
Chapter 9

GROWING NETWORKS

Understanding the properties of growing networks with popularity-based construction rules has recently (as
of this writing) become an extremely active and fruitful research area. Part of the appeal of such models
is that they provide a natural way to understand a broad range of complex systems, such as the topology
of the Internet and the world-wide web, the structure and function of metabolic networks, the spread of a
contagion through a susceptible population, and the statistics of scientific citations. A considerable amount
of data about these systems has become available in electronic form only recently, the existence of which
has helped fuel much of the current interest in model building. Part of the attraction of complex networks
models is their simplicity that belies the term “complex” and the sense that such models capture certain
fundamental aspects of nature that heretofore were only vaguely appreciated. In this chapter, we will present
some of the classic models of complex networks and apply the machinery of the master equation to solve
many of the structural features of such networks.

9.1 Erdös-Rényi Random Graph

An appealingly simple starting example is the Erdös-Rényi (ER) random graph. This graph consists of a set
of N nodes in which each node pair is joined by a link with a fixed probability. A nice feature of the ER graph
is that there is absolutely no spatial structure, as a connection between any pair nodes occurs equiprobably.
If all of the N(N − 1)/2 pairs of nodes is connected, we obtain the complete graph in which each node is
connected to all N − 1 other nodes. This graph represents a concrete realization of mean-field theory and is
particularly useful in this context. It is conventional to define the connection probability between nodes as
p/N , so that p = N corresponds to the complete graph.

For general values of 0 < p < N , the ER graph has many remarkable properties. Perhaps the most
striking aspect of the ER graph is the existence of a phase transition at p = 1. For p < 1, the network
consists of a collection of disconnected components with a maximum cluster size that is of the order of ln N .
At p = 1, there is a percolation transition that marks the first appearance of an infinite cluster that consists
of N2/3 nodes, which is therefore a tiny fraction of the nodes that belong to clusters of any size. For p > 1,
an infinite cluster exists that now consists of a finite fraction of all nodes in the network.

While we have introduced the ER graph as a static problem—each link between any pair of nodes is
independently present with probability p/N , we can recast the ER graph as a dynamic problem by allowing
links to be created between nodes at a constant rate. Thus as time increases, more links are created and the
network becomes progressively better connected. By formulating the ER graph as a dynamic problem, we
can use the master equation and related tools to determine the structure of the ER graph.

Degree distribution

We build up the ER random graph by the following dynamic model. Starting with no links and N dis-
connected nodes, links are sequentially added ad infinitum between randomly selected pairs of nodes. For
convenience in this discussion, we define the rate at which a link is introduced between pairs of nodes as
(2N)−1. The two nodes selected for linking may be the same, and additionally, more than one link may be

167



168 CHAPTER 9. GROWING NETWORKS

created between a pair of nodes. However, both of these processes occur with a vanishingly small proba-
bility when N → ∞. In this infinite-size limit we can also ignore statistical fluctuations in the geometrical
properties of the ER graph.

Let us first determine the degree distribution, namely the probability that a node has a given degree;
here degree is the number of links that are attached to the node. At time t, the total number of links is on
average Nt/2, and therefore the average number of links per node k, the degree, equals the time t. Thus the
degree undergoes the additive stochastic process k → k + 1 with rate 1. Thus , the degree distribution, the
probability nk that the degree of a node equals k, satisfies

dnk

dt
= nk−1 − nk, (9.1)

with the initial condition nk(0) = δk,0. Therefore the degree distribution is the Poissonian

nk =
tk

k!
e−kt, (9.2)

from which the mean degree equals the time, 〈k〉 = t, while the standard deviation
√

〈k2〉 − 〈k〉2 =
√

t. Thus
the distribution of degrees becomes sharp in the thermodynamic limit.

Component size distribution

We define a component as a set of nodes that are connected by links. As the number of links in the graph
increases, disconnected components will merge when a link is created that joins a site of one component to
a site in the other component. Since a link can occur equiprobably between any pair of nodes, there are
i × j ways to join disconnected components of size i and j. Hence components undergo the aggregation
process (i, j) → i + j with aggregation rate ij/(2N). This process is precisely product kernel aggregation
that we treated in chapter 3, and we can make use the results derived therein to determine the component
size distribution in the ER random graph.

Let ck(t) be the density of components containing k nodes at time t. The component size distribution
obeys the master equation

dck

dt
=

1

2

∑

i+j=k

(ici)(jcj) − k ck, (9.3)

with the initial condition ck(0) = δk,1. The gain term accounts for the merger between two components
whose sizes sum to k and the loss term accounts for the loss of components of size k due to their linking
with other components.

An insightful and simple way to understand the dynamics is through moments of the component size
distribution, Mn =

∑

k knck. For example, the mean component size, or equivalently, the second moment
obeys

Ṁ2 =
∑

k

k2 ċk =
1

2

∑

i

∑

j

[

(i + j)2(ici)(jcj) − k3ck

]

=
1

2

∑

i

∑

j

[

(i3ci)(jcj) + (ici)(j
3cj) + (i2ci)(j

2cj) − k2ck

]

= M2
2 ,

as long as there is no gelation so that M1 = 1, a condition that holds for t < 1. With the initial condition
M2(0) = 1, the solution for the second moment is simply

M2 = (1 − t)−1, (9.4)

for t < 1. The divergence shows that the system undergoes a percolation transition at a finite time tg = 1.
At tg, the giant component forms. Beyond the percolation point, the giant component contains a finite
fraction of the nodes, and eventually it engulfs the entire system.
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From our discussion of aggregation with the product kernel in chapter 3, the component size distribution
is

ck(t) =
kk−2

k!
tk−1 e−kt. (9.5)

The asymptotic behaviors of this size distribution for t < 1 and t = 1 are given by

ck(t) ∼
{

e−k(t−ln t−1) t < 1;

(2π)−1/2k−5/2 t = 1.

Thus below from the percolation point, this distribution decays exponentially with size, while at the perco-
lation point the distribution has a power law decay. These asymptotic distribution can be used to infer the
size of the largest cluster. We use the extremal criterion

N

∞
∑

kmax

ck = 1

that mandates that there is one cluster whose size is in the range [kmax,∞], as the condition to estimate
kmax. Using the above asymptotic forms for the component size distributions and approximating the sum
by an integral in the above extremal criterion, we obtain

kmax ∝











ln N t < 1;

N2/3 t = 1.

9.2 Preferential Attachment Networks

In preferential attachment networks, nodes are added one by one and each attaches to pre-existing nodes
of the network according to an attachment rate Ak that depends only on the degree of the “target” node
(Fig. 9.1). The example that has received much attention is preferential attachment in which Ak is an
increasing function of k. This rule encapsulates the intuitive notion that the “rich get richer”. As a practical
example in the context of scientific citations, preferential attachment means that if a paper is currently well
cited, it is likely to be cited at a higher rate in the future merely by the virtue of being well cited. Similarly,
in creating hyperlinks between websites, it is more likely that these links will go to popular websites. The
special case of linear preferential attachment has generated the most interest because this rule leads to
a scale free network in which the distribution of node degrees has a power-law tail. A power-law degree
distribution stands in stark contrast to regular lattices, where this distribution is simply a delta function,
and to the Poisson degree distribution of the Erdös-Rényi random graph. In addition to providing a natural
mechanism for a power law degree distribution, linear preferential attachment seems to capture some of the
truly compelling aspects of complex networks.

In this section, we apply the master equation to elucidate the structure of growing networks. We will
attempt to convince the reader, that the master equations are a simple, incisive, and powerful theoretical tool
to analyze growing network systems. In addition to providing comprehensive information about the node
degree distribution, the master equation approach can be easily adapted to elucidate many other important
structural features of complex networks.

The degree distribution

The degree distribution is perhaps the most prominent geometrical feature that distinguishes complex net-
works from simple networks. We write the degree distribution as Nk(N), the number of nodes of degree k
when network contains N total nodes. To determine the evolution of Nk(N), we write the master equation
that accounts for the change in the degree distribution after each node addition event. When nodes are
added one by one, with each new node attaching to only one pre-existing node, the master equation for the
degree distribution is

dNk

dN
=

Ak−1Nk−1 − AkNk

A
+ δk1. (9.6)
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Figure 9.1: Evolution of a preferential attachment network for the case where each new node links to m
other nodes with m = 1 (upper left to lower right).

The first term on the right accounts for processes in which the new node connects to a node that already
has k − 1 links, thereby increasing Nk by one. Since there are Nk−1 nodes of degree k − 1, the total rate at
which such processes occur is proportional to Ak−1Nk−1. The factor A(N) ≡ ∑

j≥1 AjNj(N) is the total
rate for any event to occur, so that Ak−1Nk−1/A is the probability to attach to a node of degree k − 1.
A corresponding role is played by the second (loss) term on the right-hand side; namely, AkNk/A is the
probability that the new node connects to a node with k links, thus leading to a loss in Nk by one. The
last term accounts for the new node itself that has one outgoing link and no incoming links. While we are
keeping track of the total degree in the above master equation, it is straightforward to generalize and keep
track both the in-degree (the number arrowheads pointing to a node) and the out-degree. For the model
defined by Fig. 9.1, the out-degree of each node equals one, but networks with more than one outgoing link
at each node can easily be studied.

To solve the degree distribution for a network with one outgoing link per node, we now need to specify
the attachment rate Ak . We consider the generic preferential attachment form Ak = kγ , with γ arbitrary.
Note that the amplitude in Ak is irrelevant as in cancels out in the numerator and denominator of the master
equation; consequently, we take this amplitude to be one. The case γ = 1 corresponds to linear preferential
attachment, but there is much insight to be gained by studying arbitrary γ. Let’s start by solving for the time
dependence of the moments of the degree distribution Mn(N) ≡ ∑

j≥1 jnNj(N). When nodes are added
one by one, N plays the role of a time-like variable and we will sometimes refer to N as the “time”. By
summing Eqs. (9.6) over all k, we immediately obtain Ṁ0(N) = 1, where the overdot denotes differentiation
with respect to N , so that M0(N) = N . We could also use the fact that M0 =

∑

k Nk is simply the total

number of network nodes and thus equals N by construction. Similarly, the first moment obeys Ṁ1(N) = 2,
with solution M1(N) = 2N . Alternatively, the first moment equals the total number of link ends. Clearly,
this number is 2N , since introducing a new node adds two link ends to the network. Therefore the first
two moments grow linearly with time, independent of the attachment rate Ak. On the other hand, higher
moments and the degree distribution itself depend on the form of the attachment rate.

For Ak = kγ with 0 ≤ γ ≤ 1, let us assume that both the degree distribution and A(N) grow linearly with
time. This hypothesis can be easily verified by solving for the first few Nk explicitly for attachment rates
that do not grow faster than linearly with k. Thus writing Nk(N) = N nk and A(N) = µN in Eq. (9.6), the
overall dependence on N cancels out, leaving behind the recursion relations

nk =
Ak−1nk−1 − Aknk

µ
k > 1, and n1 = −A1n1

µ
+ 1. (9.7)

The formal solution to this recursion is

nk =
µ

Ak

k
∏

j=1

(

1 +
µ

Aj

)−1

. (9.8)

To make this solution explicit, we need the amplitude µ in A(N) = µN . Using the definition µ =
∑

j≥1 Ajnj



9.2. PREFERENTIAL ATTACHMENT NETWORKS 171

in Eq. (9.8), we obtain the implicit relation

∞
∑

k=1

k
∏

j=1

(

1 +
µ

Aj

)−1

= 1, (9.9)

which shows that the amplitude µ depends on the functional form of the attachment rate. When Ak = kγ

with 0 ≤ gamma ≤ 1, a numerical solution of Eq. (9.9) shows that µ varies smoothly between 1 and 2 as
γ increases from 0 to 1. However, for γ > 1 the left-hand side of (9.9) diverges, which implies that µ must
also diverge.

To obtain an explicit solution for the degree distribution, we now substitute Ak = kγ into Eq. (9.8) and
then use standard asymptotic methods to find the main result of this section:

nk ∼























k−γ exp
[

−µ
(

k1−γ−21−γ

1−γ

)]

, 0 ≤ γ < 1;

k−ν , ν > 2, γ = 1;

“best seller” 1 < γ < 2;

“bible” 2 < γ.

(9.10)

Only the first two lines are actually obtained by the asymptotic analysis outlined above; however, we also
write the results for γ > 1 for completeness.

There are many intriguing aspects of these fundamental results. First, we emphasize that a stretched
exponential degree distribution arises for all 0 < γ < 1 (with pure exponential decay for γ = 0). This range
of γ should be viewed as the universal regime. On the other hand, ultra-singular behavior occurs for γ > 2
in which one node has a non-zero probability to be linked to every node in an infinite network, while only
a finite number of links exist between all other nodes—the “bible” phase. It is easy to show that such a
highly-connected node exists when γ > 2. Consider the specific network in which each new node links only
to the initial node. After there are N +1 nodes in the network, the probability that the next new node links
to the initial node is Nγ/(N + Nγ). The probability that this connection pattern continues indefinitely is
then

P =

∞
∏

N=1

1

1 + N1−γ
,

so that P = 0 for γ ≤ 2 and P > 0 for γ > 2. Thus for γ > 2, there is the possibility of a bible—a node that
is linked to every other node of the network, while all other nodes have a finite number of links, even in an
infinite network.

When 1 < γ < 2, singular behavior still arises in which one node is linked to all but a small number of
other nodes. There is a also an infinite sequence of subtle connectivity transitions in the behavior of the
number of low-degree nodes. For 3/2 < γ < 2, the number of nodes of degree 2 grows as N 2−γ , while the
number of nodes with degree > 2 remains finite. For 4/3 < γ < 3/2, the number of nodes of degree 3 grows
as N3−2γ and the number with degree > 3 is finite. Generally for m+1

m < γ < m
m−1 , Nk ∼ Nk−(k−1)γ for

k ≤ m, while the number of nodes with degree greater than m links is finite.
Finally, let us study the linear attachment rate. Consider first strictly linear attachment, Ak = k. In

this case, the total event rate is A =
∑

k AkNk =
∑

k kNk = 2N ≡ µN . Substituting this value µ = 2 into
Eq. (9.7) and solving the resulting recursion gives the pretty result

nk =
4

k(k + 1)(k + 2)
=

4Γ(k)

Γ(k + 3)
∼ 4

k3
. (9.11)

This function is a discrete power-law—the appropriate definition of a power-law when the function that is
defined only on the positive integers. More germane to our discussion is that for the strictly linear attachment
rate the degree distribution exponent ν = 3. We can easily generalize this result to the case where each new
node links to m pre-existing nodes, with every target node chosen by linear preferential attachment. Now
the master equation is

dNk

dt
=

m

M1
[(k − 1)Nk−1 − kNk] + δkm , (9.12)
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and applying the same method of solution as that used for Eq. (9.6), we obtain the degree distribution

nk =
2m(m + 1)

k(k + 1)(k + 2)
k ≥ m. (9.13)

Thus the exponent of the degree distribution is again 3. However, the global nature of the network does
depend on m. With m > 1 outgoing links, the ensuing network has closed loops while for m = 1 the networks
as a tree topology.

Perhaps the most surprising feature of linear preferential attachment at first sight is that the exponent
of the power-law degree distribution (second line of Eq. (9.10)) is actually non-universal . The asymptotic
evaluation of the product in Eq. (9.8) generally leads to a degree distribution exponent ν = 1 + µ that can
assume any value greater than 2. All that is required is that the attachment rate is asymptotically linear,
Ak ∼ k, rather than strictly linear, Ak = k. This non-universal behavior is counter to the conventional
wisdom of critical phenomena in which power laws, by their very nature, should be universal. Nearly
everything about linear preferential attachment is counter to this dogma.

Redirection

To illustrate the vagaries of a network with an asymptotically linear attachment rate, consider the shifted
linear rate Ak = k + λ. A nice way to realize this model is by random network growth that is augmented
by redirection. In redirection a new node n is added and an earlier node x is selected uniformly from the
set of all nodes as a possible target for attachment. With probability 1− r, the link from n to x is created.
However, with probability r, the link is redirected to the ancestor y of node x (Fig. 9.2).

n

y x

Figure 9.2: Illustration of redirection. The new node (solid) selects a target node x at random. With
probability 1 − r a link is established to this target (dashed arrow), while with probability r the link is
established to y, the ancestor of x (thick solid arrow). The rate at which attachment to y occurs by
redirection is proportional to the number of its upstream neighbors (shaded).

Let’s solve this model within the master equation framework. According to the defining processes of the
model (Fig. 9.2), the degree distribution Nk(N) evolves by the master equation

dNk

dN
=

1 − r

M0
[Nk−1 − Nk] + δk1 +

r

M0
[(k − 2)Nk−1 − (k − 1)Nk] . (9.14)

For redirection probability r = 0, the first three terms on the right-hand side of Eqs. (9.14) are the same as
in the preferential attachment network with Ak = 1 (equiprobable attachment to any node). The last two
terms account for the change in Nk due to redirection. To understand their origin, consider the gain term.
Since the initial node is chosen uniformly, if redirection does occur, the probability that a node with k−1 pre-
existing links receives the newly-redirected link is proportional to the number of pre-existing incoming links
k− 2 (shaded nodes in Fig. 9.2). A similar argument applies for the redirection-driven loss term. Finally, by
combining the terms in Eq. (9.14), the master equation reduces to Eq. (9.6) with Ak = r[k − 1 + (1− r)/r],
except for a difference of an overall factor of 2 due to slightly different denominators in the two master
equations. Scaling out an irrelevant overall factor r, Ak becomes the shifted linear attachment rate k + λ,
with λ = 1

r − 2.
To determine the degree distribution for the shifted linear attachment rate, we use the fact that A(N) =

∑

j AjNj(N) now equals A(N) = M1(N) + λM0(N). Then making use of the relations A = µN , M0 = N
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and M1 = 2N , we obtain µ = 2 + λ. Finally, we substitute the result µ = 2 + λ in Eq. (9.8) to obtain the
degree distribution

nk = (2 + λ)
Γ(3 + 2λ)

Γ(1 + λ)

Γ(k + λ)

Γ(k + 3 + 2λ)
. (9.15)

Asymptotically, this distribution decays as k−ν , with ν = 3 + λ = 1 + 1
r , a value that can be tuned to any

value larger than 2. Thus a simple additive shift in the attachment rate profoundly affects the asymptotic
degree distribution. Amusingly, for r = 1/2, the redirection process is equivalent to strictly linear preferential
attachment. While it might seem surprising that a small additive shift in the attachment rate affects the
asymptotic degree distribution, this result has a natural explanation. The actual degree of a node is the
result of the product of attachment rates as the network is built. The fact that the degree of a node arises
from a product of random variables is the mechanism that allows an additive shift to the rate to play such
a large role.

Node attractiveness

A natural generalization of preferential attachment from a practical perspective is to endow each node with
an intrinsic “attractiveness”. This attribute accounts for the obvious fact that in many real settings (scientific
publications, websites, etc.) not all nodes are equivalent, but rather, some are more attractive than others
at their inception. Thus it is natural that the subsequent attachment rate to a node should be a function of
both its degree and its attractiveness. For this generalization of preferential attachment, the master equation
approach easily gives complete results for the degree distribution.

We assign each node an initial attractiveness η > 0 that is chosen from a specified distribution p0(η).
We define attractiveness to modify the node attachment rate as follows: for a node with degree k and
attractiveness η, the attachment rate is simply Ak(η). To characterize how nodes evolve, we now need to
characterize nodes both by their degree and their attractiveness. Thus let Nk(η) be the number of nodes
with degree k and attractiveness η. The evolution of this joint degree-attractiveness distribution is governed
by the master equation

dNk(η)

dN
=

Ak−1(η)Nk−1(η) − Ak(η)Nk(η)

A
+ p0(η)δk1, (9.16)

where A =
∫

dη
∑

k Ak(η)Nk(η) is the total rate. Following the same approach as that used to analyze
Eq. (9.6), we substitute A = µN and Nk(η) = Nnk(η) into Eq. (9.16), and the solve the resulting recursion
relation to give

nk(η) = p0(η)
µ

Ak(η)

k
∏

j=1

(

1 +
µ

Aj(η)

)−1

. (9.17)

For concreteness, let’s study the generalized linear rate Ak(η) = ηk—linear in the degree and in the
attractiveness. Applying the same analysis as in the homogeneous network, we obtain the degree distribution

nk(η) =
µ p0(η)

η

Γ(k) Γ
(

1 + µ
η

)

Γ
(

k + 1 + µ
η

) . (9.18)

Thus for nodes with a given attractiveness η, the asymptotic degree distribution is the power law nk(η) ∼
k−1−µ/η . To determine the full distribution, we need the amplitude µ. We therefore substitute (9.18) into
the definition µ =

∫

dη
∑

k≥1 Ak(η) nk(η) and use the identity

∞
∑

k=1

Γ(k + u)

Γ(k + v)
=

Γ(u + 1)

(v − u − 1) Γ(v)

to yield the implicit relation

1 =

∫

dη p0(η)

(

µ

η
− 1

)−1

. (9.19)
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This condition on µ leads to two alternatives: in the pathological case where the support of η is unbounded
and arbitrarily attractive nodes can exist, then the integral diverges and there is no solution for µ. Here the
most attractive node is connected to a finite fraction of all links. Conversely, if the support of η is bounded,
then the degree distribution for fixed η is simply the power law nk(η) ∼ k−ν(η), with an attractiveness-
dependent decay exponent ν(η) = 1 + µ/η. However the degree distribution averaged over all attractiveness
values, 〈nk〉 =

∫

dη nk(η), is no longer a power law, but rather 〈nk〉 is governed by properties of the initial
attractiveness distribution near the upper cutoff. For example, if p0(η) ∼ (ηmax − η)ω−1 (with ω > 0 to
ensure normalization), the total degree distribution is

nk ∼ k−(1+µ/ηmax) (ln k)−ω. (9.20)

Correlations

The master equation can be easily adapted to provide more detailed network properties. One such example
is the correlation between the degrees of connected nodes. Correlations naturally develop because a node
with large degree is likely to be old. Thus its ancestor is also old and hence also has a large degree. To
quantify these correlation, define Ckl(N) as the number of nodes of degree k that attach to an ancestor node
of degree l (Fig. 9.3). For example, in the final network of Fig. 9.1, there are N1 = 6 nodes of degree 1, with
C12 = 1, C13 = 2, and C15 = 3. There is also N2 = 1 node of degree 2, with C25 = 1, and N3 = 1 nodes of
degree 3, with C35 = 1.

k l

Figure 9.3: Definition of the node degree correlation Ckl for the case k = 3 and l = 4.

For simplicity, we specialize to the strictly linear attachment rate. The degree correlation function Ckl(N)
evolves according to the master equation

M1
dCkl

dt
= (k − 1)Ck−1,l − kCkl + (l − 1)Ck,l−1 − lCkl + (l − 1)Cl−1 δk1. (9.21)

The processes that correspond to each of the terms in this equation are illustrated in Fig. 9.4. The first two
terms on the right account for the change in Ckl due to the addition of a link onto a node of degree k − 1
(gain) or k (loss) respectively, while the second set of terms gives the change in Ckl due to the addition of a
link onto the ancestor node. Finally, the last term accounts for the gain in C1l due to the addition of a new
node. A crucial point is that these equations are closed, as they do not involve any higher-order correlations.

(i) (ii) (iii) (iv) (v)

Figure 9.4: The processes that contribute ((i)–(v) in order) to the various terms in the master equation
(9.21). The newly-added node and link are shown dashed.

As in the case of the node degree, the time dependence can be separated as Ckl = Nckl to reduce
Eq. (9.21) to the time-independent recursion

(k + l + 2)ckl = (k − 1)ck−1,l + (l − 1)ck,l−1 + (l − 1)cl−1 δk1. (9.22)
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This can be further reduced to a constant-coefficient inhomogeneous recursion relation by the substitution

ckl =
Γ(k) Γ(l)

Γ(k + l + 3)
dkl

to yield

dkl = dk−1,l + dk,l−1 + 4(l + 2)δk1. (9.23)

Solving Eqs. (9.23) for the first few k yields the pattern of dependence on k and l from which one can then
infer the solution

dkl = 4
Γ(k + l)

Γ(k + 2) Γ(l − 1)
+ 12

Γ(k + l − 1)

Γ(k + 1) Γ(l − 1)
, (9.24)

from which we ultimately obtain

ckl =
4(l − 1)

k(k + l)(k + l + 1)(k + l + 2)

[

1

k + 1
+

3

k + l − 1

]

. (9.25)

An important feature of this result is that the correlation function does not factorize, that is, ckl 6= nknl.
This result is is a basic distinction between preferential attachment networks and classical random graphs.

While the solution of Eq. (9.25) is unwieldy, it greatly simplifies in the scaling regime, k → ∞ and l → ∞
with l/k finite, where the scaled form of the solution is

ckl ∼ k−4 4 l
k

(

l
k + 4

)

(

1 + l
k

)4 →
{

16 (l/k5) l � k,

4/(k2 l2) l � k.
(9.26)

For fixed large k, ckl has a single maximum at (l/k)∗ = (
√

33 − 5)/2 ≈ 0.372. Thus a node whose degree k
is large is typically linked to another node whose degree is also large; the typical degree of the ancestor is
37% that of the daughter node.

Global properties

In addition to determining the degree distribution and degree correlations, the master equation can be applied
to determine global properties. One example is the out-component with respect to a given node x—the set of
nodes that can be reached by iteratively following directed links that emanate from x (Fig. 9.5). Conversely,
the in-component to node x is the set of nodes from which x can be reached by following a path of directed
links—the progeny of x.

in-component

x
out-component

Figure 9.5: In-component and out-components of node x.

In-component

Let’s study the in-component size distribution for a growing network with random attachment, in which a
node attaches to any other node equiprobably; that is, Ak = 1. We consider this example because many
results about network components are independent of the form of the attachment rate and it suffices to
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consider the simplest situation. For a constant attachment rate, the number Is(N) of in-components with s
nodes satisfies the master equation

dIs

dN
=

(s − 1)Is−1 − sIs

A
+ δs1. (9.27)

The loss term accounts for processes in which the attachment of a new node to an in-component of size
s increases its size by one. The rate of this attachment is simply proportional to s, even if there is more
than one (disjoint) in-component. Thus the total loss rate for Is(N) is simply sIs(N). A similar argument
applies for the gain term. Finally, dividing by A(N) =

∑

j AjNj(N) converts these rates to normalized
probabilities. For the constant attachment rate, A(N) = N . Interestingly, Eq. (9.27) is almost identical to
the master equation (9.6) for the degree distribution for the linear preferential attachment network, except
that the denominator equals N rather than 2N . This change in the normalization factor is responsible for
shifting the exponent of the resulting distribution from −3 to −2.

To determine Is(N), we again note, by explicitly solving the first few of the master equations, that
each Is grows linearly in time. Thus we substitute Is(N) = Nis into Eqs. (9.27) to obtain i1 = 1/2 and
is = is−1(s − 1)/(s + 1). This immediately gives

is =
1

s(s + 1)
, (9.28)

and the s−2 tail for the in-component distribution is a robust feature that is independent of the form of the
attachment rate.

Out-component

The complementary out-component from each node can be determined by constructing a mapping between
the out-component and an underlying network genealogy. We build a genealogical tree for a network by
taking generation g = 0 to be the initial node. Nodes that attach to those in generation g form generation
g + 1; the node index does not matter in this characterization. For example, in the final network of Fig. 9.1,
node 1 is the “ancestor” of 2, while nodes 3 and 10 are the “descendants” of 2, and there are 5 nodes in
generation g = 1 and 3 in g = 2. This leads to the genealogical tree of Fig. 9.6.

1

62 8 94

3 7 5

g=0

2

1

Figure 9.6: Genealogy of the network in Fig. 9.1 with nodes arranged according to generation number. The
node indices indicate when each is introduced.

The genealogical tree provides a convenient way to characterize the out-component distribution. As can
be easily verified from Fig. 9.6, the number Os of out-components with s nodes equals Ls−1, the number
of nodes in generation s − 1 in the genealogical tree. We therefore compute Lg(N), the size of generation
g when the network contains N nodes, again for the constant attachment rate. We determine Lg(N) by
noting that Lg(N) increases when a new node attaches to a node in generation g − 1, an event that occurs

with rate Lg−1/N . This gives the differential equation L̇g(N) = Lg−1/N with solution Lg(τ) = τg/g!, where
τ = ln N . The generation size Lg(N) therefore grows with g, when g < τ , and then decreases and becomes
of order 1 when g = eτ . The genealogical tree therefore contains approximately eτ generations for a network
of N nodes. Finally, the number Os of out-components with s nodes equals

Os(τ) = τs−1/(s − 1)!. (9.29)
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This result allows us to determine the diameter of the network, since the maximum distance between
any pair of nodes is twice the distance from the root to the last generation. Therefore the diameter of the
network scales as 2eτ ≈ 2e lnN ; this is the same dependence on N as in the Erdös-Rényi random graph.
More importantly, this result shows that the diameter of a network that grows by preferential attachment
is always small–ranging from the order of ln N for a constant attachment rate, to the order of one for a
superlinear attachment rate.

Fluctuations

One of the surprising aspects of linear preferential attachment networks is the sensitivity of the degree
distribution exponent to fine details of the growth process itself. We can provide an understanding of this
unexpected behavior by examining the essential role of fluctuations between different realizations of the
network.

As an instructive illustration, we study the degree of the first node in the network. Let P (k, N) be
the probability that the first node has degree k in a network of N links. For strictly linear preferential
attachment, Ak = k, this probability obeys the master equation

P (k, N + 1) =
k − 1

2N
P (k − 1, N) +

2N − k

2N
P (k, N). (9.30)

The first term on the right accounts for the situation when the first node has degree k − 1. A new node can
attach to it with probability (k − 1)/2N , thereby increasing the probability for the first node to have degree
k. Conversely, with probability (2N −k)/2N a new node does not attach to the earliest node, thereby giving
the second term on the right.

The solution to the master equation (9.30) for the “dimer” initial condition • • is

P (k, N) =
1

22N−k−1

(2N − k − 1)!

(N − k)! (N − 1)!
−→ 1√

πN
e−k2/4N , (9.31)

where the asymptotic behavior applies in the limit N → ∞, with the scaling variable k/N 1/2 being finite.
Thus the average degree of the first node is 〈k〉1 =

√

4N/π ≈ 1.228
√

N . On the other hand, from the
extremal criterion for the largest degree in the network

∞
∑

kmax

Nnk = 1,

and using asymptotic degree distribution nk ∼ 4/k3, we obtain the largest degree kmax ∼
√

2N ≈ 1.4142
√

N .
Thus the degree of the first node of the network is close the the largest degree; this implies that there is a
substantial probability that the first node in the network is the one with the largest degree.

Although P (k, N) contains all information about the degree of the first node, its moments 〈ka〉N =
∑

kaP (k, N) are simpler to appreciate. Using Eq. (9.30), the average degree of the initial node satisfies the
recursion relation

〈k〉N+1 = 〈k〉N
(

1 +
1

2N

)

, (9.32)

whose solution is

〈k〉N = Λ
Γ

(

N + 1
2

)

Γ
(

1
2

)

Γ(N)
∼ Λ√

π
N1/2 . (9.33)

The prefactor Λ depends on the initial condition, with Λ = 2, 8/3, 16/5, . . . for the dimer, trimer, tetramer,
etc., initial conditions.

This multiplicative dependence on the initial condition means that the first few growth steps substantially
affect the average degree of the first node. For example, for the dimer initial condition, the average degree
of the first node is, asymptotically, 〈k〉N ∼ 2

√

N/π. However, if the second link attaches to the first node,

an effective trimer initial condition arises and 〈k〉N ∼ (8/3)
√

N/π. Thus small initial perturbations at the
beginning of the network growth lead to huge differences in the degree of the first node.


