w h i c h  the  J a n d  J '  b o n d s  can  be  r e a r r a n g e d  in an  a p p a r e n t l y  

r a n d o m  w a y  by  a gauge  t r ans fo rma t ion . (  ]3) 

I n  the  g r o u n d  state,  the  ve r t i ca l  cha ins  of  a n t i f e r r o m a g n e t i c  b o n d s  

o r d e r  " i n  p h a s e "  w h e n  IJ't > J (see Fig.  2b). C o n s e q u e n t l y  the  sys tem is 
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essentially one dimensional because each vertical ferromagnetic chain feels 
only a staggered magnetic field of strength 2J in addition to the nearest- 
neighbor interaction. Thus we may write the following effective Hamilto- 
nian for the ferromagnetic chains: 

~)~eff ~- - J 2  sisi+ l -  2 J ~  ( - 1)isi (3a) 
i i 

We can show that this system is equivalent to the RS model by first using 
the well-known transformation s i ---> titi+ 1 to rewrite (3a) as 

~ e f f  = - -  J ~  titi+ 2 -  2J~ , ,  ( -  1)itit~+ l (3b) 
i i 

Now we have a spin chain with alternating ferro- and antiferromagnetic 
nearest-neighbor interactions, and a second-neighbor ferromagnetic interac- 
tion as shown in Fig. 2c. Next we perform the gauge transformation 
indicated in the figure. We reverse the signs of the spins at the circled sites, 
and reverse the signs of the bonds incident on these spins. Thus all 
nearest-neighbor bonds become ferromagnetic, and all second-neighbor 
bonds become antiferromagnetic, and we have obtained the RS model 
when J2/Jl = - I / 2  (see Fig. 2d). 

(b) Dimer statistics: Another way to understand the equivalence of the 
PUD and RS models, is to map the degenerate spin ground states into 
close-packed dimer configurations on the respective dual lattices. That is, 
we place a dimer on a dual bond which crosses a frustrated bond on the 
original lattice (Fig. 2e). In the ground state of the PUD model, exactly one 
bond per plaquette is frustrated; this implies that the dimers must be close 
packed on the dual. (t2) Moreover, because the antiferromagnetic chains are 
all "in phase," frustrated horizontal bonds occur in pairs. Consequently, the 
vertical dimers between any two antiferromagnetic chains must also occur 
in pairs. Thus evaluating the ground state entropy of the PUD model is 
equivalent to counting the number of corresponding close-packed dimer 
configurations on a "ladder," a 2 • ~ strip of the square lattice. 

Now consider the RS model: The minimum energy spin states also 
map to close-packed dimer configurations on the dual, a strip of the 
hexagonal lattice (Fig. 2f). By following the simple geometric manipulations 
indicated in the lower portion of Fig. 2, we deduce that counting the 
close-packed dimer configurations for the two problems are identical. 

(c) "Directed" self-avoiding walks: We define "directed" self-avoiding 
walks (SAW) as random walks which may visit a particular lattice site only 
once, and which have the additional constraint that steps in one direction 
are prohibited (see Fig. 3a). To see the connection between such walks on a 
ladder and the Ising chain, we imagine placing a spin up at each visited site 
on the upper edge of the ladder, and vice versa on the lower edge. Upon 
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Fig. 3. (a) A directed SAW on the ladder of width two lattice spacings. Steps to the left are 
prohibited. At each site, we place a spin up if the walk passes through a site on the upper edge 
of the ladder, and vice versa for the lower edge. As the walk proceeds we trace out  one of the 
spin configurations in the degenerate ground state of the RS model. (b) A typical SAW on a 
3 • oo strip of the square lattice, with periodic boundary conditions. The vertical bonds 
directly joining the top and bot tom rows are not drawn. The walk shown belongs to the class 
b N as defined in the text. 

following the path of a typical directed SAW, a sequence of spins is traced 
out. By construction, domains of parallel spins must be at least two lattice 
spacings in size. Consequently we have obtained one of the degenerate 
ground states of the RS model (k = 2). We can generalize this construction 
to arbitrary k in a straightforward manner to SAWs in which there must be 
at least k - 1 horizontal steps between vertical steps. These directed SAW 
configurations are isomorphic to the degenerate ground states of the Ising 
chain when J ~ / J ~  = - 1 / k .  

These results lead us to consider the problem of directed SAWs on 
lattice strips of arbitrary width l (see Fig. 3b). In the infinite two- 
dimensional limit ( l~oo) ,  this has been solved exactly by Fisher and 
Sykes (14) in connection with obtaining rigorous bounds on the connective 
constant or effective coordination number for random SAWs on the square 
lattice. Our solution complements their work by finding the generating 
function for directed SAWs on finite strips of arbitrary width. 

We consider here periodic boundary conditions in the transverse 
direction by wrapping the strip onto a cylinder. The free boundary case can 
also be treated by the method described here, but the details are considera- 
bly more complicated. We derive the generating function for the l-- 3 case 
explicitly, and generalization to arbitrary l follows directly. 

Let a N be the total number of N-step-directed SAWs. This number 
consists of all walks with the last step horizontal (=--bN) , walks with the 
second-to-last step horizontal and the last step vertical (-- Cu) ,  and walks 
with the third-to-last step horizontal and the last two steps vertical (-- dN). 
Now b u c a n  be obtained by adding a horizontal bond to any walk in the 
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three classes. That is, 

bN = b N - 1  -t- C N _  1 + d N - 1  (4a) 

We obtain c N by adding a vertical bond in two possible directions to each 
walk in b N _  1 (this holds only for periodic boundaries). Similarly we obtain 
d u by adding a vertical bond to each walk in e N_ i. Thus 

cu = 2b u_ , and d u  = cu -  1 (4b) 

Combining these yields for the total number of N-step-directed SAWS, 

aN = bN + CN + d N 

= a N _  l + 2au_ z + 2 a N _  3 (4c) 

For the case of a strip of l lattice spacings we find similarly 

a N = a N _  1 + 2(aN_ 2 + a N _  3 + �9 �9 �9 + a N _ l )  (48) 

In the limit N ~  0% a N ~ t ~ ,  where the connective constant ~z is the 
largest root of the characteristic equation derived from (4d), x t =  x t-1 + 
2 x t - 2 +  2xl-3  + . . .  + 2, and this gives /~2 = 2, /z 3 = 2.2696 . . . .  and ]L 4 
= 2.3593 . . . .  etc. As l ~  oo, /~z approaches a finite limit which is the 
solution of x t = x  t-I  ( l + 2 / x + 2 / x  2+ . . . ) ,  or x = ( l + l / x ) / ( 1 -  
1 /x ) .  From this we find that limt~ ~/h = 1 + ~ = 2.4142 . . . .  In this limit 
our result duplicates that of Fisher and Sykes. 

In summary, we have studied the properties of a finite one- 
dimensional Ising chain with competing interactions Jl  and Jk. At zero 
temperature there exists an infinitely degenerate ground state for a particu- 
lar value of Jk /J1 .  We have calculated this degeneracy exactly for the 
infinite chain and for the finite chain with free boundary conditions. In the 
latter case the degeneracy can be expressed as the terms in a generalized 
Fibonacci sequence. We have also shown that the Ising chain is closely 
related to the following problems: the PUD model, a two-dimensional Ising 
system with a periodic arrangement of ferro- and antiferromagnetic bonds, 
close packing of dimers on a ladder, a 2 • ~ strip of the square lattice, and 
directed self-avoiding walks on the ladder. Finally we have generalized, and 
calculated exactly, the properties of directed SAWs on lattice strips of 
arbitrary width. 
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