
Chapter 6

SPIN DYNAMICS

Kinetic spin systems play a crucial role in our understanding of non-equilibrium statistical physics. The pro-
totypical example is the kinetic Ising model, in which the conventional Ising model of equilibrium statistical
mechanics is endowed with physically-motivated transition rates that allows the system to “hop” between
different microstates. Just as investigations of the equilibrium Ising model have elucidated the rich phe-
nomenology underlying the transition between the disordered and ferromagnetically-ordered states, studies
of kinetic Ising models have yielded deep insights about a host of phenomena related to the appearance of
ferromagnetic order from an initially disordered paramagnetic state.

Part of the reason for the long-term interest in kinetic Ising models is their conceptual simplicity as
well as their wide applicability. However, there is an even simpler kinetic spin system that is not so widely
appreciated among physicists—the voter model—that will be the starting point for our discussion. The main
reason for starting with this model is that it is exactly soluble in all spatial dimensions. This solution is
quite interesting on its own and it also provide the framework for understanding the behavior of kinetic Ising
models.

6.1 The Voter Model

The voter model was first introduced in the context of interacting particle systems. Because of its paradig-
matic nature, the voter model has been one of the most extensively studied interacting particle systems. The
voter model describes, in an appealing way, how consensus emerges in a population of spineless individuals.
That is, each individual has no firmly fixed opinion and merely takes the opinion of one of its neighbors
in an update event. As a result, a finite population of such voters eventually achieves consensus in a time
that depends on the system size and on the spatial dimension. In this section, we discuss some of the most
basic and striking results of the voter model. We employ physics-inspired techniques that originated from
non-equilibrium statistical physics, to solve basic dynamical properties of the voter model on regular lattices
in all dimensions.

In the voter model, individuals are situated at each of the sites of a graph—one for each site. This graph
could be a regular lattice in d dimensions, or it could be any type of graph—such as the Erdös-Rényi random
graph, or a graph with a broad distribution of degrees. Each voter can be in one of two states that, for this
presentation, we label as “Democrat” and “Republican”. Mathematically, the state of the voter at x, s(x),
can take the values ±1 only; s(x) = +1 for a Democrat and s(x) = −1 for a Republican.

The dynamics of the voter model is simplicity itself. Each voter has no confidence and looks to a neighbor
to decide what to do. A single update event in the voter model consists of:

1. Pick a random voter.

2. The selected voter at x adopts the state of a randomly-selected neighbor at y. That is, s(x) → s(y).

3. Repeat steps 1 & 2 ad infinitum or stop when consensus is achieved.
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Notice that a voter changes opinion only when its neighbor has the opposite opinion. A typical realization
of the voter model on the square lattice is shown in Fig. 6.1, showing how the system tends to organize into
single-opinion domains as time increases.

Figure 6.1: The voter model in two dimensions. Shown is a snapshot of a system on a 100 × 100 square
lattice at time t = 1000, obtained by a Monte Carlo simulation. Black and white pixels denote the different
opinion states.

A useful way to implement the voter model dynamics is to have each update step occur at a fixed rate.
The rate at which a voter at x changes to the state −s(x) may then be written as

w(s(x)) =
1

2

(

1 − s(x)

z

∑

y n.n.x

s(y)

)

, (6.1)

where the sum is over the nearest neighbors of site x. Here z is the coordination number of the graph and we
tacitly assume that each site has the same coordination number. The basic feature of this dynamical rule is
that the transition rate of a voter at x is a linear function of the fraction of disagreeing neighbors—when a
voter at x and all its neighbors agree, the transition rate is zero; conversely, the transition rate equals 1 if all
neighbors disagree with the voter at x. This linearity is the primary reason why the voter model is soluble.
For later convenience, we define the amplitude in the transition rate so that its maximal value equals 1. It
is also worth mentioning that the voter model can be generalized to include opinion changes, s(x) → −s(x),
whose rate does not depend on the local environment, by simply adding a constant to the flip rate.

To solve the voter model, we need, in principle, the probability distribution P ({s}, t) that the set of all
voters are in the configuration {s} at time t. This probability distribution satisfies the master equation

dP ({s})
dt

= −
∑

x

w(s(x))P ({s}) +
∑

x

w(−s(x))P ({s}x). (6.2)

Here {s}x denotes the state that is the same as {s} except that the voter at x has changed opinion. In
this master equation, the loss term accounts for all possible transitions out of state {s}, while the gain term
accounts for transitions in which the state of one spin differs from the configuration {s}. In principle, we can
use this master equation to derive closed equations for all moments of the probability distribution—namely,
all multiple-spin correlation functions of the form Sx,...,y ≡ 〈s(x) · · · s(y)〉 where the angle brackets denote
the average 〈f({s})〉 ≡

∑

s f({s})P (s).
Let’s begin by considering the simplest such correlation function, namely, the mean spin, or equivalently,

the one-point function, S(x) ≡ 〈s(x)〉. While it is possible to obtain the evolution of the mean spin and
indeed any spin correlation function directly from the master equation (6.2), this approach involves some
bookkeeping that is prone to error. We therefore present an alternative method that is both more direct and
more instructive. In a small time interval ∆t, the state of a given voter changes as follows:

s(x, t+ ∆t) =

{

s(x, t) with probability 1 − w(s(x))∆t,

−s(x, t) with probability w(s(x))∆t.
(6.3)
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Since the opinion at x changes by −2s(x) with rate w(s(x)), the average opinion evolves according to the
rate equation

dS(x)

dt
= −2〈s(x)w(s(x))〉.

Substituting in the transition rate from (6.1) and using the fact that s(x)2 = 1, we find that for voters that
are located on the sites of a d-dimensional hypercubic lattice, the rate equation has the form

dS(x)

dt
= −S(x) +

1

z

∑

i

S(x + ei), (6.4)

where ei are the unit vectors of the lattice. The above evolution equation can be rewritten more compactly
using the definition of the discrete Laplacian operator

∆F (x) ≡ −F (x) +
1

z

∑

i

F (x + ei), (6.5)

from which the mean spin evolves as dS(x)
dt = ∆S(x).

This rate equation shows that the mean spin performs a random walk on the lattice in continuous time.
As a result, the mean magnetization, m ≡

∑

x S(x)/N is conserved, as follows by summing Eq. (6.4) over all
sites. There is a subtle aspect to this basic conservation law. While the magnetization of a specific system
does change in a single update event by construction, the average over all sites and over all trajectories of
the dynamics is conserved. The consequence of this conservation law is profound. Consider a finite system
with an initial fraction ρ of Democrats and 1 − ρ of Republicans; equivalently, the initial magnetization
m0 = 2ρ− 1. Ultimately, this system will reach consensus by voter model dynamics—Democrat consensus
occurs with probability E and Republican consensus occurs with probability 1 − E. The magnetization of
this final state is m∞ = E × 1 + (1−E)× (−1) = 2E − 1. From magnetization conservation, we obtain our
first basic conclusion about the voter model: because m∞ = m0, the “exit probability” is simply E = ρ.

Discrete Diffusion Equation and Bessel Functions

When a random walk hops between sites of a regular but continuously in time, the master equation for
the probability that the particle is on site n at time t has the generic form:

Ṗn =
γ

2
(Pn−1 + Pn+1) − Pn. (6.6)

The usual case is γ = 1, corresponding to conservation of the total probability. Here we consider general
values of γ because this case arises in the equations of motion for correlation functions in the kinetic
Ising model. For simplicity, let us suppose that the random walk is initially at site n = 0. To solve this
equation, we introduce the Fourier transform P (k, t) =

P

n Pn(t)eikn and find that the Fourier transform

satisfies dP (k)
dt

= [ 1
2
γ(eik + e−ik) − 1]P (k). For the initial condition P (k, t = 0) = 1, the solution is

simply P (k) = exp[γt cos k − t]. Now we use the generating function representation of the Bessel function,
exp(z cos k) =

P∞
n=−∞ eiknIn(z). Expanding the generating function in a power series in γt, we obtain

the final result
Pn(t) = In(γt)e−t. (6.7)

In the long-time limit, we use the asymptotics of the Bessel function

In(t) ∼ (2πt)−1/2 et,

to give the asymptotic behavior

Pn(t) ∼ 1√
2πγt

e−(1−γ)t.

Let us now solve the rate equation (6.4) explicitly for the mean spin at x. In one dimension, this rate
equation is

dS(x)

dt
= −S(x) +

1

2
[S(x− 1) + S(x+ 1)] . (6.8)
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For simplicity consider the initial condition S(x, t = 0) = δx,0; that is, start with a single Democrat in a
background population of undecided voters. Then using the results from the above highlight on the Bessel
function solution to this type of master equation, we obtain

S(x, t) = Ix(t) e
−t ∼ 1√

2πt
as t→ ∞. (6.9)

Exactly the same approach works in higher dimensions. Now the rate equation is

dS(x)

dt
= −S(x) +

1

z

∑

i

S(x + ei), (6.10)

where the sum is over the z nearest neighbors of x. To solve this equation, we introduce the multidimensional
Fourier transform P (k1, k2, . . . , t) =

∑

x1,x2,...
Px1,x2,...(t)e

ik1x1eik2x2 . . . and find that the Fourier transform
in each coordinate direction factorizes. For the initial condition of one Democrat at the origin in a sea of
undecided voters, the mean spin is then given by

S(x, t) =

d∏

i=1

Ixi
(t) e−dt ∼ 1

(2πt)d/2
. (6.11)

Thus the fate of a single voter is to quickly relax to the average undecided opinion of the rest of the population.
To understand how consensus is actually achieved in the voter model, we need a quantity that tells us the

extent to which two distant voters agree. Such a measure is provided by the two-point correlation function,
S(x,y) ≡ 〈s(x)s(y)〉, which quantifies the extent to which two distant voters agree. Proceeding in close
analogy with Eq. (6.3) the two-point function evolves as

s(x, t+ ∆t)s(y, t+ ∆t) =

{

s(x, t)s(y, t) with probability 1 − [w(s(x)) + [w(s(y))]∆t,

−s(x, t)s(y, t) with probability [w(s(x)) + w(s(y))]∆t.
(6.12)

Thus S(x,y) evolves according to

dS(x,y)

dt
= −2

〈
s(x)s(y)

[
w(s(x)) + w(s(y))

]〉
.

On a hypercubic lattice, the explicit form of this rate equation is

dS(x,y)

dt
= −2S(x,y) +

∑

i

1

z

[
S(x + ei,y) + S(x,y + ei)

]
. (6.13)

In what follows, we discuss spatially homogeneous and isotropic systems in which the correlation function
depends only on the distance r = |x − y| between two voters at x and y, G(r) ≡ S(x,y). Then the last two
terms on the right-hand side of (6.13) are identical and this equation reduces to (6.4) apart from an overall
factor of 2. At this stage, it is most convenient to consider the continuum limit, in which case Eq. (6.13)
reduces to the diffusion equation

∂G

∂t
= D∇2G, (6.14)

with D = 2(∆x)2/∆t, and ∆x is the lattice spacing. For the undecided initial state in which each voter is
independently a Democrat or a Republican with equal probability, the initial condition is G(r, t = 0) = 0
for r > 0. On the other hand, each voter is perfectly correlated itself, G(0, t) = 1. We can write these two
conditions succinctly as G(r, t = 0) = δr,0.

To understand physically how the correlation function evolves, it is expedient to work with c ≡ 1−G; c
also satisfies the diffusion equation, but now with the initial condition c(r > a, t = 0) = 1. The appropriate
boundary condition for the continuum limit is c(r = a, t) = 1; that is, the absorbing point at the origin is
replaced by a small absorbing sphere of non-zero radius a. One should think of a as playing the role of the
lattice spacing; a non-zero radius is needed so that a diffusing particle can actually hit the sphere. Physically,
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then, we study how an initially constant density profile evolves in the presence of a small absorbing sphere
at the origin.

The exact solution for this concentration profile can be easily obtained in the Laplace domain. Laplace
transforming the diffusion equation gives sc− 1 = D∇2c; the inhomogeneous term arises from the constant-
density initial condition. A particular solution to the inhomogeneous equation is simply c = 1/s, and the
homogeneous equation

c′′ +
d− 1

r
c′ − s

D
d = 0

has the general solution c = ArνIν(r
√

s/D) + BrνKν(r
√

s/D), where Iν and Kν are the modified Bessel
functions of order ν, with ν = (2 − d)/2. Since the concentration is finite as r → ∞, the term with Iν must
be rejected. Then matching to the boundary condition c = 0 at r = a gives

c(r, s) =
1

s

[

1 −
( r

a

)ν Kν(r
√

s/D)

Kν(a
√

s/D)

]

. (6.15)

For spatial dimension d > 2 (ν < 0), we use Kν = K−ν and the small-argument form Kν(x) ∝ (2/x)ν to
give the leading small-s behavior

c(r, s→ 0) =
1

s

[

1 −
(a

r

)d−2
]

.

Thus in the time domain, the concentration profile approaches the static electrostatic solution, c(r) =
1 − (a/r)d−2! A steady state is achieved because there is a non-zero probability that a diffusing particle
never hits the absorbing sphere (transience). The depletion of the concentration near the sphere is sufficiently
slow that it is replenished by re-supply from more distant particles. In terms of the voter model, the two-
particle correlation function asymptotically becomes G(r) → (a/r)d−2 for d > 2. Thus the influence of one
voter on a distant neighbor decays as a power law in their separation.

Now let’s study the case d ≤ 2 (ν ≥ 0). Here a diffusing particle eventually hits the sphere (recurrence;
see Sec. 2.3), leading to a growing depletion zone about the sphere. While the time dependence of c can
be obtained by inverting the Laplace transform in Eq. (6.15), we present a simpler and physically-driven
approach—the quasi-static approximation. The basis of this simple and generally quite useful approximation
is the observation that even though the concentration profile evolves in the depletion zone, the change is
sufficiently slow that we can again obtain the solution from Laplace’s equation. This Laplacian solution must
then match with the unperturbed concentration for r >

√
Dt. This matching is the mechanism by which a

time dependence arises. Thus we solve the Laplace equation in the intermediate range of a < r <
√
Dt and

match to the static value c = 1 when r
√
Dt. From the generic solution c(r) = A+B/(r)d−2, together with

the boundary conditions c(a) = 0 and c(
√
Dt) = 1, we obtain

c(r, t) =
1 − (a/r)d−2

1 − (a/
√
Dt)d−2

→
(√

Dt

r

)d−2

t→ ∞.

For d = 2, the same quasi-static approach still works. We use the generic solution to the Laplace equation
for d = 2, namely, c(r) = A+B ln r and apply the boundary conditions at r = a and r =

√
Dt to obtain

c(r, t) =
ln(r/a)

ln(
√
Dt/a)

→ ln r

ln t
t→ ∞.

In summary, the two-spin correlation function for r > a has the asymptotic behavior for general spatial
dimensions:

G(r, t) ∼







1 −
(

r√
Dt

)2−d
d < 2 and 0 < r <

√
Dt;

1 − ln(r/a)

ln(
√
Dt/a)

d = 2 and a < r <
√
Dt;

(a

r

)d−2

d > 2 and a < r.

(6.16)
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Figure 6.2: The spin correlation function for the voter model from Eq. vm-corr-sum for d < 2 (left), for
progressively later times, and the steady-state correlation function for d > 2 (right).

An important feature for d ≤ 2 is that the correlation function at fixed r approaches 1—distant spins
gradually become more strongly correlated. This feature is a manifestation of coarsening in which the voters
organize into a mosaic of single-opinion enclaves whose characteristic size increases with time. As we shall
see, coarsening typifies many types of phase-ordering kinetics. On the other hand, for d > 2 the voter model
approaches a steady state and there is no coarsening in the spatial arrangement of the voters.

There are two important consequences for the voter model that can be deduced from the behavior of the
correlation function. The first is that we can immediately determine the time dependence of the density of
“interfaces”, namely, the fraction n of neighboring voters of the opposite opinion. As shall use extensively
later on, it is helpful to represent an interface as an effective particle that occupies the bond between two
neighboring voters of the opposite opinion. This quantity provides the right way to characterize the departure
of system from consensus. For two nearest-neighbor sites x and y, we relate the correlation function to the
interface density by

G(x,y) = 〈s(x)s(y)〉 = [prob(++) + prob(−−)] − [prob(+−) + prob(−+)]

= 1 − n − n = 1 − 2n. (6.17)

Thus the density of interfaces is related to the near-neighbor correlation function via n = (1 − G(x,y))/2.
Using our result (6.16) for the correlation function, the time dependence of the interfacial density is then

n(t) ∼







td/2−1 d < 2,

1/ ln t d = 2,

O(1) d > 2.

(6.18)

When d ≤ 2, the probability of having two voters with opposite opinions asymptotically vanishes and the
system develops a coarsening mosaic of single-opinion domains (Fig. 6.1). At the marginal dimension of
d = 2 the coarsening process is very slow and the density of interfaces asymptotically vanishes as 1/ ln t. In
higher dimensions, the system reaches a dynamic frustrated state where voters of opposite opinion coexist
and continually evolve such that the mean density of each type of voter remains fixed.

The second basic consequence that follows from the correlation function is the time TN to reach consensus
for a finite system of N voters. For this estimate of the consensus time, we use the fact that the influence of
any voter spread diffusively through the system. Thus starting with some initial state, the influence range
of one voter is of the order of

√
Dt. We then define consensus to occur when the total amount of correlation

within a distance of
√
Dt of a particular voter equals the total number of voters N . The consensus criterion
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therefore becomes

∫
√
Dt

G(r) rd−1 dr = N. (6.19)

The lower limit can be set to 0 for d = 1 and should be set to a for d > 1. Substituting the expressions for
the correlation function given in Eq. (6.16) into this integral, the time dependence can be extracted merely
by scaling and we find the asymptotic behavior

TN ∝







N2/d d < 2;

N lnN d = 2;

N d > 2.

Thus as the dimension decreases below 2, consensus takes a progressively longer to achieve. This feature
reflects the increasing difficulty in transmitting information when the dimensionality decreases.

Let us now derive the exact solution for the correlation function without using the continuum approx-
imation. This solution is nothing more than the lattice Green’s function for the diffusion equation. It is
convenient to rescale the time variable by 2, τ = 2t, so that the correlation function satisfies precisely the
same equation of motion as the average magnetization

d

dτ
G(x) = −G(x) +

1

z

∑

i

G(x + ei). (6.20)

We consider the uncorrelated initial condition G(x, 0) = δ(x) and the boundary condition is G(0) = 1.
The evolution equation and the initial conditions are as for the autocorrelation function where the solution
is Im(τ)e−d τ . Since the equation is linear, every linear combination of these “building-blocks” is also a
solution. Therefore, we consider the linear combination

G(x, τ) = Ix(τ)e−d τ +

∫ τ

0

dτ ′J(τ − τ ′)Ix(τ ′)e−d τ
′

. (6.21)

The kernel of the integral is identifies as a source with strength δ(τ) + J(τ). This source is fixed by the
boundary condition:

1 =
[
I0(τ)e

−τ ]d +

∫ τ

0

dτ ′ J(τ − τ ′)[I0(τ
′)e−τ

′

]d. (6.22)

We are interested in the asymptotic behavior of the correlation function. This requires the τ → ∞ behavior
of the source term. Thus, we introduce the Laplace transform Ĵ(s) =

∫∞
0 dτ e−sτJ(τ). Exploiting the

convolution structure of the integral yields

Ĵ(s) = [sÎ(s)]−1 − 1 with Î(s) =

∫ ∞

0

dτ e−sτ [I0(τ)e
−τ ]d. (6.23)

Using the integral representation of the Bessel function, I0(τ) =
∫ 2π

0
dq
2π e

τ cos q , the latter transform is ex-
pressed as an integral

Î(s) =

∫ 2π

0

dq

(2π)d
1

s+
∑d
i=1(1 − cos qi)

. (6.24)

The τ → ∞ asymptotic behavior of the source and the correlation function is ultimately related to the
s→ 0 asymptotic behavior of this integral. The integral diverges, Î(s) ∼ sd/2−1, when d < 2, but it remains
finite when d > 2. The leading s→ 0 behavior of the Laplace transform is therefore

Ĵ(s) ∼







s−d/2 d < 2,

s−1 ln s−1 d = 2,

s−1 d > 2.

(6.25)
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6.2 Glauber Model in One Dimension

The Ising model provides an appealing and universal description of phase transitions in ferromagnets. Owing
to its conceptual simplicity and broad applicability, statistical mechanical studies of the Ising model played
a fundamental role in the development of the modern theory of critical phenomena. In the Ising model, a
regular lattice is populated by 2-state spins that may take one of two values: s(x) = ±1. Pairs of nearest-
neighbor spins experience a ferromagnetic interaction that favors their alignment. The Hamiltonian of the
system is

H = −J
∑

〈i,j〉
sisj , (6.26)

where the sum is over nearest neighbors (i, j) on the lattice. Every parallel pair of neighboring spins
contributes −J to the energy and every antiparallel pair contributes +J . When the coupling constant is
positive, the interaction favors ferromagnetic order.

The main feature of the Ising model is that ferromagnetism appears spontaneously in the absence of
any driving field when the temperature T is less than a critical temperature Tc and the spatial dimension
d > 1. Above Tc, the spatial arrangement of spins is spatially disordered, with equal numbers of spins in
the states +1 and −1. Consequently, the magnetization is zero and spatial correlations between spins decay
exponentially with their separation. Below Tc, the magnetization is non-zero and distant spins are strongly
correlated. All thermodynamic properties of the Ising model can be obtained from the partition function
Z =

∑
exp(−βH), where the sum is over all spin configurations of the system, with β = 1/kBT and kB is

the Boltzmann constant.
While equilibrium properties of the Ising model follow from the partition function, its non-equilibrium

properties depend on the nature of the spin dynamics. There is considerable freedom in formulating this
dynamics that is dictated by physical considerations. For example, the spins may change one at a time or in
correlated blocks. More fundamentally, the dynamics may or may not conserve the magnetization. The role
of a conservation law depends on whether the Ising model is being used to describe alloy systems, where the
magnetization (related to the composition of the material) is necessarily conserved, or spin systems, where
the magnetization does not have to be conserved. This lack of uniqueness of dynamical rules is generic in non-
equilibrium statistical physics and it part of the reason why there do not exist universal principles, such as
free energy minimization in equilibrium statistical mechanics, that prescribe how to solve a non-equilibrium
spin system.

Spin evolution

In this section, we discuss a particular realization of the kinetic Ising model that evolves by non-conservative
single-spin-flip dynamics. This model, first introduced by Glauber in 1963, represents a simple way to extend
the Ising model to non-equilibrium situations. Here we will focus on the one-dimensional system, as this
model is exactly soluble by analytical methods. Later on we will study the Ising-Glauber model in higher
dimensions, and well as different types of spin dynamics, including conservative Kawasaki spin-exchange
dynamics, and cluster dynamics, in which correlated blocks of spins flip simultaneously. In the Glauber
model, spins are selected one at a time in random order and each changes at a rate that depends on the
change in the energy of the system as a result of this update. Because only single spins can change sign in
an update, sj → −sj , where sj is the spin value at site j, the magnetization is generally not conserved.

There are three types of transitions that can arise when a single spin flips: energy raising, energy
lowering, and energy neutral transitions (Fig. 6.3). Energy raising events occur when a spin is aligned with
a majority of its neighbors and vice versa for energy lower events. Energy conserving events occur when the
net magnetization of the neighbors is zero. The basic principle to fix the rates of the various types of events
is the detailed balance condition. Mathematically, this condition is:

P ({s} )w(s→ s′j) = P ({s′j})w(s′j → s). (6.27)

Here {s} denotes the state of all the spins in the system, {s′j} denotes the state derived from {s} in which
the spin at i is flipped, and w(s → s′j) denotes the transition rate from {s} to {s′j}.

The meaning of the detailed balance condition is simple. In the abstract space of all 2N possible spin
states of a system of N spins, Glauber dynamics connects states which differ by the reversal of a single spin.
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(a) (b) (c)

Figure 6.3: (a) Energy lowering, (b) energy raising, and (c) energy conserving spin-flip events on the square
lattice.

When detailed balance holds, the probability currents from state {s} to {s′j} and from {s′j} to {s} (the left
and right sides of Eq. (6.27)) are equal so there is no net probability current across any link in this state
space. If P ({s}) are the equilibrium Boltzmann weights, then the transition rates defined by Eq. (6.27)
ensure that any initial spin state will eventually relax to the equilibrium thermodynamic equilibrium state
for any non-zero temperature. Thus dynamics that satisfy detailed balance are required if one seeks to
understand how equilibrium is approached when a system is prepared in an out of equilibrium state.

In the following discussion of analytical methods, we specialize to the case of one dimension. Here the
detailed balance condition is sufficient to fix the actual flip rates. Following Glauber, we assume that the
flip rate of the jth spin depends on the neighbors with which there is a direct interaction, namely, sj and
sj±1. For an isotropic system, the rate should have left/right symmetry (invariance under the interchange
i+1 ↔ i−1) and up/down symmetry (invariance under the reversal of all spins).1. For a homogeneous one-
dimensional system, these conditions constrain the rate to have the form w(s → s′j) = A+Bsj(sj−1 + sj+1).

This flip rate is simply the energy of the ith spin up to an additive constant. We now write this flip rate in
the following suggestive form

w(s → s′j) =
α

2

[

1 − γ

2
sj(sj−1 + sj+1)

]

=







α
2 (1 − γ) for spin state ↑↑↑ or ↓↓↓;
α
2 for spin state ↑↑↓ or ↓↓↑;
α
2 (1 + γ) for spin state ↑↓↑ or ↓↑↓ .

(6.28)

When the two neighbors are antiparallel (no local field), the flip rate is simply a constant that we take to
be 1/2 (α = 1) without loss of generality. For γ > 0, the flip rate favors aligning sj with its neighbors and
vice versa for γ < 0.

We now fix γ by exploiting detailed balance:

w(s → s′j)

w(s′j → s)
=

1 − γ
2 sj(sj−1 + sj+1)

1 + γ
2 sj(sj−1 + sj+1)

=
P ({s′j})
P ({s}) =

e−βJεj

e+βJεj
, (6.29)

with εj ≡ −sj(sj−1 + sj+1). We simplify the last quantity by exploiting the ±1 algebra of Ising spins to
write

e−βJεj

e+βJεj
=

cosh(−βJεj) + sinh(−βJεj)
coshβJεj + sinhβJεj

=
1 − tanh(2βJ

εj
2 )

1 + tanh(2βJ
εj
2 )

=
1 − 1

2εj tanh 2βJ

1 + 1
2εj tanh 2βJ

,

where in the last step we use the fact that tanh ax = a tanhx for a = 0,±1. Comparing with Eq. (6.28), we
deduce that γ = tanh 2βJ . Thus the flip rate is

w(sj) =
1

2

[

1 − 1

2
tanh 2βJ sj(sj−1 + sj+1)

]

. (6.30)

For T → ∞, γ → 0 and all three types of spin-flip events shown in Eq. (6.28) are equiprobable. Conversely,
for T → 0, γ → 1, and energy raising spin-flip events are prohibited.

The probability distribution P ({s}, t) that the system has the microscopic spin configuration s at time
t satisfies the same master equation (6.2) as the voter model. Consequently, the equation of motion for the

1Actually the most general rate that satisfies the constraints of locality within the interaction range, symmetry, and isotropy
is w(sj) = (1/2)(1 + δsj−1sj+1)

ˆ

1 − (γ/2)sj (sj−1 + sj+1)
˜
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low-order correlation functions are:

dSj
dt

= −2
〈
sjw(sj)

〉
, (6.31a)

dSi,j
dt

= −2
〈
sisj [w(si) + w(sj)]

〉
, (6.31b)

where the subscripts i and j denote the ith and jth site of a one-dimensional lattice.
Using the transition rates given in (6.30) and the identity s2j = 1, the rate equation for the average spin

Sj is

dSj
dt

= −Sk +
γ

2
(Sj−1 + Sj+1) . (6.32)

With the initial condition Sj(0) = δj,0, the solution is (see the highlight on the Bessel function solution to
discrete diffusion)

Sj(t) = Ij(γt)e
−t. (6.33)

The new feature compared to the corresponding voter model solution is the presence of the temperature-
dependent factor γ. Now the average spin at any site decays as Sj(t) ∼ (2πγt)−1/2e−(1−γ)t. For T > 0, the
decay is exponential in time, Sj ∼ e−t/τ , with relaxation time τ = (1 − γ)−1, while for T = 0 the decay is
algebraic in time, Sj ' (2πt)−1/2. The magnetization m = N−1

∑

j Sj satisfies dm
dt = −(1− γ)m, so that m

decays exponentially with time at any positive temperature,

m(t) = m(0)e−(1−γ)t , (6.34)

and is conserved at zero temperature, just as in the voter model. The Ising-Glauber in one dimension model
nicely illustrates critical slowing down—slower relaxation at the critical point (T = 0 in one dimension) than
for T > 0.

The mean spin can also be directly solved for a general initial condition, Sj(t = 0) = σj , with σj an
arbitrary function between +1 and −1. Then the Fourier transform of the initial condition is sk(t = 0) =
∑

n σne
ikn. Using this result, the Fourier transform of the solution to the equation of motion (6.32) is

Sk(t) = Sk(t = 0)e(γ cos k−1)t =
∑

m

eikmσm
∑

n

In(γt)eikn e−t .

Now define ` = m+n to recast the exponential factors as a single sum to facilitate taking the inverse Fourier
transform:

Sk(t) =
∑

`

eik`
∑

m

σm I`−m(γt) e−t .

From the expression above we may simply read off the solution as the coefficient of eik`:

S` =
∑

m

σm I`−m(γt) e−t . (6.35)

As we shall encounter next, this solution is useful for solving the two-spin correlation function.
Let’s now study the pair correlation function, Si,j = 〈sisj〉. As a preliminary, it is useful to highlight

a geometrical equivalence between the kinetic Ising model and diffusion-limited reactions. As given by
Eq. (6.17), there is a one-to-one mapping between a spin configuration and an arrangement of domain wall
quasi particles. Two neighboring antiparallel spins are equivalent to a domain wall that is halfway between
the two spins, while two neighboring parallel spins has no intervening domain wall (Fig. 6.4). Energy raising
spin flips are equivalent to creating a nearest-neighbor pair of domain walls, while energy lowering moves
correspond to annihilation of two neighboring walls. Energy conserving flips correspond to the hopping of a
domain wall between neighboring sites. At T = 0, where domain wall creation is forbidden, Ising-Glauber
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(c)(a) (b)

Figure 6.4: Mapping between states of the Ising or the voter models in one dimension and domain wall
particles between neighboring pairs of antiparallel spins. Shown are the equivalences between: (a) an energy
conserving move and diffusion of a domain wall, (b) energy lowering moves and annihilation of two domain
walls, and (c) energy raising moves and creation of a pair of domain walls.

kinetics is then equivalent to irreversible diffusion-controlled annihilation, A + A → 0. In this process a
population of identical particles diffuses freely and mutual annihilation occurs when two particle come into
contact. Similarly, for T > 0, Ising-Glauber kinetics is equivalent to diffusion-controlled annihilation with
pair creation. As we will see, we can use the known results about the Ising-Glauber kinetics to infer the
time dependence of the particle density in the corresponding reaction processes.

We focus on translationally invariant systems where the correlation function depends only the separation
of the two spins, Gk ≡ Si,i+k. The master equation (6.31b) becomes

dGk
dt

= −2Gk(t) + γ (Gk−1 +Gk+1) (6.36)

for k > 0. This equation needs to be supplemented by the boundary condition G0(t) = 1. Thus the pair
correlation function evolves in nearly the same way as the mean spin. However, because of the existence
of the fixed boundary condition at the origin, the master equation also admits an exponential equilibrium
solution. that is determined by assuming that Gk(∞) ∝ ηk and substituting this form into Eq. (6.36) with
the left-hand side set to zero. These steps lead to the following condition for η: 2γ = η+ η−1 whose solution
is η = [1 −

√

1 − γ2]/γ = tanhβJ . The equilibrium pair correlation function therefore decays exponentially
in the distance between the two spins,

Gk(∞) = e−k/ξ , (6.37)

with correlation length ξ−1 = 1/ ln(cothβJ). This result coincides with the correlation function obtained
directly from thermodynamics. As expected, the correlation length ξ diverges as T → 0, indicative of a
phase transition, and ξ vanishes at infinite temperature.

ηk

k kk
(c) −ηk

η|k|

(b)(a)

Figure 6.5: (a) Equilibrium correlation function and (b) an arbitrary antisymmetric initial condition. To
find Gk(t) for k > 0, we superpose the solutions for the three initial conditions shown. This superposition
satisfies both the initial condition and the boundary condition.

We now discuss how to solve the time dependence of the correlation function with a prescribed initial
condition Gk(t = 0) and the boundary condition G0 = 1. Since the master equation for the correlation
function has the same form as that for the mean spin apart from an overall factor of 2, the general solution
will be built from components of the form as (6.35) with the replacement of γ → 2γ. We now need to
determine the appropriate linear combination of these component solutions that simultaneously satisfy the
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initial condition Gk(t = 0) and the boundary conditions. One piece of the full solution is just the equilibrium
correlation function Gk(∞) = η|k|. To this we add the general homogeneous solution that satisfies the
prescribed constraints. Pictorially, the appropriate initial condition for the homogeneous solution consists
of an arbitrary odd function plus an antisymmetric piece that cancels the equilibrium solution for k > 0
(Fig. 6.5. The antisymmetry of these pieces ensure that G0 = 1 and that the prescribed initial condition is
satisfied for k > 0.

The general solution for k > 0 therefore is:

Gk(t) = ηk + e−2t
∞∑

`=−∞
G`(0)Ik−`(2γt)

= ηk + e−2t
∞∑

`=1

[G`(0) − η`]Ik−`(2γt) + e−2t
−∞∑

`=−1

[G`(0) + η|`|]Ik−`(2γt)

= ηk + e−2t
∞∑

`=1

[G`(0) − η`][Ik−`(2γt) − Ik+`(2γt)]. (6.38)

We restrict ourselves to the case of T = 0, where two special cases lead to nice results:

1. Antiferromagnetic initial state, Gk(0) = (−1)k. In this case, every site of the dual lattice is initially
occupied by domain wall particle. For this initial state, the nearest-neighbor correlation function in
Eq. (6.38) reduces to

G1(t) = 1 − 2e−2t
∑

jodd

[I1−j(2t) − I1+j(2t)] = 1 − 2e−2t I0(2t),

where we have used In = I−n.

2. Random initial state, Gk(0) = m2
0, where m0 is the initial magnetization. Then the nearest-neighbor

correlation function is

G1(t) = 1 = e−2t(m2
0 − 1)

∑

j

[I1−j(2t) − I1+j(2t)] = 1 − 2e−2t (m2
0 − 1) [I0(2t) + I1(2t)] .

From these two solutions, the domain wall densities are

ρ(t) =
1 −G1

2
=







I0(2t) e
−2t ∼ 1√

4πt
antiferromagnetic,

1−m2
0

2
[I0(2t) + I1(2t)] e

−2t ∼ 1 −m2
0√

4πt
uncorrelated.

(6.39)

If the initial magnetization m0 = 0 for the random initial condition, then the asymptotic domain wall density
universally vanishes as

ρ(t) ∼ (4πt)−1/2, (6.40)

independent of the initial domain wall density! Because the number of domain walls decrease with time,
their separation correspondingly increases. The system therefore coarsens, as domains of parallel spins grow
with the diffusive length scale t1/2. A final important point is that Eq. (6.39) also represents the exact
solution for diffusion-limited annihilation A+A → 0!

Domain length distribution

In the previous section, we obtained the density of domain walls or alternatively, the average domain size.
Now we ask the more fundamental question: what is the distribution of domain sizes in a one-dimensional
system of length L? Let Pk be the probability to find a domain of size k, namely, a configuration in which
of k consecutive spins are aligned and the two spins at the ends of this string are both oppositely oriented
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to the string. To have a system-size independent quantity, we define this probability per unit length. We
now seek the time dependence of this domain size distribution.

We can obtain partial information about this distribution from basic physical considerations. For example,
the domain wall density ρ, which scales as t−1/2, is given by

∑

k Pk, while the domain size distribution obeys
the normalization condition

∑

k kPk = 1. Further, from the the diffusive nature of the evolution, the only
physical length scale grows as t1/2. These facts suggest that the domain size distribution has the scaling
form

Pk(t) ' t−1Φ(kt−1/2). (6.41)

Here the prefactor ensures that the mean domain size (per unit length) is fixed to one, that is,
∫
xΦ(x)dx = 1,

while the asymptotic decay of the total density (6.40) gives the condition
∫

Φ(x)dx = (4π)−1/2 ≡ C.

By simple physical reasoning, we can also infer the short-distance tail of the scaling function Φ(x) from
the long-time decay of the domain density. Consider the role of the shortest possible domain (of length 1)
on rate equation for the domain density ρ. When a domain that consists of single spin flips, three domains
merge into a single larger domain illustrated below:

· · · ↓ ↑ · · · ↑↑
︸ ︷︷ ︸

↓ ↑↑ · · · ↑
︸ ︷︷ ︸

↓ · · · 1−→ · · · ↓ ↑ · · · ↑↑ ↑ ↑↑ · · · ↑
︸ ︷︷ ︸

↓ · · · .

Since such events, in which two domains disappear, occur with a unit rate, the domain density decays
according to

dρ

dt
= −2P1. (6.42)

Using Eq. (6.40), we obtain P1 ∼ C
4 t

−3/2. On the other hand, expanding Φ in a Taylor series gives

P1
∼= Φ(0)t−1 + Φ′(0)t−3/2 + · · · . Comparing these two results, we deduce that Φ(0) = 0 and Φ′(0) = C

4 .
Therefore the scaling function vanishes linearly in the small-argument limit:

Φ(x) ∼ C

4
x, as x→ 0. (6.43)

This linear decrease in the small-size tail of the probability distribution is a generic feature of many one-
dimensional interacting many-body systems.

While scaling arguments provide considerable information about the asymptotic behavior of the size
distribution, we are interested in the distribution itself. The exact solution is not yet known, and we present
an approximate solution that is based on the Independent Interval Approximation that correctly describes the
main qualitative aspects of the domain size distribution. The basis of this approximation is the assumption
that the sizes of neighboring domains are uncorrelated, an assumption makes the the domain size distribution
analytically tractable. As we shall see, this approach can be applied to a variety of one-dimensional domain
evolution and reaction processes.

Under the assumption that the sizes of neighboring domains are uncorrelated, the domain distribution
obeys a closed set of master equations. In an infinitesimal time interval ∆t, the size distribution changes as
follows:

Pk(t+ ∆t) − Pk(t) = −2∆tPk(t) + ∆t Pk+1 + ∆t Pk−1

(

1 − P1

ρ

)

+ ∆t P1

∑

i+j=k−1

Pi
ρ

Pj
ρ

− ∆t P1
Pk
ρ
. (6.44)

The first line accounts for length changes due to a domain wall hopping by ±1. These events are equivalent
to an effective diffusion of a single domain. The factor 1 − P1/ρ ensures that the neighboring domain has
length greater than one so that there is no possibility that two domain walls meet. The second line accounts
for changes in the domain distribution due to merging of domains. Because any merger requires the presence
of a domain of length one, the terms that account for such events are proportional to P1. The gain term
accounts for the merger of three domains of lengths i, j, and 1, with i+ j + 1 = k. The loss term accounts
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for the merger of a domain of size k with a domain of any other size. Taking the limit ∆t → 0 then yields
the master equation

dPk
dt

= −2Pk + Pk−1 + Pk+1 +
P1

ρ2

∑

i+j=k−1

Pi Pj −
P1

ρ
(Pk−1 + Pk). (6.45)

These master equations equations apply for any k ≥ 1, subject to the boundary condition P0 = 0. From
the master equation, one can check that the total density ρ =

∑

k Pk indeed satisfies the exact equation
(6.42) and that

∑

k k dPk/dt = 0. Since the typical domain size grows indefinitely, it is sensible to treat k as
a continuous variable. In this limit, we replace the integer k by the real-valued variable x so that the diffusive
terms in the master equation are simply replaced by the Laplacian. Using ρ ' Ct−1/2, P1 ' C

4 t
−3/2, and

the scaling form (6.41) then gives the integro-differential equation for the scaling function

d2Φ

dx2
+

1

2

d(xΦ)

dx
+

1

4C

∫ x

0

Φ(y)Φ(x− y) dy = 0. (6.46)

Given the convolution in the last term of this master equation, we introduce the Laplace transform, φ(s) =
C−1

∫∞
0

Φ(x)e−sxdx, to reduce the integro-differential equation to the ordinary nonlinear differential equation

dφ

ds
=
φ2

2s
+ 2s φ− 1

2s
, (6.47)

with the boundary condition φ(0) = 1. Since we know the first two terms in the series expansion of Φ, the
small-s behavior φ(s) is given by φ(s) ≈ 1 − C−1s + · · · . Moreover, the linear behavior (6.43) implies the
decay φ(s) ' (4s2)−1 as s→ ∞.

Eq. (6.47) is a Riccati equation and it can be reduced to the second-order linear equation

d2ψ

ds2
+
dψ

ds

(
1

s
− 2s

)

− ψ

4s2
= 0.

by the standard transformation φ(s) = −2s d lnψ(s)
ds . We then eliminate the linear term in this equation by

writing ψ = yv and then forcing the term linear in ψ′ to be zero. This requirement gives the condition
ln v′ = s − 1/(2s), from which we find that the transformation φ(s) = 1 − 2s2 − 2s dds ln y(s) reduces the
Ricatti equation (6.47) to a linear Schrödinger equation

d2y

ds2
+ (2 − s2)y = 0. (6.48)

Eq. (6.48) is the parabolic cylinder equation whose solution is a linear combination of the two linearly
independent solutions, y(s) = C+D1/2(s

√
2) + C−D1/2(−s

√
2), with Dν(x) the parabolic cylinder function

of order ν. From the large-s behavior φ(s) ' (4s)−2, together with the asymptotics of Dν(s), it follows that
C− = 0. Therefore the Laplace transform is

φ(s) = 1 − 2s2 − 2s
d

ds
lnD1/2(s

√
2). (6.49)

The constant C+ can be evaluated explicitly from the normalization condition φ′(0) = −C−1
+ and the

properties2 of Dν(x). Using these facts, we find C+ = Γ(3/4)/Γ(1/4) = 0.337989 . . .; this result should be
compared with the exact value C = (4π)−1/2 = 0.28209.

The domain size distribution at large length can also be obtained from the small-s limit of the exact
solution (6.49). The large-x tail of Φ(x) is exponential as follows from the behavior of the Laplace transform
near its simple pole at s = −λ, φ(s) ' 2λ(s + λ)−1. The constant λ is given by the first zero of the
parabolic cylinder function, D1/2(−λ

√
2) = 0, located at λ ≈ 0.5409. Therefore the domain size distribution

asymptotically decays exponentially for large x

Φ(x) ' A exp(−λx), (6.50)

2The following properties are needed Dν(0) =
√

π2ν

Γ(1/2−ν/2)
, D′

ν(0) =
√

π2ν+1

Γ(−ν/2)
, and Dν(x) ∼ xν exp(−x2/4)[1 + O(x−2)].
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with amplitude A = 2Cλ. The approximate value for the decay coefficient λ is larger than the exact value
ζ(3/2)/

√
16π = 0.368468.

While the independent interval approximation is not exact, it is very useful. By invoking the this ap-
proximation, we are able to write a closed master equation for the evolution of the domain size distribution.
The independent interval approximation then yields the main qualitative behavior of the domain size dis-
tribution including: (i) the linear small-size limit of the distribution, (ii) the large-size exponential tail, and
(iii) correct integrated properties, such as the t−1/2 decay of the number of domains. As we shall see in later
applications, the independent interval approximation applies to a wide range of coarsening processes.

6.3 Glauber Model in Greater Than One Dimension

Finite spatial dimension

When the spatial dimension is greater than one, the Ising model with Glauber kinetics is no longer solvable.
Because of the importance of understanding coarsening phenomena in real systems, a variety of continuum
models have been constructed that capture the essence of the Ising-Glauber model, and that are amenable to
approximate analytical studies. These continuum descriptions will be the focus of the next chapter. However,
within a description based on individual spins, there is still much that can be learned.

Ising−Glauber

1

voter

2/3

Figure 6.6: Comparison of the rates of an update event in the Ising-Glauber model at zero temperature and
in the voter model on the triangular lattice.

First, we address the question about why the Ising-Glauber model is not soluble, while the closely
related voter model is soluble in all dimensions. This dichotomy stems from a simple but profound difference
between the Ising-Glauber model at zero temperature and the voter model. The zero-temperature limit is
the appropriate situation to compare because once a domain of aligned spins (equivalently local consensus)
is achieved in either model, there is no mechanism for a spin (or voter) in the interior of this domain to
change its state. In one dimension, the Ising-Glauber and the voter model are identical because the three
distinct types of transitions of energy lowering, energy neutral, and energy raising,

↓ ↑ ↓→↓ ↓ ↓ ↑ ↑ ↓→↑ ↓ ↓ ↑ ↑ ↑→↑ ↓ ↑

respectively, occur with the same rates of 1, 1/2, and 0.
However, the two dynamics are different in a subtle but profound way in higher dimensions. In greater

than one dimension, we again determine the transition rate for Glauber dynamics by using detailed balance
(see also the discussion surrounding Eq. (6.51)). We thus obtain

w(s → s′i)

w(s′i → s)
=
P ({s′i})
P ({s}) =

e−βJsi

P

sj

e+βJsi

P

sj
=

1 − tanh(βJsi
∑
sj)

1 + tanh(βJsi
∑
sj)

=
1 − si tanhβJ

∑
sj

1 + si tanhβJ
∑
sj
, (6.51)

where the sum is over the nearest neighbors of si, and in the last step we used tanh(six) = si tanhx for
si = ±1. Thus up to an overall constant that may be set to one, the transition for a given spin is

w(si) =
1

2

[

1 − si tanh
(

βJ
∑

j

sj

)
]

. (6.52)

At zero temperature, this rule forbids energy raising updates, while energy lowering updates occur with
rate 1 and energy conserving events occur with rate 1/2. Pictorially such an update is equivalent to majority
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rule—a spin flips to agree with the majority of its neighbors (Fig. 6.6). In contrast, in the voter model, a
particular voter can flip to the opposite state of its local majority with a probability equal to the fraction
of neighbors in the minority state. That is, proportional rule dynamics. This proportionality of the update
rule is the feature that makes it possible to factorize the master equation for the voter model into a product
of one-dimension master equations that are then soluble in arbitrary spatial dimensions. There is no such
simplification for the Ising-Glauber model. Moreover, when the spatial dimension is finite, the master
equation is non-linear because sj appears inside the hyperbolic tangent. For these reasons, most of our
understand of the Ising-Glauber model in greater than one dimension is based on simulation results or on
continuum theories, some of which will be discussed in the next chapter.

Figure 6.7: Spatial evolution in the voter model (top 2 rows) and the Ising-Glauber model at T = 0 (bottom
two rows) on a 256×256 square lattice. Lines 1 & 3 shown snapshots at times t = 4, 16, 64, and 256 starting
with an initial bubble of radius 180 for the voter model and the Ising-Glauber models, respectively. Lines 2
& 4 show the same evolution starting with a random initial condition with equal density of the two species.
The voter model figure is from Dornic et al., Phys. Rev. Lett. 87, 045701 (2001); courtesy of I. Dornic. The
Ising-Glauber model figure is courtesy of V. Spirin.

Another important feature of proportional rule is that it leads to a process with little surface tension
between domains of opposite-opinion voters. For example, a straight boundary between two opposite-opinion
domains becomes fuzzier in voter model evolution (second line of Fig. 6.7). Additionally, even though the
voter model undergoes coarsening, the weakness of surface tension means that the interface density disappears
very slowly with time, namely, as 1/ ln t. In contrast, for the Ising-Glauber model at zero temperature, there
is a surface tension that scales as the inverse curvature. This fact is most easily shown by a continuum
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approach that will be deferred until the next chapter. However, if we accept the existence of a surface
tension that scales as the inverse curvature, then a single-phase droplet of radius R in a background of the
other phase will shrink according to Ṙ ∝ −1/R, or R(t)2 = R(0)2 − at and thus disappear in a finite time
(third line of Fig. 6.7). Additionally, the surface tension will quickly eliminate high curvature regions so that
the coarsening pattern is quite different from that of the voter model

0 0.25 0.5
1/log2L

0

0.1

0.2

0.3

0.4

0.5

P st
r

square lattice
triangular lattice

Figure 6.8: Probability that an L × L system ( square lattice, ∆ triangular lattice) eventually reaches a
stripe state, Pstr(L), as a function of 1/ log2 L for L up to 512. Each data point, with error bars smaller
than the size of the symbol, is based on ≥ 105 initial spin configurations.

Perhaps the most basic questions about the Ising-Glauber model in greater than one dimension are
concerned with the analog of the domain-size distribution. What is the nature of the coarsening when a
system is prepared in a random initial state and then suddenly quenched to a low temperature? What is
the final state? How long does it take to reach the final state? When the spatial dimension is greater than
one and the temperature is below the critical temperature, the system organizes into a coarsening domain
mosaic of up and down spins, with the characteristic length scale growing as t1/2. Well-established continuum
theories of spin dynamics with non-conserved order parameter show that the typical length scale of domains
grows diffusively, namely, as t1/2. For a finite system, this coarsening stops when the typical domain size
reaches the linear dimension L of the system.
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Figure 6.9: Time dependence of the survival probability S(t) on L × L squares. Main graph: S(t) versus
t/M10 to highlight the long-time exponential tail. Here Mk ≡ 〈tk〉1/k is the kth reduced moment of the time
to reach the final state. Scaling sets in after S(t) has decayed to approximately 0.04. Inset: S(t) versus
t/M1/10 to highlight the scaling and the faster exponential decay in the intermediate-time regime.

However, when the final temperature T of the quench is strictly zero, peculiar and unexpected anomalies
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arise when the size of the system is finite. At early stages of the relaxation, there is little difference in the
dynamics of T = 0 and T > 0 systems. However, when the elapsed time is such that the characteristic time
of the coarsening is comparable to the time diffuse across the system, the two dynamics diverge. Perhaps
the most striking feature of the T = 0 dynamics is that a system typically gets stuck in an infinitely long-
lived metastable state. These metastable states consist of straight stripes in two dimensions while in higher
dimension these metastable states are more complex and not so easily characterized. In two dimensions, the
probability of getting stuck in a metastable state is approximately 1/3 as L→ ∞ (Fig. 6.8, while for d ≥ 3
the ground state is essentially never reached.

Peculiar behavior is also exhibited by the survival probability S(t) that the system has not yet reached
its final state by time t. If the relaxation was purely diffusive with a characteristic time scale τ ∼ L2, then
the natural expectation is that the probability that a randomly-prepared system has not yet reach the final
state, S(t), would decay as e−t/τ . However, on the square lattice, S(t) is controlled by two different time
scales (Fig. 6.9). Initially, the characteristic time of the exponential decay scales as L2, while at longer time
this decay time grows as L3.

y

~L

L

Figure 6.10: Diagonal stripe configuration on the square lattice with periodic boundaries. The lower portion
shows part of one interface rotated by 45◦. Zero-temperature Glauber dynamics is equivalent to particle
deposition at the bottom of a valley (light-shaded square) – corresponding to the spin-flip event ↑→↓ – or
particle evaporation from a peak (filled square) – corresponding to ↓→↑.

The source of the long-time anomaly in S(t) arises from the approximately 4% of the configurations in
which a diagonal stripe appears (Fig. 6.10). On the torus, this configuration consists of one stripe of ↑ spins
and another of ↓ spins which, by symmetry, have width of order L/2. Each of these stripes winds once both
toroidally and poloidally on the torus; they cannot evolve into straight stripes by a continuous deformation
of the boundaries. Consequently a diagonal stripe configuration ultimately reaches the ground state.

Diagonal stripes are also extremely long-lived. To understand this long lifetime, we view a diagonal
boundary as an evolving interface in a reference frame rotated by 45◦. In this frame (Fig. 6.10 lower), a
spin flip is equivalent either to “particle deposition” at the bottom of a valley (↑→↓) or “evaporation” from
a peak (↓→↑). In a single time step each such event occurs with probability 1/2. For an interface with
transverse dimension of order L, let us assume that there are of the order of Lµ such height extrema. Ref. ?

predicts µ = 1, but we temporarily keep the value arbitrary for clarity. Accordingly, in a single time step,
where all interface update attempts occur once on average, the interface center-of-mass moves a distance
∆y ∼ Lµ/2/L to give an interface diffusivity D ∼ (∆y)2 ∼ Lµ−2. We then estimate the lifetime τdiag of a
diagonal stripe as the time for the interface to move a distance of order L to meet another interface. This
gives τdiag ∼ L2/D ∼ L4−µ. Using the results of Ref. ?, we expect τdiag ∝ L3. The survival probability
reflects these two time scales (Fig. 6.9).

In greater than two dimensions, the probability to reach the ground state rapidly vanishes as the system
size increases. One obvious reason why the system “misses” the ground state is the rapid increase in the
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number of metastable states with spatial dimension. This proliferation of metastable states makes it more
likely that a typical configuration will eventually reach one of these states rather than the ground state.

Mean Field Theory

Mean field theory represents a special limit of a spin system in which fluctuations are negligible. One natural
way to construct a mean-field description of a spin system is to replace the actual environment surrounding
each spin by an average environment, that is then determined self consistently. Another simple way to achieve
the mean-field limit is to embed the Ising model on a complete graph of N sites, where all the N(N − 1)/2
pairs of spin interact with at the same strength. For this system, the Hamiltonian is

H = − J

N

∑

i<j

sisj . (6.53)

The coupling constant is chosen to scale inversely with the system size so that the energy is extensive, i.e.,
scales linearly with N . The Ising model on a complete graph has the same equilibrium properties as the
Curie-Weiss effective field theory.

By directly adapting the argument that gave the transition rate on a lattice in greater than one dimension
(see Eq. (6.52)), the transition rate for Glauber dynamics on the complete graph is simply

w(si) =
1

2

[

1 − si tanh
(βJ

N

∑

j

sj

)
]

. (6.54)

where the sum
∑
sj is over all other spins in the system. Now the equation of motion for the mean spin,

or the one-point average, obeys dSi

dt = −2〈siwi〉. Now we exploit the fact that there are no fluctuations in

the magnetization to write 〈f(m)〉 = f(〈m〉). With this identity we have 〈tanh β
N

∑

i si〉 = tanh β
N

∑

i〈si〉 =
tanhβm, with m = N−1

∑

i〈si〉 the average magnetization. Thus the equation for the mean spin is

dSi
dt

= −Si + tanhβm. (6.55)

Summing these rate equations, the average magnetization satisfies the rate equation

dm

dt
= −m+ tanhβm. (6.56)

In contrast to one dimension, the magnetization is generally not conserved. The rate equation has three fixed
points, one at m = 0 and two at ±meq, with the latter determined by the roots of the familiar transcendental
equation m = tanh(βJm). A linear stability analysis shows that the zero-magnetization state is stable for
βJ ≤ 1 but unstable for βJ > 1, and vice versa for the state with m = meq. Thus there is a phase transition
at βcJ = 1. Near this critical point, the magnetization vanishes as meq ' [3(β − βc)]

1/2 or, as a function of
the temperature,

meq ∼ (Tc − T )1/2 (6.57)

as T → Tc. The emergence of two equivalent, but symmetry-breaking ground states when the Hamiltonian
is termed spontaneous symmetry breaking.



112 CHAPTER 6. SPIN DYNAMICS

Landau Theory

Landau theory posits that the free energy F (m): (i) is an analytic function of the order parameter (here,
the magnetization m) and (ii) obeys the symmetries of the Hamiltonian (here, reflection symmetry s → −s
and F (m) = F (−m)). For small magnetization, the magnetization is small and the free energy may be
expanded as a Taylor series in even powers of m

F (m) = a0 + a2m
2 + a4m

4 + · · · . (6.58)

Since we anticipate that there is an ordered low temperature phase and a disordered high temperature

phase, the coefficient a2 should change sign at the critical temperature Tc. The simplest assumption is that

near the critical point, a2 ≈ C(T − Tc). The Landau theory is equivalent to the Curie-Weiss effective field

theory. With its remarkable simplicity, the Landau theory is powerful and applies widely. Nevertheless,

this theory does not hold below the critical dimension, d < dc, because the partition function and the free

energy become non-analytic in the thermodynamic limit.

Moreover, we can extend the static mean-field theory to treat the time dependence of the magnetization.
This approach will be discussed in more detail in the next chapter, but for the present discussion, we use
the fact that the negative of the derivative of the free energy can be view as an effective force that drives the
magnetization. Then the free energy that gives the equation of motion (6.56) from dm/dt = −δF/δm, is

F = C +
1

2
m2 − β−1 ln coshβm. (6.59)

Expanding this free energy as a power series in the magnetization gives the Landau expansion F (m) =
C + 1

2 (βc − β)m2 + 1
12β

3m4 + · · · . Below the critical temperature Tc, the free energy has two minima at
±meq while for T > Tc there is a single minimum at m = 0.

F

m

T>Tc

T=Tc

T<Tc

Figure 6.11: The free energy (6.59) versus the magnetization.

Above the critical temperature, the magnetization decays to zero and we expand tanhβm in Eq. (6.56)
in powers of βm to give

dm

dt
= −(βc − β)m− 1

3
(βm)3. (6.60)

In the high temperature phase, the cubic term is negligible so that the magnetization decays exponentially
in time, m ∼ exp(−t/τ) with τ = (βc − β)−1. At the critical point, the relaxation becomes algebraic,

m ∼ t−1/2 (6.61)

in the long time limit. Below the critical temperature, the magnetization also decays exponentially toward
its equilibrium value, |m − meq| ∼ e−t/τ , with τ−1 = 1 − β/ cosh2(βmeq). Thus, as the critical point is
approached, either from above or from below, the relaxation time scale diverges as

τ ∼ |Tc − T |−1. (6.62)

The divergence of the relaxation time as T → Tc is a sign of the generic feature of critical slowing down
where the approach to equilibrium becomes extremely slow.
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6.4 Kawasaki Spin-Exchange Dynamics

The transition rate

As mentioned at the outset of this chapter, there are two fundamental classes of spin dynamics: magnetization
conserving and magnetization non-conserving. The former class is appropriate to describe alloy systems,
where the two different spin states naturally correspond to the two component atoms that comprise the
alloy. In studying the dynamics of phase separation of an alloy into domains of pure metal, a plausible
dynamics is that the positions of different species atoms are exchanged; there is no alchemy where one
type of atom can be converted to the other type. In this section, we investigate a simple realization of
order-parameter conserving dynamics that is also known as Kawasaki dynamics.

In Kawasaki dynamics, neighboring antiparallel spins simultaneously reverse their states so that

· · · ↑↓ · · · −→ · · · ↓↑ · · · . (6.63)

Alternatively, the two spins can be regarded as being exchanged and hence the term spin-exchange. Clearly,
such moves do not alter the magnetization. Thus the magnetization is strictly conserved in every update
event. The existence of this strict conservation law has far-reaching consequences that will become more
clear when we discuss continuum theories of spin dynamics in the next chapter.

(a) (c) (d)(b)

1/2 1/2 (1+γ)/2 (1−γ)/2

Figure 6.12: Energy neutral update events (a) & (b), energy lowering events (c), and energy raising events
(d) for Kawasaki dynamics in one dimension. The spins that flip are shown bold. Also shown are the
corresponding domain walls and the transition rates for these four events.

Again, there are three types of update events: energy raising, energy lowering, and energy neutral. As
illustrated in Fig. 6.12, the energy neutral update is equivalent to the simultaneous hopping of two nearest-
neighbor domain walls. As long as a bound domain-wall pair remains isolated from all other domain walls,
the bound pair can hop freely between neighboring sites on the lattice. This pair can be viewed as an
elementary excitation of the spin system. The diffusion rate of a domain wall pair merely sets the time scale,
so there is no loss of generality in setting this rate to 1/2, as in Glauber dynamics. Because such diffusive
moves do not alter the energy, they automatically satisfy the detailed balance condition. The rates of the
remaining two update events are then set by detailed balance. Since spin exchange involves the interactions
among four spins—the two spins that flip and their two neighbors—the rates depend on the total energy of
the three bonds connecting these four spins. The detailed balance condition is

w3

w−1
=
p−1

p3
= exp(4βJ), (6.64)

where wq is the transition rate out of a state with energy qJ and pq its equilibrium probability. Using the
convenient Glauber notations of w3 = (1 + γ)/2 and w−1 = (1− γ)/2 for energy raising and energy lowering
transitions, the detailed balance condition has the the same form as in Glauber dynamics, 1+γ

1−γ = exp(4βJ).
Therefore γ = tanh 2βJ , just as in Glauber dynamics.

To determine the formal expression for the transition rates, we first must guarantee that spins i and
i + 1 are antiparallel. This constraint can be achieved by the factor (1 − sisi+1)/2 that equals +1 if the
two spins are antiparallel and equals zero otherwise. The inner workings of the flip rate then depends on
the interaction energy between the pairs si−1 and si, and between si+1 and si+2. The flip rate should be a
symmetric function of these two bond energies and the rate should be proportional to (1 + γ)/2, 1/2, and
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(1−γ)/2, when the signs of these bond energies are −−, +−, and ++ respectively. These constraints impose
the following form for the transition rate:

wi(si, si+1) =
1

2

[

1 − γ

2
(si−1si + si+1si+2)

]

× 1

2
(1 − sisi+1). (6.65)

An important feature of this transition rate is that the evolution of spin correlation functions are no longer
closed. One-spin averages are coupled to three-spin averages, two-spin averages are coupled to four-spin
averages, etc. Thus the equation of motion for a particular correlation function generates an infinite hierarchy
of equations for high-order correlations. This coupling to higher-order correlation functions arises in a wide
range of many-body problems and a crucial art is find a tractable and accurate scheme to truncate this
infinite hierarchy.

Frustration at zero temperature

In this section, we investigate the evolution of a one-dimensional system by Kawasaki dynamics at zero
temperature. Because Kawasaki dynamics is more constrained than Glauber dynamics, a system will almost
always get stuck in one of the very large number of metastable states; a similar phenomenon occurs in higher
dimensions. In the context of the present discussion, a metastable state is one whose energy is above the
ground state energy and for which the only possible transitions by Kawasaki dynamics would raise the energy
(see Fig. 6.12(d)). At zero temperature such transitions cannot occur so that the system is stuck forever
in a metastable state in which each domain particle is separated by more than a nearest-neighbor distance
from any other domain particle. Equivalently the lengths of all spin domains are two or longer. The number
of such configurations in a system of length L asymptotically grows as gL, where g = (1 +

√
5)/2 is the

golden ratio. It is striking how often this beautiful number appears in statistical physics problems. At zero
temperature the multitude of frustrated states is an obstacle that prevents the system from reaching the
ground state. At non-zero temperature, these states merely slow the approach toward equilibrium.

To study how the system evolves to a metastable state, we study the case where energy lowering transitions
only are allowed, as illustrated in Fig. 6.12(a)–(c)). The resulting behavior differs only slightly from the
situation where diffusive moves are also allowed, but the former case is much simpler to treat analytically.
The dynamics is perhaps best visualized in terms of the domain walls that occupy the sites of the dual
lattice. According to Fig. 6.12(c), an update step consists of picking three contiguous domain wall particles
at random and then removing the two side particles. Since pairs of domain walls are removed sequentially
from triplets of consecutive domain walls, the process is equivalent to the random sequential adsorption of
· ◦ · “forks” wherever a string of three consecutive domain wall particles exists. Because of this equivalence,
we can use the tools of random sequential adsorption (Chapter 5) to solve the problem.

Let Ek be the probability that a string of k sites (in the dual lattice) are all occupied by domain walls.
This probability evolves by the master equation

dEk
dt

= −(k − 2)Ek − 2Ek+1 − 2Ek+2 (6.66)

for k ≥ 3. This equation reflects the different ways that the transition ◦ ◦ ◦ → · ◦ · can occur and alter the
number of empty strings of length k. There are k− 2 ways that this transition can occur in the interior of a
k-string. There are also 2 ways that this transition can occur with two sites at the edge of the k-string and
one site outside, and also 2 ways with one site at the edge of the k-string and two sites outside.

We solve this rate equation by introducing the exponential ansatz Ek = φ(t) exp[−(k − 2)t] (see also
the discussion surrounding Eq. (5.3)). For the initial condition of an antiferromagnetic spin state, the dual
lattice is completely occupied. Thus Ek = 1 initially, so that φ(0) = 1. Substituting this ansatz into the rate
equation (6.66) leads to the ordinary differential equation

dφ

dt
= −2φ(e−t + e−2t). (6.67)

Integrating this equation gives the string probabilities for k ≥ 2,

Ek(t) = exp
[
−(k − 2)t+ e−2t + 2e−t − 3

]
. (6.68)
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Since two domain walls are lost in each update event and these events occur with rate E3, the domain
wall density ρ ≡ E1 satisfies dρ

dt = −2E3. Using Eq. (6.68) for E3 and integrating then yields the domain
wall density

ρ(t) = 1 − 2

∫ t

0

ds exp
[
−s+ e−2s + 2e−s − 3

]
. (6.69)

The final “jamming” density is finite, ρjam ≡ ρ(∞) = 0.450898 . . .. Thus there is not very much relaxation
as almost half of the domain walls still remain in the final jammed state. Moreover, the relaxation to the
jamming density is exponential in time,

ρ(t) − ρjam ' e−3e−t. (6.70)

We see that the system neither reaches the lowest energy state, nor does it exhibit critical slowing down. The
underlying reason for both of these unphysical behaviors is that the dynamics samples only a very restricted
portion of the phase space.

Coarsening at infinitesimal temperature

While the one-dimensional chain with Kawasaki dynamics quickly reaches a jammed state when the temper-
ature is zero, the ground state will be reached for any non-zero temperature, no matter how small. At very
low temperatures, energy raising updates will occur, albeit very rarely, so that the system is able to sample
all of the phase space and come to equilibrium. Because the correlation length diverges as the temperature
approaches zero, one can set the temperature sufficiently small so that the correlation length is much larger
than the length of the system. Consequently, the entire system belongs to one domain and the equilibrium
state of the system is effectively the same as the ground state.

The large separation of time scales between energy raising updates and all other update events leads to
an appealing description of the domain evolution within the framework of an extremal dynamics. Since the
rate of an energy raising update equals e−4βJ , the typical time for such an event is τ ≡ e4βJ . We define a
time scale such that e4βJ represents the time unit. Energy neutral and energy lowering events then occur
instantaneously in this time unit. Starting from an initial state, the system instantly reaches a frustrated
state in which no further energy neutral or energy lowering moves are possible. After a time τ has elapsed
(on average) an energy raising event occurs that is then followed by a burst of energy neutral and energy
lowering events until the system reaches another frustrated state. This pattern of an energy raising event
followed by a burst of complementary events continues until a finite system reaches the ground state. As we
will now show, this dynamics leads to the typical domain size growing in time as t1/3. This growth law is a
general feature of order-parameter conserving dynamics. One of the appealing features of Kawasaki dynamics
in one dimension is that this important result of t1/3 coarsening emerges from a direct and unambiguous
calculation. In contrast, we will see in the next chapter that it is much more subtle to deduce the t1/3 scaling
law from continuum approaches.

At long times, the system will evolve to a low-energy state that consists of alternating domains of typical
length `. The evolution in the low-temperature limit is controlled by rare, energy raising updates where a
pair of domain walls nucleates around an existing isolated domain wall. Once this triplet of domain walls
forms, a bound pair of these domain walls can diffuse freely with no energy cost until another isolated
domain wall is encountered. When such a collision occurs, two of the domain walls annihilate so that a static
single domain wall remains. As illustrated in Fig. 6.13, the creation of a mobile bound domain wall pair
is equivalent to an isolated spin splitting off from a domain and then diffusing freely within a neighboring
domain of length ` of the opposite orientation. If this diffusing spin returns to its starting point, the net
effect is no change in the domain configuration. However, if the spin manages to traverse to the other side
of the domain, then one domain has increased its size by one and another has shrunk by one. This effective
diffusion of domain lengths is the mechanism that drives the coarsening of the system.

What is the probability that the spin can actually traverse to the other side of the domain? This is a
classic first-passage probability problem (see the highlight on the next page). Once the spin has split off, it
is a distance one from its initial domain and a distance `− 1 from the domain on the other side. Since the
spin diffuses freely, with probability 1/` it eventually reaches the other side, while with probability 1 − 1/`
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Figure 6.13: Illustration of the effective domain diffusion from Kawasaki dynamics at infinitesimal temper-
ature. The second line shows an energy raising event where a spin (shown bold) splits off from a domain.
Eventually this spin joins the next domain to the right. Also shown is the evolution of the domain walls.
The net result of the diffusion of the spin across the middle domain is that this moves one step to the left.

the spin returns to its starting position. Thus the probability that the `-domain hops by one step equals
1/`. That is, the diffusion coefficient of a domain equals the inverse of its length.

D(`) = `−1. (6.71)

First passage probability and the gambler’s ruin problem

Consider a random walk in a finite interval of length N . The two boundary sites are absorbing, i.e., the
random walker immediately disappears upon reaching these sites. Suppose that the starting position of the
random walk is n, with 0 ≤ n ≤ N . What is Fn, the probability that the walker first reaches the boundary
at site N? We can write a simple recursion formula for the first-passage probability. With probability 1/2,
the walk steps to site n−1, at which point the exit probability to site N is Fn−1. Similarly, the walk steps
to site n + 1 with probability 1/2, where the exit probability is Fn+1. Thus the first passage probability
satisfies the discrete Poisson equation

Fn =
1

2
(Fn−1 + Fn+1), (6.72)

with the boundary conditions F0 = 0 and FN = 1. The solution is simple:

Fn =
n

N
. (6.73)

This first passage probability also solves a neat probability theory problem. In a fair coin-toss game, the

probability that a gambler ruins a Casino equals the wealth of the gambler divided by the combined wealth

of the gambler and casino. Gambling is most definitely a bad idea...

Thus in the low-temperature limit, the spin dynamics translates to an effective isotropic hopping of entire
domains by one step to the left or to the right3 (Fig. 6.14). Domains of length one disappear whenever one
of their neighboring domain hops toward them. Concomitantly, the lengths of the neighboring domains are
rearranged so that four domains merge into two (Fig. 6.15).

The net effect of domain hopping is domain coarsening because domains of length one disappear whenever
one of their neighbors hops toward them. We now determine the typical domain length from the following

3There is an anomaly involving domains of length 2 that can be ignored for the purposes of this discussion.
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Figure 6.14: Effective domain diffusion from Kawasaki dynamics at infinitesimal temperature.
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Figure 6.15: The outcome after domain merging.

heuristic argument. Because each domain performs a random walk, coalescence occurs whenever a domain
diffuses of the order of its own length. In a coalescence, a domain typically grows by an amount ∆` that is
also of the order of `. The time between coalescence events is ∆t ∼ `2/D(`). We then have

∆`

∆t
∼ `

`2/D(`)
∼ 1

`2
.

Thus domain growth is subdiffusive
` ∼ t1/3. (6.74)

It is conventional to define the dynamical exponent z in terms of the growth of the typical length scale
in a coarsening process via ` ∼ tz. For the non-conserved Glauber and the conserved Kawasaki dynamics,
the dynamical exponent is:

z =

{

1/2 nonconservative dynamics,

1/3 conservative dynamics.
(6.75)

While we have derived these results in one dimension, they are generic for all spatial dimensions. Conservation
laws are a crucially important ingredient in determining the nature of non-equilibrium dynamics.

6.5 Cluster Dynamics

Glauber single-spin flip dynamics and the Kawasaki spin-exchange dynamics are local in that they involve
flipping a single spin or a pair of spins. Because of their simplicity and their plausibility in describing the
evolution of real systems, these rules were the basis of many simulational studies of coarsening and dynamic
critical phenomena. However, a dynamics that is based on flipping a small number of spins is perforce not
computationally efficient. Compounding this inefficiency, the dynamics significantly slows down close to
criticality.

To mitigate the effects of critical slowing down, Swendsen and Wang developed a clever dynamical update
rule in which an entire suitably-defined cluster of spins is flipped simultaneously. A crucial feature of this
dynamics is that it significantly reduces the effect of critical slowing down because clusters become large near
the critical point, so that a large number of spins is flipped in a single update near criticality. Because of
this computational efficiency, such cluster algorithms have been used extensively to elucidate the equilibrium
behavior of many-body statistical mechanical and lattice field theory models. The Swendsen-Wang and the
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Wolff algorithms are two of the earliest and most prominent such examples of this type of cluster dynamics.
In this section, we analyze the domain size distribution in one dimension at zero temperature for these two
dynamical rules.

For local non-conservative dynamics, such as the Glauber model, the time TL required for a system of
length L to reach the ground state increases as L2 because of the underlying diffusive nature of the dynamics.
In contrast, for the Swendsen-Wang cluster algorithm, this time to reach the ground state is much smaller,
and grows only logarithmically with the system size, TL ∼ lnL. The Wolff algorithm is even more dramatic;
the time to reach the ground state remains finite even as the length of the system diverges. Remarkably, the
domain length distribution can be obtained analytically for both Swendsen-Wang and Wolff dynamics, even
though the solution remains elusive when spins are flipped individually according to Glauber dynamics.

Swendsen-Wang dynamics

In one dimension, an Ising spin chain consists of alternating spin-up and spin-down domains. In the
Swendsen-Wang algorithm, an entire domain of aligned spins is chosen at random and all these spins are
flipped simultaneously as illustrated below:

· · · ↑ ↓↓↓↓↓
︸ ︷︷ ︸

↑ · · · −→ · · · ↑ ↑↑↑↑↑
︸ ︷︷ ︸

↑ · · · .

By construction, all such update events decrease the energy. We also take the flip rate to be one without
loss of generality. We now present a master equation solution of this dynamics.

In each update event, there is a net loss of two domains. Since the flip rate is unity, the number density
of domains ρ decreases according to

dρ

dt
= −2ρ. (6.76)

Hence the density of domains decreases exponentially with time, and for the antiferromagnetic initial condi-
tion in which ρ(0) = 1, the domain density is

ρ(t) = e−2t. (6.77)

The average domain length is the inverse of the domain density and thus grows exponentially with time,
〈k〉 = e2t. When this average length reaches the system length L the dynamics is complete. This criterion
yields the time to reach the ground state TL ∝ lnL.

Now let’s turn to the domain length distribution. We define c` as the density of domains of length
`. Domains undergo a three-body aggregation process: when a domain is flipped, it merges with its two
neighbors. The length of the resulting domain equals the length of the three constituent domains. Therefore
c` evolves according to

dc`
dt

= −3c` +
1

ρ2

∑

i+j+k=`

ci cj ck. (6.78)

The factor of −3c` accounts for the loss that occurs when a domain of length ` or either of its neighboring
domains is flipped. The last term accounts for the gain in c` due to the flipping of a domain of length j that
then merges with its two neighboring domains of lengths i and k, with the constraint that ` = i + j + k.
The simplest way to deduce the prefactor ρ−2 is to make this master equation consistent with Eq. (6.76).
Alternatively, the convolution terms are products of the length density of the flipped domain times the
normalized length densities of its two neighbors. Newly created domains do not affect their neighbors, nor
are they affected by their neighbors. Thus if the domains are initially uncorrelated, they remain uncorrelated.
Because no spatial correlations are generated, the rate equations are exact!

We can obtain a cleaner-looking master equation by introducing P` ≡ c`/ρ, namely, the probability for a
domain of length ` (with the normalization

∑

` P` = 1). Using Eqs. (6.76) and (6.78), P` evolves according
to

dP`
dt

= −P` +
∑

i+j+k=`

PiPjPk. (6.79)

As we have seen previously, the convolution form of the gain term cries out for applying the generating
function method. Thus we introduce the generating function F (z) =

∑

` P` z
` into (6.79) and find that it
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satisfies ∂F
∂t = −F +F 3. We then solve this differential equation by writing 1/(F 3 − F ) in a partial fraction

expansion so that the resulting equation can be integrated by elementary methods. The solution is

F (z, t) =
F0(z)e

−t
√

1 − F0(z)2(1 − e−2t)
, (6.80)

where F0(z) is the initial generating function.
For the antiferromagnetic initial condition, the initial condition is F0(z) = z. Expanding the generating

function in powers of z then yields the domain number distribution

P2`+1 =

(
2`

`

)(
1 − e−2t

4

)`

e−t (6.81)

in which domains have odd lengths only. Since the average domain length grows exponentially with time,
〈`〉 = e2t, we expect that this scale characterizes the entire length distribution. Employing Stirling’s approx-
imation, we find that asymptotically the length distribution approaches the scaling form P` → e−2tΦ(`e−2t)
with the scaling function

Φ(x) =
1√
2πx

e−x/2. (6.82)

Because the scaling function diverges Φ(x) ∼ x−1/2 for x � 1, there is a large number of domains whose
length is smaller than the average. As in the example of constant kernel aggregation, domains whose length
is larger than the average are also exponentially rare, although here there is an additional weak algebraic
correction.

It is a fun exercise to extend the zero-temperature Swendsen-Wang dynamics, with energy lowering moves
only, to the q = ∞ Potts model. Now a domain merges with only one of its neighbors. Since there is a net
loss of one domain in a single update, the number density obeys dρ/dt = −ρ. Therefore ρ(t) = e−t while
the average domain length again grows exponentially with time. The domain length size distribution now
evolves by two-body aggregation, so that this distribution satisfies

dPk
dt

= −Pk +
∑

i+j=k

PiPj . (6.83)

To solve this equation, we again introduce the generating function into this equation to give ∂F
∂t = −F +F 2,

whose solution is simply

F (z, t) =
F0(z)e

−t

1 − (1 − e−t)F0(z)
. (6.84)

Expanding this generating function in a power series we immediately obtain

Pk(t) = e−t(1 − e−t)k−1. (6.85)

Asymptotically, the distribution attains the scaling form Pk(t) ∼ e−tΦ(ke−t) with the purely exponential
scaling function Φ(x) = exp(−x). The enhancement of smaller than average domains disappears in the
q → ∞ limit.

Wolff dynamics

In the Wolff cluster algorithm, a spin is selected at random and the domain it belongs to is flipped. This
protocol further accelerates the dynamics compared to the Swendsen-Wang algorithm because the larger the
domain, the more likely it is to be updated. Schematically, the Wolff dynamics is

· · · ↑ ↓↓ · · · ↓↓
︸ ︷︷ ︸

k

↑ · · · k−→ · · · ↑ ↑↑ · · · ↑↑
︸ ︷︷ ︸

k

↑ · · · , (6.86)

so that a flipped domain again simply merges with its neighbors. Since each spin is selected randomly,
the time increment associated with update is the same. The total domain density therefore decreases with
constant rate

dρ

dt
= −2. (6.87)
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As a result, the domain density decreases linearly with time, ρ(t) = 1−2t and the entire system is transformed
into a single domain in a finite time, tc = 1/2. Correspondingly, the average domain length, 〈k〉 = (1−2t)−1,
diverges as t→ tc.

The evolution of the domain length distribution is governed by the natural generalization of (6.79)

dP`
dt

= −`P` +
∑

i+j+k=`

jPiPjPk. (6.88)

The generating function F (z, t) =
∑

` P`z
` satisfies

∂F

∂t
= z (F 2 − 1)

∂F

∂z
. (6.89)

To solve this equation, we first transform the variables from (t, z) to (τ, y) ≡ (t, t − ln z) to absorb the
negative term on the right-hand side. This transformation leads to

∂F

∂τ
= −F 2 ∂F

∂y
. (6.90)

We now employ the same procedure as that used in the solution of aggregation with the product kernel
(see the discussion of Eqs. (3.23)–(3.25) in chapter 3) to transform among the variables (τ, y, F ) and reduce
(6.90) into the linear differential equation ∂y

∂τ = F 2. The solution to this equation is simply y = G(F )+F 2τ ,
with G(F ) determined by the initial conditions, or, equivalently

t− ln z = G(F ) + F 2t. (6.91)

For the antiferromagnetic initial condition F0(z) = z, so that G(F ) = − lnF . Substituting G(F ) = − lnF
into (6.91) and exponentiating yields the following implicit equality satisfied by the generating function

z = F et−F
2t . (6.92)

The length distribution Pk is just the kth term in the power series expansion of F (z). Formally, this term
may be extracted by writing Pk in terms of the contour integral

Pk =
1

2πi

∮
F (z)

zk+1
dz ,

and then transforming the integration variable from z to F (see the discussion of the Lagrange inversion
formula in Chapter 3). This procedure gives

Pk =
1

2πi

∮
F (z)

zk+1
dz =

1

2πi

∮
F

z(F )k+1

dz

dF
dF,

=
e−kt

2πi

∮

ekF
2t

[
1

F k
− 2t

F k−2

]

dF, (6.93)

where we use the fact that dz
dF = et−F

2t(1− 2F 2t) in the above integral. Now we find the residues simply by

expanding ekF
2t in a power series and keeping only the coefficient of 1

F in the integrand. Because the power
series is even in F , only Pk for odd values of k is non zero. This procedure gives:

Pk = e−kt
[

(kt)(k−1)/2

(
k−1
2

)
!

− 2t
(kt)(k−3)/2

(
k−3
2

)
!

]

.

After some simple algebra, the domain length distribution is

P2k+1(t) =
(2k + 1)k−1

k!
tk exp[−(2k + 1)t] . (6.94)
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Near the critical time (t→ 1/2), Stirling’s approximation gives, for the leading behavior of domain length
distribution

Pk(t) '
1

π1/2

1

k3/2
e[−k ρ

2/4] , (6.95)

with ρ = 1 − 2t. It would be natural to expect that the distribution has the characteristic length scale
k∗ = 4c−2 = (1/2 − t)−2. However, this length does not fully characterize the distribution. While most
domains are short near the critical time, because the domain length distribution has an algebraic k−3/2 tail
that is cutoff at a value k∗ ∝ ρ−2, the average domain length diverges as ρ−1.

There is a similarity between coarsening by the Wolff dynamics and the gelation transition in product-
kernel aggregation. In both cases, a giant component emerges in a finite time. For the Wolff dynamics,
the gelation transition is discontinuous; the gel mass is zero prior to the transition and it becomes one
immediately after the transition. Thus gelation in the Wolff dynamics is a first-order (discontinuous) phase
transition. In contrast, for product-kernel aggregation, gelation is a second-order (continuous) transition.
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Problems

Problems

1. Evaluate the average opinion for a Democrat in a sea of uncommitted voters: S(x, 0) = δ(x).

4.1 Glauber Spin-Flip Dynamics

1. Solve for the domain number distribution in the Potts model with Glauber dynamics. Hint: P1 is replaced by
P1/(q − 1) in Eq. (6.45).

2. verify that for the Hamiltonian H = −
P

i<j Ji,jsisj the spin flip rate is wi = 1
2

`

1 − tanhβsi

P

j Ji,jsj

´

.

3. Obtain the entropy in the mean-field model

4. Determine PM (t), the probability to have M up spins and N − M down spins,4 for the zero temperature
dynamics.

5. Examine PM (t) for the critical dynamics.

6. In the low temperature regime (∞ > β > βc), the distribution PM (t) is bimodal with peaks of width ∝
√

N
around M± = 1

2
N (1±m∞). The system spends almost all time in the proximity of the peaks yet occasionally

it leaves one peak and reaches the other. Estimate the transition time.

4.2 Glauber spin-exchange dynamics

1. Show that the correlation functions obey an infinite hierarchy of equations. Write the evolution equation for
Si.

2. Obtain the number of frozen configurations in the zero-temperature for Kawasaki dynamics.

3. Solve for the domain wall density at zero-temperature for random initial conditions.

4.2 Extremal dynamics

1. Analyze a domain coarsening process where the smallest domain merges with one of its neighbors.

4.5 Asymmetric exclusion process

1. Solve for the steady state in a closed system with random addition and deletion of particle at each lattice site.

4In all problems in this paragraph the system is finite.


