
Chapter 10

DISORDER

Order is associated with symmetry, beauty and simplicity. Some of the most profound advances in physics
have exploited these concepts to help understand fundamental issues about space and time, as well as
the structure of matter at the elemental scale. On the other hand, the notion of disorder resonates with
chaos, confusion, and complexity. Such prejudices hindered scientific progress about disordered systems, and
systematic efforts to solve specific models of disordered media—apart from a few pioneering papers in earlier
decades—began in the mid 1970’s. Quite surprisingly, it was found that many disordered systems exhibit
astonishingly beautiful behaviors that rival the properties of the most symmetrical and ordered systems. It
was also realized that in disordered systems, dynamical properties are usually much more important than in
ordered systems. For many disordered systems, the dynamical behavior is absolutely crucial; for example,
glasses apparently cannot be treated adequately within an equilibrium framework.

One prejudice about disordered systems, namely the concern that they can be extraordinarily compli-
cated, perhaps does reflect reality. There is still much effort in constructing “good” models—namely, models
that capture the physical essence of how disorder affects a physical phenomenon but that are simple enough
to be solved analytically or simulated to a reasonable time scale. As a consequence, many physical properties
of disordered systems are still poorly understood. Even for spin glasses—a very special and simple type of
glass system—little concrete knowledge has been gained despite three decades of research.

A particularly simple example of a disordered spin system is the Ising model with non-uniform interac-
tions. This system is described by the Hamiltonian

H = −
∑

〈ij〉
Jijsisj (10.1)

in which the interactions Jij between neighboring spins si and sj are random, rather than taking a single
value. We shall always assume Jij to be independent identically distributed random variables. A weakly
disordered system in which the interactions all have the same sign is known as a random ferromagnet. Here
we might still expect ferromagnetic order at low temperature, and a basic question is how does the disorder
affect the transition. When the interactions are both ferromagnetic (Jij > 0) and antiferromagnetic (Jij < 0)
with sufficiently similar overall strengths, the low-temperature phase is much more complex. There is no
long-range ferromagnetic order, but rather, spin-glass order arises in which each spin tends to align with
its local (but randomly oriented) field. The properties of the phase transition and the spin glass phase
are difficult to access experimentally, numerically, and theoretically, a fact that has helped perpetuate the
mystery of spin glasses. Three-dimensional spin glasses undergo this transition to a spin glass phase at a
positive temperature. The situation is much simpler in lower dimensions where the phase transition occurs
at zero temperature.

In this chapter we give some glimpses into the rich world of disordered systems by studying the simplest
possible systems where disorder plays an essential role in the dynamical behavior.
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10.1 Disordered Spin Chains

In one dimension, many aspects of the disordered Ising model are tractable analytically. Here we focus on
the long-time evolution of the system when individual spins evolve by Glauber dynamics. We impose no
conditions on the distribution ρ(Jij) of interactions apart from the requirement that ρ(Jij) does not contain
any delta function component. This constraint ensures that that the interactions between different pairs of
spins are never equal. Thus every spin flip either raises or lowers the energy, while the probability of an energy
conserving move is zero. Sometimes, we shall assume that the distribution is symmetric ρ(Jij) = ρ(−Jij)
but most of our results apply to arbitrarily disordered spin chains.

As in the case of a translationally invariant system, the phase transition to an ordered state occurs at zero
temperature in one dimension. The interesting dynamical behavior also occurs at zero temperature, and we
therefore set T = 0 henceforth. There are two basic questions that we can answer about the one-dimensional
disordered Ising model. The first is the structure of state space. In contrast to the homogeneous Ising model,
there are many metastable states in the disordered Ising model. The second and surprising feature is the
long-time magnetization of the system; in fact, the final magnetization is independent of all system details!

Metastable States

Let’s first determine on the ultimate fate of a disordered Ising chain. At zero temperature, energy raising
spin flips are forbidden. so that the system eventually reaches a metastable state where energy lowering
single-spin flips are no longer possible. For the ferromagnetic Ising chain, there are exactly two metastable
states—the ground states. For the disordered spin chain, there are many more metastable states that we can
enumerate by the following approach. In a metastable state, each spin is aligned with its local field. That
is, the state of the ith spin is determined by

si = sgn(Ji−1si−1 + Jisi+1), (10.2)

where Ji ≡ Ji,i+1. Since |Ji−1| 6= |Ji| with probability 1, only the stronger of the two bonds matters; for
example, if |Ji| > |Ji−1|, then (10.2) gives si = sgn(Jisi+1), i.e., si is perfectly coupled to si+1.

To characterized the metastable states, it is useful to compare the strength of each bond with those of
its two adjacent bonds. We term the ith bond as “strong” if |Ji| > max (|Ji−1|, |Ji+1|). Similarly the bond
is called “weak” if |Ji| < min (|Ji−1|, |Ji+1|). Otherwise, the bond is “medium”. In determining the final
state of the system, the actual bond strength is irrelevant; the only feature that matters is whether it is
weak, medium, or strong. Therefore the bond configuration can be equivalently represented as a word in an
alphabet consisting of the three letters, W,M , or S (Fig. 10.1).

S S S WWWWW S M M M M

|J|

Figure 10.1: The landscape of the bond strengths |Ji| showing the representation in terms of a three-letter
alphabet—W,M,S—for weak, medium, and strong bonds. A cluster of 3 bonds and 4 sites is shown (double
arrow).

We define the part of the chain between two consecutive but non-adjacent weak bonds as a cluster. There
is exactly one strong bond in a cluster. Likewise, there is exactly one weak bond between two consecutive,
non-adjacent strong bonds. Consider the ith bond and suppose it is not weak. Hence it is stronger than at
least one adjacent bond, say |Ji| > |Ji−1|. Then si = sgn(Jisi+1), that is, for a ferromagnetic bond (Ji > 0)
the spins are parallel (si = si+1), while for an antiferromagnetic bond the spins are antiparallel. The ith

bond is therefore satisfied. If the bond is weak, the end spins are unrelated and the bond could equally
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well be satisfied or frustrated. Since the state of each weak bond may be specified independently, the total
number of metastable states is

M = 2Ω, Ω = number of weak bonds. (10.3)

Now we need to relate Ω to the number of spins in the system. This can be done by the following
combinatoric argument. Consider three consecutive bonds. What is the probability that a weak bond exists
in this group? By definition, a weak bond would have to be both in the center of the group and the weakest
among the three bonds. There are 3! permutations of the bond alphabet for this cluster: WMS, WSM ,
MSW , MWS, SWM , and SMW . Of these, only in the configurations MWS and SWM are we assured
that the bond with the smallest interaction strength is truly a “weak” bond. Thus the probability of finding
a weak bond in any 3-bond cluster is 1/3 and the average number of weak bonds is N/3. Therefore the
typical number of metastable states grows with the system size N as

Mtyp ∝ 2N/3. (10.4)

Evolution

An important and experimentally relevant question for the evolution of a spin glass is the remanent mag-

netization. This quantity is defined by preparing a laboratory spin glass in well magnetized state, typically
by applying a very large external magnetic field. Then the field is switched off, keeping the temperature
fixed, and one waits until the system relaxes to its final state. The residual magnetization at infinite time is
the remanent magnetization, m∞ = m(t = ∞). Generally, the remanent magnetization also depends on the
temperature at which the experiment is performed.

By the nature of the experimental conditions, the remanent magnetization probes the structure of the
phase space and provides information about the typical metastable states of the system. The nature of
metastable states are extraordinarily complex for a real spin glass, but as discussed in the previous section,
the situation simplifies greatly in one dimension. As we now discuss,, the remanent magnetization has a
remarkably simple behavior in a one-dimensional spin glass.

As discussed above, the Ising chain spin glass effectively breaks up into non-interacting clusters that are
delimited by two consecutive weak bonds. Each cluster contains one strong bond and some (perhaps none)
medium bonds; thus a cluster contains at least 2 spins. Let us now determine the evolution of each cluster
according to single spin-flip zero temperature dynamics.

Consider a cluster that contains ` spins s1, . . . , s`. Suppose that the bond across (j, j + 1) is strong.
Then in an infinitesimal time interval dt a spin si with 1 ≤ i ≤ j (to the left of the strong bond) changes as
follows:

si(t+ dt) =

{

si(t) probability 1 − dt

εisi+1(t) probability dt,
(10.5)

where εi ≡ sgn(Ji). The second line in Eq. (10.5) accounts for the fact that in an update event si equals si+1,
if there is a ferromagnetic interaction between the two spins, while si = −si+1, if there is an antiferromagnetic
interaction. Thus we find that Si(t) ≡ 〈si(t)〉 satisfies

dSi

dt
= −Si + εiSi+1, 1 ≤ i ≤ j . (10.6)

Similarly, spins with j + 1 ≤ i ≤ ` (to the right of the strong bond) change according to

dSi

dt
= −Si + εi−1Si−1, j + 1 ≤ i ≤ ` . (10.7)

What we want to understand is the evolution of the macroscopic system. This means that we should
perform the average over the distribution of interactions. Since the interactions are independent identically
distributed (iid) random variables, the εi are also iid that take the values ±1 only. We now additionally
assume that the distribution of interactions, ρ(Ji), is symmetric; then the εi equal ±1 independently and
with equal probability.
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Let (. . .) denote averaging a quantity (. . .) over the distribution of interactions. Thus ε = 0 by definition.
Instead of solving Eqs. (10.6)–(10.7) and then averaging the solutions over the disorder, we first average these
equations and then solve. The averaging of linear terms simply gives Si → Si, and averaging the quadratic
terms is also simple since the factors in products are uncorrelated. For example, εiSi+1 = εi Si+1 = 0 for
i < j. Thus Si+1 depends on εi+1 and Si+2, but in turn, Si+2 in turn depends on εi+2 and Si+3, etc.
Therefore Si+1 depends on εi′ with indices i′ ≥ i + 1. Because different ε’s are independent, we conclude
that εi and Si+1 are uncorrelated. Averaging (10.6)–(10.7) we obtain simply

d

dt
Si = −Si for all i 6= j, j + 1,

with solution Si(t) = Si(0) e−t.
For the two spins attached to the strong bond (j, j+1), the above procedure does not quite work because

sj+1 is now determined by its left neighbor si. We can, however, directly solve the original equations

dSj

dt
= −Sj + εjSj+1,

dSj+1

dt
= −Sj+1 + εjSj (10.8)

and then perform the averaging. Suppose that the initial state is aligned: si(0) = 1 for all i. Then by adding
and subtracting the two equations in (10.8) we ultimately obtain Sj = Sj+1 = e(εj−1)t. Averaging over the
disorder, the average spin values within a cluster are therefore

Sj = Sj+1 =
1 + e−2t

2
, Si = e−t for i 6= j, j + 1

In a cluster of ` spins, the two spins at the ends of the strong bond evolve according to the first formula
and the remaining ` − 2 spins follow the exponential relaxation. Let NX` be the number of clusters that
contain ` spins. The average magnetization is then given by summing over all possible cluster sizes

m(t) =
(

1 + e−2t
)

∞
∑

`=2

X` + e−t
∞
∑

`=2

(`− 2)Xl. (10.9)

The first sum in (10.9) is the density of clusters. Because of the one-to-one relation between clusters and weak
bonds, the cluster density also equals the density of the weak bonds; hence

∑

`≥2X` = 1
3 . Using this result,

together with the normalization
∑

`≥2 `X` = 1 we find that the second sum in (10.9) is
∑

ε;;≥2(`−2)X` = 1
3 .

Thus the magnetization is simply

m(t) =
1 + e−t + e−2t

3
,

so that the remanent magnetization is

m∞ =
1

3

Both these results are remarkably universal, that is they are completely independent of the distribution of
interaction strengths.

As a side note, the cluster size distribution itself is also independent of the distribution of interaction
strengths and equals

X` = 2` (`− 1)(ε; ; +2)

(`+ 3)!
(10.10)

The form of this remarkable formula suggests that it ought to admit a conceptual derivation; the only
currently known derivation involves detailed calculations.

Let now compute the final energy per spin E . Each weak bond is satisfied or frustrated equiprobably, so
the corresponding contribution to energy vanishes. All non-weak bonds are satisfied and the fraction of such
bonds is 2/3 leading to E = − 2

3 |J |nw. Adding and subtracting 1
3 |J |w, and noting that 2

3 |J |nw + 1
3 |J |w = |J |,

gives

E = −|J | + 1

3
|J |w (10.11)
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The probability density function for the absolute value of the coupling strength is ψ(x) = Prob(|J | = x),

while for the weak bond Prob(|J |w = x) = ψ(x)
{∫ ∞

x
dy ψ(y)

}2
. Therefore (10.11) becomes

E = −
∫ ∞

0

dx xψ(x) +
1

3

∫ ∞

0

dx xψ(x)

{
∫ ∞

x

dy ψ(y)

}2

The above computation applies for an arbitrary metastable state. Thus almost all metastable states have
the same energy which is larger than the ground state energy EGS = −|J |. For instance, for the uniform
coupling distribution ψ(x) = 1 for 0 ≤ x ≤ 1 and zero otherwise, the ground state energy is EGS = − 1

2 ,
while almost all metastable states have the energy E = − 17

36 ; for the exponential distribution ψ(x) = e−x we
get EGS = −1 and E = − 26

27 .

10.2 Heterogeneous Random Walks

Heterogeneous step lengths

A profound and remarkable fact about random walks is that the probability distribution of displacements
after a large number of steps converges to a universal Gaussian distribution, independent of the form of
the single step distribution (subject to a mild restriction to be discussed below). This fact is known as
the central limit theorem. To simplify the discussion, suppose that the walk is confined to one dimension
and takes steps at discrete times, with the displacement of each step x is chosen from a distribution p(x).

Let XN =
∑N

n=1 xn be the displacement of a random walk after N steps. Then the precise statement of
the central limit theorem is that the asymptotic N → ∞ probability distribution of the total displacement,
P (XN ), is the universal Gaussian function

P (XN ) ∼ 1√
2πNσ2

e−(XN−N〈x〉)2/2Nσ2

σ2 ≡ 〈x2〉 − 〈x〉2, (10.12)

as long as the first two moments of the single-step distribution

〈x〉 =

∫ ∞

−∞
x p(x) dx and 〈x2〉 =

∫ ∞

−∞
x2 p(x) dx ,

are finite. Eq. (10.12) tells use that the mean displacement after N steps is simply 〈XN 〉 = N〈x〉 and that
the variance is var(XN ) = Nσ2.

What happens when the displacement distribution in a single step is sufficiently broad that the above two
conditions on the first two moments are violated? As we now discuss, the distribution P (XN ) is no longer
Gaussian and the moments of the N -step displacement scale anomalously with N . These two features arise
because a sufficiently broad distribution of single-step displacements can give rise to an exceptionally long
step that comprises a finite fraction of the total displacement. The existence of such an exceptional event
invalidates the conditions that lead to the central limit theorem.

To make our discussion concrete, suppose that the single-step distribution is given by p(x) ∝ x−(1+µ),
with µ > 0, for x > 1. We impose a lower cutoff x > 1 on the step length to avoid potential singularities
associated with very short steps. Instead of attempting a direct calculation of the moments of the N -step
displacement, we exploit a simple application of extreme value statistics to determine these moments in a
physically appealing way. We first estimate the largest step length during a walk of N steps, xmax(N), by
the extremal criterion:

∫ ∞

xmax

x−(1+µ) dx =
1

N
. (10.13)

This statement mandates that one of the steps in an N -step walk has length greater than or equal to xmax.
From Eq. (10.13), we immediately find that xmax ∼ N1/µ. Thus for an N -step walk, the effective single step
distribution is

p(x) =















µ

1− x−µ
max

x−(1+µ) ≈ µx−(1+µ) x < xmax

0 x > xmax.

(10.14)



188 CHAPTER 10. DISORDER

That is, we merely cut off the single step distribution at a point beyond which a larger step will almost
surely not occur within N steps.

Levy
stable

µ=0

µ=2
µ=1

decreasing
µ

Figure 10.2: Schematic illustration of the universality classes of a random walk when the length x of single
step is distributed according to p(x) ∼ x−(1+µ). For µ > 2, all distributions flow to the Gaussian fixed point
(heavy dot). For 1 < µ < 2, there is normal behavior for the mean displacement and anomalous behavior
for the variance. For µ < 1, the first two moments are both anomalous and the Lévy distribution describes
the distribution of displacements.

A crucial point about this truncated distribution is that it satisfies the conditions of the central limit
theorem—both 〈x〉 and 〈x2〉 are finite because of the cutoff. We can now exploit this fact to compute the
properties of the random walk after N steps. For the mean and mean-square displacement after a single
step, we have

〈x〉N ≈ µ

∫ xmax

1

xx−(1+µ) dx ∝































x1−µ
max ∝ N (1−µ)/µ µ < 1;

lnxmax ∝ lnN µ = 1;

finite µ > 1.

(10.15)

〈x2〉N = µ

∫ xmax

1

x2 x−(1+µ) dx ∝































x2−µ
max ∝ N (2−µ)/µ µ < 2;

lnxmax ∝ lnN µ = 2;

finite µ > 2.

(10.16)

Here we write the subscript N on 〈x〉N to emphasize that this mean value for a single steps depends on the
number of steps over which the average is taken. Then the mean displacement and the variance of an N -step
random walk are simply

〈XN 〉 = N〈x〉N ∝











N1/µ µ < 1;

N lnN µ = 1;

N µ > 1.

(10.17)

var(XN ) ∝











N2/µ µ < 2;

N lnN µ = 2;

N µ > 2.

(10.18)
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In the regime µ > 2, both 〈x〉 and 〈x2〉 are finite, and the probability distribution after N steps is
universally a Gaussian distribution for any single-step distribution whose upper tail decays more quickly
than x−2. In the regime 0 < µ < 2, the displacement after N is governed by the Lévy stable distribution
that is often written as Lµ. The most important feature of this distribution is that it has a power-law tail,
Lµ(z) ∼ z−(1+µ). For µ < 1, the scaling variable z = XN/N

1/µ obeys the Lévy distribution, while for
1 < µ < 2, the scaling variable z = (XN −N〈x〉)/N2/µ obeys the Lévy distribution. Notice that for µ < 1,
the dependence of 〈XN 〉 on N is the same as xmax ! Thus a single step in the random walk dominates the
behavior of the mean displacement.

Heterogeneous waiting times

Another natural way that a random walk can be heterogeneous is to have the time between successive
steps drawn from an arbitrary distribution. If the distribution of times τ between steps (the waiting time
distribution) is sufficiently sharp that the mean waiting time is finite, then we may anticipate normal diffusive
behavior. However suppose that the waiting time distribution has the form q(τ) ∼ τ−(1+µ), with 0 < µ < 1.
Then 〈τ〉 = ∞, and we should expect slower than normal diffusive behavior. We can again determine the
asymptotic behavior of random walks with a broad waiting time distribution by making a correspondence
to a process with a suitably truncated waiting time distribution.

For 0 < µ < 1, the maximum waiting time over N steps is given by the extremal condition

∫ ∞

τmax

τ−(1+µ) dτ =
1

N
,

from which the maximum waiting time is τmax ∝ N1/µ. With this truncated waiting time distribution, the
average time for a random walk to take one step is then

〈t〉N =

∫ τmax

0

τ τ−(1+µ) dτ ∝ τ1−µ
max ∝











N (1−µ)µ µ < 1;

lnN µ = 1.

Again, the subscript N denotes that this average time pertains only for the first N steps of the walk. Now
the total time TN required to take N steps is given by

TN = N〈t〉N ∝
{

N1/µ µ < 1;

N lnN µ = 1.
(10.19)

Finally, the mean-square displacement after N steps of a random walk with a waiting time distribution is

〈X2
N 〉 ∝ N ∝











T µ
N µ < 1

TN/ lnTN µ = 1

TN µ > 1.

(10.20)

The first case corresponds to subdiffusion, where the mean-square displacement grows more slowly than
linearly with time.

10.3 Random Walk in a Random Potential

There are two types of disorder that can arise in a random walk problem. The first is the randomness of the
individual steps in the walk. The physical mechanism for this randomness is generally the result of thermal
noise; the random walker is buffeted by the collisions with other particles in the system and these collisions
are normally modeled by assuming the each step of the walker is in a random direction. As we already
discussed briefly in chapter 2, there are well-developed techniques to deal with this type of randomness and
solve for the probability distribution of a random walk.
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On the other hand, environmental disorder arises in many contexts. That is, the medium in which the
random walker is moving has transport characteristics that do not vary in time but are a random function
of position. Such quenched disorder profoundly affects the motion of a random walk. In this section, we
discus one important such example in which the particle can be viewed as moving in a random potential.

The physical mechanism that leads to such a potential arises in the dynamics of a one-dimensional spin
glass in which the interactions can take only the values distribution ±J . Suppose that the system is in a
uniform weak magnetic field H and that the temperature is low. Because the domain wall density is small in
the low-temperature limit, let us focus on the dynamics of a single domain wall. In the case of a spin glass,
the notion of a domain wall has to be generalized to account for both ferromagnetic and antiferromagnetic
interactions. For a ferromagnetic interaction, the presence of the domain wall that occupies the bond between
two spins implies that these spins are antiparallel. Conversely, for an antiferromagnetic interaction, a domain
wall implies that the spins at the end of the bond are parallel. The result is that a single domain wall on
the kth bond undergoes a random walk in which the hopping rates to the right (pk) and left (qk = 1 − pk)
are random (Fig. 10.3. In the case of low-temperature Glauber kinetics, pk = 1

2 (1 + εσk), qk = 1
2 (1 − εσk),

where σk = ± are independent identically distributed random variables and ε = tanh(H/T ), with H the
magnetic field at T the temperature. The temperature must be low, T � J , to ensure that the creation of
new domain walls is exponentially unlikely; the requirement ε <∼ 1 shows that the magnetic field should be
of the order of the temperature: H ∼ T .

V(x)

x
x

k

qk pk

1/2

Figure 10.3: (top) The local hopping bias at site k, with pk and qk, the probabilities of hopping to the right
and left. (middle) The local bias on a string of sites. (bottom) The random potential that is induced by the
local bias.

In the continuum limit, the motion of this random walker that is subject to this random bias in space
and to random noise can be described by the Langevin equation

dx

dt
= −f [x(t)] + η(t)

where η(t) is the (Gaussian white) noise and f(x) is the random bias with mean zero and the correlation
length of the order of the lattice constant. In one dimension, we can always write the bias as the gradient

of a potential f(x) = − dV (x)
dx . By definition, the random potential is the integral of the random bias. Since

the bias itself has zero mean and rapidly decaying correlations, the random potential has diffusive height
fluctuations

V (x) − V (0) ∼ x1/2.

The particle thus moves in a random potential; to move a distance L from its original location, the particle
must overcome a potential barrier whose height is of the order of L1/2. The probability for this event is just
given by the Boltzmann factor and the time needed for such an event to occur is therefore

t ∝ eL1/2

.
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Thus we conclude that the typical length scale of the random walk grows as

L ∼ (ln t)2. (10.21)

It is important to appreciate that an arbitrarily small random bias makes a huge difference in the motion of
a random walk—instead of the diffusive growth L ∼

√
t the particle follows the ultraslow Sinai logarithmic

law L ∼ (ln t)2.
Another remarkable manifestation of the influence of a random potential on random walk motion arises

when two non-interacting random walkers are subject to the same random potential. If there was no disorder,
the positions of the two walkers would be given by

〈x2
1〉 = 〈x2

2〉 = t, 〈(x1 − x2)
2〉 = 2t;

that is, the distance between the two particles also diffuses, but with twice the diffusion coefficient of the
single-particle motion. The disorder completely changes the situation—now the interparticle distance reaches
a stationary distribution! The origin of this unexpected behavior is that each particle tends to move to near
the bottom of its local valley. As time increases, a particle moves to the bottom of progressively deeper
valleys. At some point, both particles move to the same valley and then their subsequent positions are
strongly correlated because both particles tend to be in the same local valley.

To justify the above picture and derive quantitative results it is useful to take a piecewise linear potential.1

We can further assume that the slopes are alternatively positive and negative. Let ln is the length of the nth

bond along which the potential grows linearly from Vn to Vn+1, so the end points are separated by the barrier
Bn = |Vn − Vn+1|. When the particle moves in such a potential, it will typically sits near the bottom of a
valley. If the barrier is small, the particle will soon overcome it and get into a deeper valley. The key point
is that on the long time scale, the particle essentially does not see low barriers. This suggests the following
recursive procedure that simplifies the random potential yet does not affect the asymptotic characteristics of
the particle. At each step, we eliminate the bond (l, Bmin) with the smallest barrier by merging it with the
adjacent bonds (l1, B1) and (l2, B2). This procedure (often called the decimation method, or a variant of
a real space renormalization group method) is illustrated on the figure; it is formally defined via the
rule

(l1, B1) ⊕ (l, Bmin) ⊕ (l2, B2) −→ (l1 + l + l2, B1 −Bmin +B2) (10.22)

The procedure preserves the zigzag structure. The crucial feature that makes analysis possible is that corre-
lations do not spontaneously develop: If the barriers were initially uncorrelated, they remain uncorrelated.
Overall, (10.22) is an example of the extremal dynamics.

B2

1L

1B Bmin

LL 2

Figure 10.4: The decimation method — the bond with the smallest barrier Bmin is eliminated via merging
with the adjacent bonds.

Let’s first disregard the length and focus on the barrier distribution c(B, b) defined as the number density
of bonds with barrier B when the minimal barrier is equal to b. The total bond density ρ(b) =

∫ ∞
b dB c(B, b)

1This assumption does not affect the asymptotic behavior.
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satisfies
dρ(b)

db
= −2c(b, b) (10.23)

since three bonds are lost and one is gained in each merging event. Similarly the governing equation for the
barrier distribution is

∂

∂b
c(B, b) = c(b, b)

[

−2
c(B, b)

ρ(b)
+

∫ B

b

dB′ c(B
′, b)

ρ(b)

c(B −B′ + b, b)

ρ(b)

]

In these equations, the minimal barrier height should be thought as the time-like variable. The minimal
height is more convenient than time in intermediate calculations. Using the Arrhenius estimate t ∝ eb we
can express b through time2

b→ ln t (10.24)

and thereby re-express final results in terms of the original time variable.
When b→ ∞, the barrier distribution approaches the scaling form

c(B, b)

ρ(b)
→ b−1 Φ(z), z =

B − b

b
(10.25)

This scaling ansatz recasts the governing equation for the barrier distribution into

(1 + z)
dΦ(z)

dz
+ Φ(z) + Φ(0)

∫ z

0

dxΦ(x) Φ(z − x) = 0 (10.26)

We could solve this equation by utilizing the Laplace transform that would transform the convolution into the
product. Even simpler is to notice that Eq. (10.26) is identical to the equation for the scaling function that
appeared earlier when we studied the constant-kernel aggregation. Either way, we arrive at the exponential
distribution

Φ(z) = e−z (10.27)

Now using c(b,b)
ρ(b) = b−1 in conjunction with (10.23), we determine the total bond density ρ(b) = b−2 and the

density of the bonds with the smallest barrier c(b, b) = b−3.
To probe the length distribution we cannot merely study c(l, b) since the dynamics is driven by eliminating

the bond of the smallest barrier. Therefore we have to examine c(l, B, b), the number density of bonds of
length l and of barrier height B. This joint distribution evolves according to equation

(

∂

∂b
+ 2

c(b, b)

ρ(b)

)

c(l, B, b) =

∫

dl1 dl2 dl3 δ(l1 + l2 + l3 − l)

∫

dB1 dB2 δ(B1 +B2 − b−B) Π

with the integrand Π = c(l3, b, b)
c(l1,B1,b)

ρ(b)
c(l2,B2,b)

ρ(b) and the delta functions assuring that the rule (10.22) is

obeyed. When b→ ∞, the joint distribution admits the scaling form

c(l, B, b) → b−5 Φ(w, z), w = b−2 l and z = b−1 (B − b)

which is understood by noting that the minimal barrier height b sets the scale for B and the inverse bond
density ρ−1 = b2 sets the scale for l. By inserting the scaling form into the governing equation for c(l, B, b)
we find that the scaling function satisfies

3Φ + (1 + z)
∂Φ

∂z
+ 2w

∂Φ

∂w
+

∫

dw1 dw2 dw3 δ(w1 + w2 + w3 − 1)

∫

dz1 dz2 δ(z1 + z2 − z) Π = 0

with Π = Φ(w1, z1)Φ(w2, z2)Φ(w3, 0). The Laplace transform Φ(p, z) =
∫ ∞
0 dw e−pw Φ(w, z) converts the

above equation into
[

1 + (1 + z)
∂

∂z
− 2p

∂

∂p

]

Φ(p, z) + Φ(p, 0)

∫ z

0

dxΦ(p, x) Φ(p, z − x) = 0 (10.28)

2Note that Eq. (10.24) is asymptotically exact.
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This equation is a generalization of (10.26) whose solution is exponential, Eq. (10.27). This suggests to seek
again an exponential solution

Φ(p, z) = α(p) e−z β(p) (10.29)

Plugging (10.29) into (10.28) we find that the exponential ansatz is compatible with (10.28) when

2p
dα

dp
− α = −αβ, 2p

dβ

dp
− β = −α2 (10.30)

By definition, Φ(p = 0, z) =
∫ ∞
0
dwΦ(w, z) = Φ(z) = e−z, see (10.27). Therefore α(0) = β(0) = 1. We can

get rid of the linear terms in (10.30) and make the coefficients independent of p. Indeed, the transformation

α(p) = qA(q), β(p) = qB(q), q =
√
p

converts (10.30) into
dA

dq
= −AB, dB

dq
= −A2

These equations admit the integral B2 −A2 = const., and the solutions are qualitatively different depending
on whether the constant positive, zero, or negative. Only the former case leads to physically acceptable

solutions. For instance, if the constant were zero we would have obtained A = B = A(0)
1+qA(0) and therefore

α = β =
A(0)

√
p

1+A(0)
√

p which disagrees with the boundary condition α(0) = β(0) = 1. The relevant solution is

A = (sinh q)−1 and B = coth q; in the original variables

α(p) =

√
p

sinh
√
p
, β(p) =

√
p

cosh
√
p

sinh
√
p

(10.31)

Thus Φ(p, z) is given by (10.29), (10.31); the inverse Laplace transform of Φ(p, z) gives Φ(w, z). The result
is cumbersome, so let’s limit ourselves to single-variable distributions. We already know Φ(z), so we want to
determine Ψ(w), the scaling form of the length distribution. Of course, Ψ(w) =

∫

dz Φ(w, z); the same holds

for the Laplace transforms Ψ(p) =
∫

dzΦ(p, z). From (10.29) we find Ψ(p) = α(p)/β(p) =
[

cosh
√
p
]−1

. The
inverse Laplace transform is determined by utilizing the standard tools from complex analysis, that is by
finding the poles of Ψ(p) and calculating the residues. The scaled length distribution reads

Ψ(w) = π

∞
∑

n=−∞
(−1)n

(

n+
1

2

)

exp

{

−π2w

(

n+
1

2

)2
}

(10.32)

=
1

π1/2w3/2

∞
∑

n=−∞
(−1)n

(

n+
1

2

)

exp

{

− 1

w

(

n+
1

2

)2
}

Here we gave the answer in two equivalent forms which are convenient in extracting large and small w
behaviors, respectively.

The qualitative features of the random walks in the random environments outlined at the beginning of
this section can now be expressed in a quantitative form. Let Prob(x, t|0, 0) is the probability that a particle
starting at the origin is located at x at time t. We argued that in a single environment the particle will
be at the bottom of the renormalized bond that contains the origin. We want to compute the average over
the environments: Prob(x, t|0, 0). If P (l, b) is the probability that the length of the renormalized bond is l,
then the particle will be in such bond with probability l P (l, b)/

∫

d` ` P (`, b). The bottom of the valley is

uniformly distributed on [0, l], so bonds of length l ≥ |x| contribute to Prob(x, t|0, 0):

Prob(x, t|0, 0) =

[

2

∫ ∞

0

d` ` P (`, b)

]−1 ∫ ∞

|x|
dl P (l, b)

We know that P (l, b) → b−2 Ψ(l/b2) with Ψ(w) given by (10.32). Using this and recalling that b = ln t, see
Eq. (10.24), we arrive at

Prob(x, t|0, 0) = (ln t)−2 F (X), X =
x

(ln t)2
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with

F (X) =
2

π

∞
∑

n=0

(−1)n

(

n+
1

2

)−1

exp

{

−π2|X |
(

n+
1

2

)2
}

This Golosov-Kesten distribution replaces the Gaussian distribution characterizing the displacement of the
ordinary random walk. Although the Golosov-Kesten distribution is an infinite series, the moments of the
displacement (averaged over the noise and the environments) are remarkably simple, e.g.,

〈x2〉 =
61

180
(ln t)4 , 〈x4〉 =

50521

75600
(ln t)8 , 〈x6〉 =

199360981

60540480
(ln t)12

We already mentioned the remarkable phenomenon of localization — two particles remain within the
finite distance even when t → ∞, that is the probability distribution P (y, t) of the interparticle distance
y(t) = x1(t) − x2(t) averaged over the environments reaches a stationary limit distribution P∞(y). The
existence of the limit distribution does not imply, however, that all moments of y are finite. An algebraic
tail of the limit distribution

P∞(y) ∼ |y|−3/2 as |y| → ∞ (10.33)

leads to formal divergence of the moments. At any finite time, of course, the distribution P (y, t) vanishes
for |y| � (ln t)2. Hence the second moment of the interparticle distance3 grows as

〈y2〉 ∼
∫ (ln t)2

dy y−3/2 y2 ∼ (ln t)3

and more generally 〈yn〉 ∼ (ln t)2n−1 for even n. To understand the algebraic tail (10.33) we recall that the
particles are at the deepest valleys of the renormalized bond that contains the starting point. There could
be two valleys of (almost) same depth separated by distance y. The probability of this event is estimated
by noting that the random potential U(y) undergoes a random walk, and the probability that this random
walk returns to the origin (i.e., U(y) gets close to U(0)) is the first-passage probability that indeed scales as
y−3/2 for large y.

10.4 Random Walk in Random Velocity Fields

The motion of a random walk in a random medium often can be subdiffusive, that is the mean-square
displacement 〈r2(t)〉 grows slower than linearly with time. Spatial disorder in the hopping rates of the
random walk is a natural mechanism that gives rise to subdiffusion. Conversely, there are situations where
superdiffusive motion can occur, in which 〈r2(t)〉 grows faster than linearly with time. A simple such
example is the Matheron-de-Marsily (MdM) model that was formulated to describe groundwater transport
in sedimentary rocks.

In the MdM model, a sedimentary rock is modeled as an array of parallel layers, each with slightly
different material properties (Fig. 10.5). In each sedimentary layer, the fluid moves at a velocity that is
characteristic of that layer. In a reference frame that moves at the average velocity of all the layers, the
relative velocity in each layer becomes a random, zero-mean function of the transverse position. Now consider
the motion of a Brownian particle that is also passively convected by the flow field. When the particle remains
within a given layer, it moves at the fluid velocity in the layer, but the particle also undergoes superimposed
molecular diffusion. Because of diffusion the particle will make transitions between neighboring layers and
so its longitudinal velocity will change in a stochastic manner. This combination of transverse diffusion and
random flow in the longitudinal direction leads to superdiffusion.

In two dimensions, with convection along the x-axis and diffusion along the y-axis, the equations of
motion for a Brownian particle are

dx

dt
= u[y(t)],

dy

dt
= η(t), (10.34)

with u[y(t)] the velocity field in the x-direction that depends only on transverse position y. To simplify the
system even further, we replace the continuum picture of Fig. 10.5(b) by the discrete picture of Fig. 10.5(c)

3We can, of course, express 〈y2〉 via the one-particle averages 〈y2〉 = 2 〈x2(t)〉 − 〈x(t)〉2
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(a) (b) (c)

Figure 10.5: (a) The flow field in a two-dimensional layered medium and (b) the same flow in a center-of-mass
reference frame, from which we abstract the MdM model shown in (c).

in which the velocity in each layer is randomly ±u0. By construction the mean velocity equals zero and
there are no correlations between the velocities in different layers, so that

〈u(y)〉 = 0, 〈u(y)u(y′)〉 = σδ(y − y′).

The effect of diffusion in the x-direction is subdominant with respect to the random convection and therefore
may be ignored. The transverse diffusion of the particle is driven by thermal noise that satisfies

〈η(t)〉 = 0, and 〈η(t)η(t′)〉 = 2Dδ(t− t′).

We can determine the time dependence of the longitudinal mean-square displacement by the following
simple argument. Let us first estimate the effective longitudinal bias that the Brownian particle has experi-
enced up to time t. If every layer in the system was visited with equal frequency, then the mean bias would
be zero. However, a diffusing particle can visit only a finite number of layers within which the mean bias can
be non-zero. This residual bias is responsible for superdiffusion. In a time t, a particle typically roams over
a perpendicular distance

√
Dt. Since u(y) is a random function with zero mean, the residual bias within this

spatial range
√
Dt is

〈u〉t =
1√
Dt

√
Dt

∑

u(y) ∼ u0(Dt)
−1/4. (10.35)

Thus we estimate that the root-mean-square longitudinal displacement at time t, xrms(t) = 〈x2(t)〉1/2, grows
superdiffusively

xrms(t) ∼ 〈u〉t t ∼ u0D
−1/4 t3/4. (10.36)

A more fundamental characteristic of the particle motion is the probability distribution of displacements.
When averaged over all particle trajectories and over all realizations of the velocity disorder, we expect that
this displacement distribution at long times should have the scaling form

P (x, t) → t−3/4 f(xt−3/4). (10.37)

In terms of the natural variable is ξ ≡ xt−3/4, the natural expectation for the scaling function is that it
should decay faster than any power law for ξ � 1. Thus we write

f(ξ) ∼ t−3/4 e−aξδ

, (10.38)

with a a constant. There is a very simple, general, and powerful argument to determine the shape exponent
δ. Let us first outline this method for standard diffusion and then extend this approach to the MdM model.
Suppose that we know that 〈r(t)2〉 scales linearly with time, but that we don’t know that the probability
distribution is Gaussian; we only know that the distribution satisfies scaling. To make the argument more
general we write 〈r(t)2〉 ∼ t2ν to also encompass situations where the distance exponent ν does not equal
1/2. With the assumption of scaling, we expect that the probability distribution of displacements will be

P (r, t) → t−dν e−a(r/tν)δ

. (10.39)
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A very useful general trick to determine the shape exponent δ is to consider the subset of extreme,
stretched-out walks for which r ∼ t. For a walk to be stretched out, each step must be in the same direction.
The probability for this event to occur decays exponentially with the number of steps, since the walk must
pick only one out of the available choices of direction at each step. Thus we have

P (r ∼ t, t) → t−dν e−a(t1−ν)δ ∼ e−t.

By comparison, we thus infer the fundamental relation between the shape exponent and the distance exponent

δ =
1

1 − ν
. (10.40)

Thus for diffusion, where ν = 1/2, we obtain the expected Gaussian value of δ = 2. Moreover, this argument
applies for a wide variety of situations. A crucial feature of this trick is to consider an extremal subset of
all trajectories for which it is trivial to estimate their probability. It is then a simple matter to compare the
probability of this extremal subset with the probability that arises from the scaling form to determine the
shape exponent.

Let’s now try the same approach for the MdM model. Here it is simplest to formulate the extremal
argument for a discretized lattice version of the MdM model in which the velocity for a given value of y
is independently equal to ±1. In this case, there is a subtlety in applying the extremal argument because
there are two sources of disorder—the disorder in the trajectory and the disorder in the medium. What are
the configurations that lead to an extremal walk? Clearly, the walk travels furthest longitudinally if it is
contained within a range of y values that all have the same velocity of +1. What is the probability for such an
event? This confining probability, averaged over all environments, is isomorphic to the survival probability
of a one-dimensional random walk in the presence of randomly distributed traps that was discussed in
Sec. 8.5. If the unidirectional region has a width w, the probability for such a region is simply 2−w. In the
long-time limit, the probability for a walk to remain within this region decay as e−Dt/w2

. The confining

probability, averaged over all widths, is then
∫

2−w e−Dt/w2

dw, which varies as e−at1/3

. Now using the
scaling form (10.38) for the probability distribution in the MdM model and applying the same comparison
as in Eq. (10.4), we have

P (x ∼ t, t) → t−3/4 e−atδ/4 ∼ e−t1/3

,

from which we infer that the shape exponent δ has the value δ = 4/3. A suprising feature of the MdM model
is that the shape and distance exponents do not obey the general relation δ = 1

1−ν .
In addition to the superdiffusive transport exhibited by this layered model, there is a lack of self averaging.

That is, the asymptotic rate at which the probability distribution spreads in a single environment is different
from the spread rate when an average over all environments is taken. This feature can be seen in computing
the higher moments of the longitudinal displacement. The moment of arbitrary order can be written formally
as,

〈〈xn(t)〉w〉c = n!

∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtn〈〈u(y(t1)) · · ·u(y(tn))〉w〉c. (10.41)

The double angle brackets indicate that one should first average over all transverse Brownian trajectories
for a given configuration of random velocities, and then average over all configurations. However, these
two averages factorize and can be performed in either order. Thus the velocity correlation function can be
written as

〈〈u(y(t1)) · · ·u(y(tn))〉w〉c =

∫ +∞

−∞
dy1 dy2 · · · dyn〈u(y1) · · ·u(yn)〉c

× p(yn, tn) p(yn−1−yn, tn−1−tn) · · · p(y1−y2, t1−t2), (10.42)

where p(x, t) = 1√
4πDt

e−x2/4Dt is the Gaussian probability distribution for the transverse motion. The

product of Gaussians in Eq. (10.42) is the probability that a Brownian path visits the sequence of transverse
positions {y(ti)} at times {ti}, having started at y = 0. For the continuous model defined by Eq. (10.34),
〈u(y1) · · ·u(yn)〉c is a sum of products of delta functions. Consequently, the second moment is

〈〈x(t)2〉w〉c = 2σ

∫ t

0

dt1

∫ t1

0

dt2

∫ +∞

−∞
dy p(0, t1 − t2) p(y, t2) =

4σ

3
√
πD

t3/2. (10.43)
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On the other hand, the longitudinal displacement, averaged over all walks in a fixed environment, 〈x(t)〉w ,
depends on the configuration, and does not necessarily converge to zero at large times. However, the average
over all environments, 〈〈x(t)〉w〉c does equal zero in the center-of-mass reference frame. Clearly 〈x(t)〉w has
a distribution over environments which is a Gaussian of variance 〈〈x(t)〉2w〉c. This dispersion can also be
calculated for the continuous model of Eq. (10.34),

〈〈x(t)〉2w〉c = σ

∫

dy 〈N (y, t)〉2w = (
√

2 − 1)
4σ

3
√
πD

t3/2, (10.44)

where N (y, t) =
∫ t

0
dt′ δ(y − y(t′)) is the number of times that the random walk y(t) visits layer y after

time t, having started at y = 0. Thus both the configuration average of the mean-square displacement,
〈〈x(t)2〉w − 〈x(t)〉2w〉c and the second moment 〈〈x(t)2〉w〉c vary as t3/2, but with different prefactors. This
implies that there are non-vanishing sample specific fluctuations in the variance, asymptotically, and hence
in the probability distribution itself.

(a) (b)

Figure 10.6: (a) The flow field of the MdM model in three dimensions. (b) The isotropic version of the MdM
model—the random Manhattan grid—in two dimensions.

What happens in the MdM model for the physical case of three dimensions? There are two situations
that could be considered: parallel sedimentary slabs or sedimentary filaments (Fig. 10.6). The former case is
perhaps more physical but it has the same behavior as the two-dimensional system. The latter case is what
we term the three dimensional MdM model. Now the equations of motion for a Brownian particle are

dx

dt
= u[y1(t), y2(t)],

dy1
dt

= η1(t),
dy2
dt

= η2(t).

Once again, it is helpful to think of a lattice model in which there are random velocities in the x-direction
that take on the values ±u0 equiprobably and that the velocity has the same value for a fixed value of the
transverse coordinates y1 and y2. To determine the longitudinal displacement, it is again helpful to decompose
the longitudinal and transverse motions. In the transverse direction, the trajectory of the particle is that
of a pure random walk in two dimensions. From classic results about random walks in two dimensions, we
know that the particle typically visits of the order of t/ ln t distinct sites in the transverse subspace. Thus
the mean bias that the walk experiences is given by the extension of Eq. (10.35) to three dimensions:

〈u〉t =
1

t/ ln t

t/ ln t
∑

u(y) ∼
√

ln t

t
. (10.45)

Then we simply estimate the rms displacement to be

xrms(t) ∼ 〈u〉tt ∼ (t ln t)1/2.

As a final note, the MdM model can be generalized to an isotropic random velocity field in which
superdiffusion again occurs. An amusing example is the “random Manhattan” square lattice, in which the
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directionality along any Avenue or Street is fixed along its entire length, but whose orientation is random.
The mean-square displacement for a random Manhattan walk can be obtained by a direct generalization
of the arguments that led to Eqs. (10.36). We first decompose the isotropic motion into transverse and
longitudinal components, and then determine the residual longitudinal bias in a typical region swept out
by the transverse Brownian motion. Assuming that xrms ∼ yrms ∼ tν , then from Eq. (10.35), the mean
longitudinal velocity in the x-direction at time t, averaged over the tν layers that a typical random walk
visits during its excursions in the y-direction, vanishes as t−ν/2. The from the direct analog of Eq. (10.36),
we then conclude that xrms ∼ t1−ν/2. By isotropy, however, one must have ν = 1 − ν/2, or ν = 2/3.
Generalizing this argument to arbitrary spatial dimension d, yields ν = 2/(d + 1) for d < dc = 3, ν = 1/2
for d > dc, and with logarithmic corrections appearing for d = dc.


