
Chapter 3

AGGREGATION

Aggregation is a fundamental non-equilibrium process in which reactive clusters join together irreversibly
when they meet (Fig. 3.1) so that the typical mass of a collection of aggregates grows monotonically with
time. Developing an understanding aggregation is important both because of its ubiquitous applications—
such as the gelation of jello, the curdling of milk, the coagulation of blood, and the formation of stars by
gravitational accretion—and because aggregation is an ideal setting to illustrate theoretical analysis tools.
We schematically write aggregation as

Ai +Aj
Kij−→Ai+j .

That is, a cluster of mass i+ j is created at an intrinsic rate Kij by the aggregation of a cluster of mass i
and a cluster of mass j. The fundamental observables of the system are ck(t), the concentration of clusters
of mass k at time t.
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Figure 3.1: Schematic representation of aggregation. A cluster of mass i and mass j react to create a cluster
of mass i+ j.

The primary goal of this chapter is to elucidate the basic features of the mass distribution ck(t) and
to understand which features of the reaction rate Kij influence this distribution. In pursuit of this goal,
we will write the master equations that describe the evolution of the cluster mass distribution in an infinite
system and discuss some of its elementary properties. Next, we work out exact solutions for specific examples
to illustrate both the wide range of phenomenology and the many useful techniques for analyzing master
equations. We will then discuss the reaction rate in general terms and show how to calculate this rate. This
discussion will naturally lead to the notion of dynamical scaling, which provides a simple way to obtain a
general understanding of aggregation. Finally, we will discuss several important extensions of aggregation
that exhibit rich kinetic properties.

The Master Equations

The traditional starting point for treating aggregation is the infinite set of equations that describe how the
cluster mass distribution changes with time. For a general reaction rate Kij , the master equations are:

ċk(t) =
1

2

∑

i,j
i+j=k

Kij ci(t) cj(t) − ck(t)
∞
∑

i=1

Kik ci(t). (3.0.1)
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26 CHAPTER 3. AGGREGATION

Here the overdot denotes the time derivative. For conciseness, we will typically not write arguments of basic
variables henceforth. The first term describes the gain in the concentration of clusters of mass k = i+ j due
to the coalescence of a cluster of mass i with a cluster of mass j. This gain process occurs at the rate Kijcicj ;
the product cicj gives the rate at which i-mers and j-mers meet, and the factor Kij—the reaction kernel—is
the rate at which k-mers are formed when i-mers and j-mers do meet. The second (loss) term accounts for
the loss of clusters of mass k due to their reaction with clusters of arbitrary mass i. The prefactor of 1

2 in
the gain and loss terms ensure the correct counting of their relative contributions. To truly appreciate that
the counting is correct, write out the first few master equations explicitly.

An important feature of the master equations is that the total mass (generally) is conserved. That is,

∑

k

k ċk =
∑

k

∑

i+j=k

1

2
Kij (i+ j) ci cj −

∑

i

∑

k

Kik k ci ck = 0. (3.0.2)

In the first term, the sum over k causes the sums over i and j to become independent and unrestricted. Thus
the gain and loss terms become identical and the total mass is manifestly conserved.

While the master equation approach is the starting point in almost all studies of aggregation, its under-
lying assumptions and approximations should be noted at the outset, including:

• Bimolecular reactions. This assumes a dilute system so that higher-body interactions are negligible.

• Spatial homogeneity. The cluster densities are independent of spatial position. This is the mean-field
assumption of a well-mixed system.

• Shape independence. The aggregate mass is the only dynamical variable; the role of cluster shape on
evolution is not considered. Example: the coalescence of liquid droplets that always remain spherical.

• Thermodynamic limit. The system is assumed to be sufficiently large that discreteness effects can be
ignored and cluster concentrations are continuous functions.

In spite of these limitations, the master equations capture many of the essential kinetic mechanisms of
aggregation as we now discuss.

3.1 Exact Solutions

Although the master equations may appear formidable, they are exactly soluble for a number of prototypical
special cases for which many incisive techniques have been developed. We discuss several of these approaches
and apply them first to the case of the constant reaction kernel. Because of its simplicity, the constant kernel
reaction is an ideal playground with which to build our understanding. We then turn to the more realistic
(and more interesting) cases of the product and sum kernels, Kij = ij and Kij = i + j, respectively. It is
worth mentioning that the bilinear kernel, Kij = A+B(i+ j) + Cij, is also exactly soluble.

Constant Reaction Rates

It turns out to be convenient to choose K = 2. In this case the master equations are:

ċk =
∑

i+j=k

cicj − 2ck

∞
∑

i=1

ci ≡
∑

i+j=k

cicj − 2ck N (3.1.1)
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where N(t) =
∑

i ci, the zeroth moment of the mass distribution, is the concentration of clusters of any
mass. The first few of these equations are explicitly:

ċ1 = −2c1N

ċ2 = c21 − 2c2N

ċ3 = 2c1 c2 − 2c3N

ċ4 = c1 c3 + c22 − 2c4N

ċ5 = c1 c4 + c2 c3 − 2c5N

ċ6 = c1 c5 + c2 c4 + c23 − 2c6N

... (3.1.2)

Let’s solve these equations subject to the monomer-only initial condition, ck(t = 0) = δk,0. Naively,
these equations can be solved one by one because N(t) can be determined separately and then the master
equations have a recursive structure. Thus as the necessary preliminary, we determine N(t). Summing
Eq. (3.1.1) over all k, we find Ṅ = −N2, whose solution is

N(t) =
N(0)

1 +N(0)t
→ 1

t
as t→ ∞. (3.1.3)

Notice that the concentration does not depend on the initial concentration as t→ ∞. Substituting N(t) into
the first of (3.1.2) and integrating gives c1(t) = 1

(1+t)2 . Having found c1, the master equation for c2 becomes

ċ2 =
1

(1 + t)4
− 2

c2
(1 + t)

.

This again can be integrated by elementary methods and the result is c2(t) = t
(1+t)3 . In principle, this

approach can be continued straightforwardly to yield ck(t) for all k.
Before leaving this pedestrian method, it is worth mentioning that much useful information can often be

obtained from the much simpler equations for the moments of the mass distribution, Mn(t) ≡ ∑

k k
nck(t).

From the master equations (3.1.1) we already obtained the zeroth moment M0 = N , and so we turn to
higher moments. The moment equations are

Ṁn =
∞
∑

k=1

kn ċk =
∞
∑

k=1

kn
[

∑

i+j=k

cicj − 2ck

∞
∑

i=1

ci

]

=

∞
∑

i,j

(i+ j)n ci cj − 2MnM0, (3.1.4)

where the sums over i and j are now unrestricted in the second line. The explicit equations for the first few
n are

Ṁ0 =
∑

i,j

ci cj −M2
0 = −2M2

0

Ṁ1 =
∑

i,j

(i+ j) ci cj − 2M1M0 = 0

Ṁ2 =
∑

i,j

(i2 + 2ij + j2) ci cj − 2M2M0 = 2M2
1

... (3.1.5)

Solving these equations one by one, we obtain M2 = 2t, M3 = 3t2, M4 = 12t3, etc.; in general Mk ∝ tk−1.
Because M1 = const. by mass conservation, the natural measure of the typical cluster mass is M2 = 2t
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We now turn to more holistic and elegant approaches for dealing with the master equations. One method
is to consider an appropriately scaled concentration ratio rather than the concentration itself. Thus rewriting
the master equation as

ċk + 2ck N =
∑

i+j=k

ci cj ,

introducing the integrating factor I ≡ exp
[

2
∫ t
N(t′) dt′

]

, the variable φk = ck I , and the rescaled time
variable dx = dt/I(t), we recast the master equation as

φ′k =
∑

i+j=k

φi φj , (3.1.6)

where the prime denotes differentiation with respect to x. This equation contains only gain terms, a feature
that makes it easier to develop intuition about the form of the solution.

Solving for the first few φk it becomes immediately clear that the solution is φk = xk−1. Since c1 and N
may be determined separately, from which we obtain φ1 = 1, we can then unfold the transformations from
(I, x) to (N, t). The rescaled time variable is

x =

∫ t

0

dt

(1 + t)2
=

t

1 + t
,

and the integrating factor I(t) = exp(2
∫ t

0 N(t′) dt′) = (1 + t)2, from which we obtain the exact solution

ck(t) =
tk−1

(1 + t)k+1
−→ 1

t2
e−k/t, t→ ∞. (3.1.7)

Several points deserve emphasis: first, for fixed k, each ck(t) approaches a common limit that decays as
t−2 as t→ ∞ (Fig. 3.2). Thus the mass distribution becomes flat for k < s(t) ∼ t, as seen on the right side
of the figure. The area under the mass distribution is therefore t−2 × t = t−1, which reproduces the time
dependence of the total concentration of clusters. Finally, the limiting behaviors of ck for short and long
times can be determined by elementary considerations. The early-time behavior can be inferred by ignoring
the loss terms in the master equations. The resulting equations have the same form as Eqs. (3.1.6), from
which we immediately deduce that ck(t) ∼ tk−1 for t � 1. Conversely for t → ∞, there is no production
of k-mers for fixed k. We may therefore ignore the gain terms in the master equation to give ċk ∼ −2ckN ,
whose solution is ck ∼ t−2.

As an alternative, consider the concentration ratio ck/c1 rather than the concentration itself. Since c1
can be found separately, then the master equation for ck/c1 has the simpler form

˙(

ck
c1

)

= c1
∑

i+j=k

ci
c1

cj
c1
. (3.1.8)

It is now expedient to define the rescaled time variable cx = c1 dt so that the master equation becomes ψ′
k =

∑

i+j=k ψi ψj , with ψ1 = 1 by definition. We’ve seen that the solution is ψk = xk−1. From c1 = (1 + t)−2,

we deduce that x = (1 + t)−1 and substituting into ck = ψk c1, we recover (3.1.7).
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Figure 3.2: Left: Cluster concentrations ck(t) versus time for constant kernel aggregation for k = 1, 2, 3, 4, 5
(top to bottom). The concentrations approach a common limit as t → ∞, as predicted by the scaling form
in Eq. (3.1.7). Right: ck(t) versus k on a double logarithmic scale for t = 1, 2, 5, 10, 20, 50, and 100 (upper
left to lower right).

Almost exponential solutions

The solutions to the master equations often have an “almost exponential” form (Eq. (3.1.7) is one such
example). By making use of this assumption at the outset, we can simplify the rate equations considerably.
For the case of the constant kernel, the appropriate almost exponential ansatz is

ck(t) = a(t)A(t)k−1
, (3.1.9)

with the initial conditions a(0) = 1 and A(0) = 0. If one did not have the foresight to choose the correct
power k − 1 for A, it quickly becomes evident in applying the method that the power should be k − 1.
Thus there is less guesswork to this ansatz than might appear at first sight. Substituting this ansatz into
the master equations, we find

ȧ A + (k − 1) aA
k−2

Ȧ = (k − 1) a
2
A

k−2
− 2 a

2 Ak−1

1 − A
.

Equating separately the terms with the coefficient k − 1 and those with coefficient independent of k gives

ȧ = −

a2

1 − A
; Ȧ =

a

2
.

If we had chosen a different power of A in the initial ansatz, there would not be the natural alignment of
terms given above, but it would also be relatively clear from the degree of misalignment how to choose the
correct power of A. Multiplying ȧ by 1 − A and Ȧ by a, these two equations admit the conservation law

ȧ (1 − A) = −2Ȧ a,

from which we obtain a = (1 − A)2. Substituting this back into the equations of motion for a and A, we
immediately find

a =
1

(1 + t)2
; A =

t

1 + t
, (3.1.10)

thus reproducing the solution for ck(t) in Eq. (3.1.7).

A powerful general approach for solving the master equations is the generating function method. This
technique is well-suited for aggregation because the master equations have a discrete convolution form.
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The generating function transforms convolutions into products and the resulting equation is easily soluble.
Defining the generating function

g(z, t) =
∞
∑

k=1

ck(t)zk, (3.1.11)

we now take each of the equations for ck in (3.1.2) multiply by zk and sum over all k. This gives

ġ =
∑

k

∑

i+j=k

ciz
i cjz

j − 2
∑

k

ckz
k

∑

i

ci = g2 − 2 g g(z=1). (3.1.12)

To avoid cumbersome notation, we generally avoid writing the arguments of the generating function unless
it is truly necessary, as above. We use the fact that the sum over k renders the two sums over i and j
independent so that the first term reduces to a product. We can simplify (3.1.12) further by writing the
equation for g(z=1) = N(t), namely ġ(1) = −g(1)2. We then find that the generating function h ≡ g− g(1)
satisfies ḣ = h2. This equation should be supplemented with an initial condition which, for the monomer-only
initial condition, is h(z, t = 0) = z − 1. The solution is

h =
z − 1

1 − (z − 1)t
. (3.1.13)

This result can be recast into the series form

h = − 1

1 + t
+

∞
∑

k=1

zk tk−1

(1 + t)k+1
, (3.1.14)

from which we may directly read off the mass distribution and thereby recover Eq. (3.1.7).
One issue that we have not yet addressed is the role of the initial condition. For rapidly decaying

initial mass distributions, the initial condition is immaterial for the long-time behavior. As a simple but

concrete example, consider the initial condition ck(0) = 2−k. Then at t = 0, we have g(z, 0) = z/2
1−z/2 and

h(z, 0) = z−1
1−z/2 . Thus the solution for the generating function is now

h =
z − 1

1 − z/2− (z − 1)t
, (3.1.15)

and expanding in a power series in z, we find

ck(t) =
1

2

1

(1 + t)2

(

t+ 1/2

1 + t

)k−1

∼ 1

2t2
e−k/2t t→ ∞. (3.1.16)

In the long-time limit, we reproduce the scaling form, albeit with the total mass of the system now equal to
2. More generally, if the initial mass distribution decays as a power law in k, ck(0) ∼ k−α, with α > 2 to
ensure that the total mass is finite, but α > 3 so that higher moments diverge, then ck(t) approaches the
scaling form t−2e−k/t, but with corrections that vanish only for fixed k/t and t→ ∞.

Product Kernel, Kij = ij

The product kernel is a phenomenologically rich system in which gelation occurs at a time tc = 1. Gelation
means that a finite fraction of the total mass condenses into an infinite-mass cluster—just like the setting of
Jello. Thus beyond the gelation time, the system divides into two phases: the gel phase that consists of the
iniinite cluster, and the remaining sol phase of finite clusters whose mass decreases with time. To appreciate
why mass conservation fails, it is useful to reconsider the mass conservation statement given by Eq. (3.0.2).
If there is a cluster of infinite mass, then there is a contribution of the loss term in this equation because
of the existence of this infinite cluster that is not balanced by the gain terms. Thus the mass of all finite
clusters necessarily decreases with time whenever an infinite cluster exists.
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(a) (b) (c)

Figure 3.3: Small k-mers of 3-functional units. (a) Monomer. (b) Dimer. (c) Trimer.

The product kernel arises naturally for monomers that consist of f -functional reactive endgroups (Fig. 3.3).
When two monomers react, the resulting dimer has 2f−2 reactive endgroups, a trimer has 3f−4 endgroups,
and a general k-mer has kf − 2(k − 1) = (f − 2)k + 2 endgroups. If all endgroups are equally reactive, the
reaction rate between two clusters equals the product of the number of endgroups. Thus

Kij = [(f − 2)i+ 2][(f − 2)j + 2] = (f − 2)2ij + 2(f − 2)(i+ j) + 4. (3.1.17)

The case f = 2 corresponds to linear polymers, for which Kij is constant, while the product kernel arises
for f → ∞. For finite f > 2, the kernel is a linear combination of the constant, product, and sum kernels.
We focus here on the ccase of the pure product kernel.

For Kij = ij, the master equations are

ċk =
1

2

∑

i+j=k

ij cicj − kck
∑

i

i ci (3.1.18)

To solve these equations, the generating function approach is both convenient and powerful. For the present
example, it turns out to be more useful to define g =

∑

k ck e
zk rather than g =

∑

k ck z
k. Thus multiplying

the equation for each ċk by ezk and summing, we obtain

ġ =
1

2

∑

ici e
zi jcj e

zj −M
∑

kck e
zk =

1

2

(

∂g

∂z

)2

− ∂g

∂z
. (3.1.19)

In the second equality, we assume mass conservation so that M = 1, which is valid only before the gelation
time tc = 1. Beyond tc, one must reconsider the master equations with a time-dependent total mass to
determine the mass distribution.

Differentiating Eq. (3.1.19) with respect to z, we find that the generating function h = ∂g
∂z satisfies

∂h
∂t = (h− 1)∂h

∂z . With H = h− 1, we obtain

∂H

∂t
= H

∂H

∂z
. (3.1.20)

This is a first-order wave equation for H in which the wave velocity equals the wave amplitude itself. This
non-linearity leads to wave breaking, a singularity that underlies the gelation transition. While the wave
equation for H = H(z, t) is non-linear, we can recast it as a linear equation by applying a Legendre transform
so that the dependent variables become (H, t). We start with the inverse equation

(

∂t

∂H

)

z

=
1

H

(

∂z

∂H

)

t

, (3.1.21)

and then use the connection between the partial derivatives of a function z = z(H, t) at fixed z,
(

∂z

∂t

)

H

(

∂t

∂H

)

z

(

∂H

∂z

)

t

= −1, (3.1.22)

to obtain the linear implicit equation for the generating function
(

∂z

∂t

)

H

= −H. (3.1.23)
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The solution is just z = −Ht + f(H), where f(H) is determined from the initial condition. For the
monodisperse initial state ck(t = 0) = δk1, H(t = 0) =

∑

kck(ezk − 1)|t=0 = ez − 1, or z = ln(1 + H).
Thus the solution for the generating function is z = ln(1 +H) −Ht. We now return to h = H + 1 and, for
convenience in later manipulations, let ez → z. This gives the implicit solution

h e−ht = z e−t. (3.1.24)

The generating function itself is obtained by the Lagrange inversion formula (see highlight). Identifying
y = ht and x = zte−t in Eq. (3.1.28) immediately gives

ht =
∑ kk−1

k!
(zt)k e−kt.

The density ck equals the kth term in this series divided by 1/(kt), leading to the remarkably simple mass
distribution

ck(t) =
kk−2

k!
tk−1 e−kt. (3.1.25)

Let’s investigate the asymptotic behavior of this distribution. Using Stirling’s approximation, we find

ck(t) ∼ kk−2

√
2πk

( e

k

)k

tk−1 e−k −→ 1√
2π

1

k5/2
t = 1.

For t < 1, ck decreases exponentially with k. At t = tc = 1, however, the mass distribution has a power-
law tail that signals a singularity where an infinite-mass cluster first appears. The mass distribution also
obeys scaling near the gelation point as exp[−k(t − ln t − 1)] → exp[−k(1 − t)2/2], as t → 1. Thus the
mass distribution can be written as ck(t) ' s−5/2Φ(k/s) with characteristic mass s = (1 − t)−2 and scaling
function

Φ(z) = (2π)−1/2z−5/2e−z/2. (3.1.26)

Lagrange inversion

The Lagrange inversion formula comes very handy in generatingfunctionology. It states that the solution
of the equation

y e
−y = x (3.1.27)

is the power series

y =

∞
X

n=1

nn−1

n!
x

n
. (3.1.28)

To show this, we write y =
P

∞

n=1
Anxn. Formally, the coefficients An are obtained by contour integration

around a small circle centered at the origin

An =
1

2πi

I

y

xn+1
dx =

1

2πi

I

y

xn+1

dx

dy
dy,

=
1

2πi

I

(1 − y)

yn
e

ny
dy

=
1

2πi

I ∞
X

k=0

nk

k!

“

y
k−n

− y
k+1−n

”

dy

=
nn−1

(n − 1)!
−

nn−2

(n − 2)!
=

nn−1

n!
.

First, we transform from the integration variable x to y and then we use the fact that since y and x are

proportional to each other near the origin, the contour of the second integral is also a small circle about

the origin. In the second line, we make the substitutions dx

dy
= (1− y) e−y and x = ye−y. Last, we find the

residue by expanding the exponential in a power series and then merely reading off the coefficient of 1

y
in

the integral.
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Figure 3.4: Left: Cluster concentrations ck(t) versus time for the product kernel for k = 1, 2, 3, 4 (top to
bottom, with c1 divided by 5). Right: ck(t) versus k for t = 0.1, 0.4, 0.8, and 0.9 on a double logarithmic
scale (again upper left to lower right). The dashed line has slope −5/2.

Finally, let us determine the masses of the sol and gel phases near the gelation transition. Since the
mass of the sol phase is M =

∑

kck = h(z = 1), we take the implicit equation for the generating function,
ht e−ht = zt e−t, and substitute z = 1 to give

M e−Mt = e−t, (3.1.29)

whose solution can be appreciated graphically. The left-hand side, G(M) ≡M e−Mt, has a single maximum
at M∗ = 1/t. At this point G(M∗) = (t e)−1, which is always greater than e−t. Therefore for t < 1, there
is only a single solution in the physical region M ≤ 1. However, for t > 1 there are two solutions—one at
M = 1 and a second, physical solution that corresponds to M < 1 (Fig. 3.5). To obtain the time dependence
of the mass in the sol phase (Fig. 3.5), we write t = 1− δ and M = 1− ε near the gel point, substitute these
into Eq. (3.1.29), and expand for δ, ε → 0 to find ε ∼ 2δ. Conversely, for t � 1, M becomes vanishingly
small and the equality M e−Mt = e−t can self-consistently be replaced by M ≈ e−t.
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Figure 3.5: Two left panels: graphical solution to Eq. (3.1.29). Left: plot for t = 1/2. For t < 1, the
maximum of M e−Mt has a single maximum at M = 2 and there is a single physical solution at M = 1.
Center: plot for t = 2. For t > 1, the solution at M = 1 is unphysical (dashed) and the physical solution is
at smaller value of M < 1/2. Right: the exact time dependence of the total mass of finite clusters (the sol
phase).

It is worth mentioning that the moments again provide an easy route to a general understanding. From
the master equation ċk = 1

2

∑

ij cicj − kck M1, the zeroth moment, N =
∑

ck obeys Ṅ = − 1
2M

2
1 , or
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Ṅ = −1/2 prior to the gelation transition. Hence N(t) = N(0)− t/2. Thus the number of clusters is reduced
to 1/2 at the gelation transition for the monomer-only initial condition. Beyond the gel point, the master
equation now gives N ∼ 1

4e
−2t in the long time limit. We may determine the time dependence of the higher

moments in a similarly. Prior to the gel point, the equation for the first moment M1 =
∑

kck is

Ṁ1 =
1

2

∑

(i+ j) ij ci cj −
∑

k2ck = M2(M1 − 1).

Since M1 = 1 for all t < tc, we merely recover the mass conservation statement. However, beyond the gel
point, M1 decreases exponentially with time as borne out by the moment equation.

The higher moments reveal the gelation transition. The rate equation for M2 is

Ṁ2 =
1

2

∑

i,j

(i+ j)2 i j ci cj −
∑

i,k

k3 ck i ci

=
∑

i,j

(i3 ci jcj + i2 ci j
2 cj) −

∑

i,k

k3 ck i ci

= M2
2 .

Before the gel point, this gives M2(t) = (1 − t)−1 for the monomer-only initial condition. Thus the typical
mass diverges at a critical time tc = 1. Continuing in this vein, we find Ṁ3 = 3M3M2 with solution
M3(t) = (1 − t)−3. To summarize, we identify tc = 1 as the gelation time, at which moments higher
moments of the cluster mass distribution diverge.

Sum Kernel, Kij = i + j

There are several instructive ways to deal with master equations for the sum kernel. One approach is based
on the observation that works for any additive kernel, Kij = fi + fj , for which the master equations are

ċk =
1

2

∑

i+j=k

(fi + fj) cicj − ck
∑

i

(fi + fk) ci . (3.1.30)

As in the constant kernel system, the cluster concentration satisfies Ṅ = −N ∑

i fici. Then the master
equation for the ratio ψk = ck/N becomes

ψ′
k =

∑

i+j=k

fi ψiψj − fk ψk, (3.1.31)

where the prime denotes differentiation with respect to the rescaled time variable x, with dx ≡ N dt.
Introducing the integrating factor I = exp(

∫

fk dx) and Ψk = I ψk, the master equations for the sum kernel,
f(i) = i, become

Ψ′
k =

∑

i+j=k

iΨi Ψj , (3.1.32)

with the initial condition Ψi(x = 0) = δi,1. This system of equations may be reduced to an algebraic
recursion formula by the almost-exponential ansatz Ψk = ak x

k−1 to give

(k − 1)ak =
∑

i+j=k

i ai aj , (3.1.33)

supplemented with the initial condition a1 = 1. By introducing the generating function A(z) =
∑

k ake
kz ,

we recast the above recursion into the differential equation ∂A/∂z = A/(1 − A), with solution Ae−A = ez.
This is almost the same form as the implicit solution for the generating function in the product kernel,
Eq. (3.1.24), and it is follows, after applying the Lagrange inversion formula (3.1.28), that the solution is
ak = kk−1/k!.
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Finally, we unfold all these transformations to obtain ck(t). We use the fact that the Ṅ = −N , with

solution N(t) = e−t. Thus x =
∫ t

0 e
−t dt = (1 − e−t). Then expressing all functions of x in terms of t, we

find after some straightforward substitutions

ck(t) =
kk−1

k!
(1 − e−t)k−1 e−t e−k(1−e−t). (3.1.34)
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Figure 3.6: Left side: Cluster concentrations ck(t) versus time for the sum kernel for k = 1, 2, 3, 4 (top to
bottom, with c1 divided by 5). Right side: ck(t) versus k for t = 1, 2, 5, and 10 on a double logarithmic scale
(again upper left to lower right). The straight lines have slope −3/2.

A quicker route to the solution for the sum kernel that relies on an unexpected connection with the
product kernel system. We start by writing the master equation (3.1.30) as

ċk + ck + k ck N =
∑

i+j=k

i ci cj . (3.1.35)

where we have used the fact that
∑

i ci = 1. Introducing the integrating factor I = exp(
∫

(1 + k N), with
N = e−t, the quantity ψk = I ck obeys

ψ̇k =
∑

i+j=k

i ci cj e
[t+k(1−e−t)]

= e−t
∑

i+j=k

i {ci e[t+i(1−e−t)]}cj e[t+j(1−e−t)]

= e−t
∑

i+j=k

i ψi ψj . (3.1.36)

Next we define dx = e−t dt to obtain ψ′ =
∑

i+j=k i ψiψj . Finally, by introducing the generating function

A(z) =
∑

φk e
zk, we recast the recursion formula for φk into ∂A

∂x = A∂A
∂z . This is the same equation of

motion as in the product kernel, except with the time-like variable x instead of t. Thus we get the same
solution for the concentrations as in the product kernel, but as a function of x rather than t. Thus the sum
kernel system also undergoes gelation at a rescaled time x = 1, corresponding to physical time t = ∞.

3.2 Theory of the Reaction Rate

In the previous section, we determined the cluster mass distributions for the classic reaction kernels. In
this section, we discuss how to determine the kernel, or reaction rate, in terms of fundamental parameters.
This result that provides a general perspective about how the reaction rate determines the cluster mass
distribution.
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Dimensional Analysis

Dimensional analysis provides a most useful starting point. Let’s consider the generic situation of a system
of identical spherical Brownian particles. There are three fundamental parameters: the concentration c,
the particle radius R, and the diffusion coefficient D. According to a rate equation description, the overall
density decays according to ċ = −Kc2. Since this equation accounts for the concentration dependence of
the reaction, the reaction rate should depend only on the two remaining parameters, D and R. Because
the concentration has units of 1/(volume), the above equation shows that K has the units of volume/time.
Since D has the units of (length)2/time, the only combination of D and R with the correct units is

K = K(D,R) ∝ DRd−2,

where d is the spatial dimension.
For d > 2, the reaction rate is an increasing function of the droplet radius, as might be expected naively.

Surprisingly, however, the reaction rate is not proportional to the cross-sectional area, Rd−1, but rather to
Rd−2; this feature stems from the vagaries of diffusive motion. Most importantly, the reaction rate varies
as a negative power of the radius for d < 2—the reactivity increases as the droplet radius shrinks! This
non-sensical result points to a breakdown in dimensional analysis for d < 2, a dilemma that we will resolve
soon.

Reaction Rate for Spherical Brownian Particles

We now calculate the reaction rate for a system of spherical Brownian droplets. As in the original Smolu-
chowski rate theory, we replace the interacting system by an effective one-body problem. We focus on one
of the particles (of mass i) and consider it to be a fixed absorbing sphere at the origin, while the rest of the
system consists of a gas of particles of mass j. In the dilute limit, only interactions between the absorbing
sphere and background particles are considered. The separation between the absorbing sphere and a back-
ground particle diffuses with diffusion coefficient Di +Dj , where Di is the diffusion coefficient of a droplet of
mass i. When the separation first reaches Ri +Rj , where Ri is the radius of a droplet of mass i, a reaction
occurs. The reaction rate is then identified as the flux to an absorbing sphere of radius a = Ri + Rj by an
effective particle with diffusivity D = Di +Dj .

The concentration of background particles around the absorbing sphere thus obeys the diffusion equation

∂c(~r, t)

∂t
= D∇2c(~r, t), (3.2.1)

subject to the initial condition c(~r, t = 0) = 1 for r > a and the boundary conditions c(r = a, t) = 0 and
c(r → ∞, t) = 1. The reaction rate is then identified with the integral of the flux over the sphere surface

K(t) = −D
∫

S

∣

∣

∣

∂c(~r, t)

∂r

∣

∣

∣

r=a
dΩ. (3.2.2)

There are two regimes of behavior as a function of the spatial dimension. For d > 2, the loss of reactants
at the absorbing sphere is sufficiently slow that it is replenished by the re-supply from larger distances. A
steady state is thus reached and the reaction rateK is finite. In this case, the reaction rate can be determined
more simply by solving the time-independent Laplace equation, rather than the diffusion equation (3.2.1).

The solution to the Laplace equation with the above initial and boundary conditions is

c(r) = 1 −
(a

r

)d−2

.

The flux is then −D ∂c
∂r |r=a = D(d− 2)/a and the total current is the integral of this flux over the surface of

the sphere K = (d− 2)ΩdDa
d−2, where Ωd = 2πd/2/Γ(d/2) is the area of a unit sphere in d dimensions. We

translate this flux into the reaction kernel for aggregation by expressing a and D in terms of the parameters
of the constituent reactants to give

Kij = (d− 2)Ωd (Di +Dj)(Ri +Rj)
d−2.
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We can express this result as a function of reactant masses only for the physical case of three dimension by
using Ri ∝ i1/3, while for the diffusion coefficient, we use the Einstein-Stokes relation Di = kT/(6πηRi) ∝
i−1/3, where kT is the thermal energy and η is the viscosity coefficient to obtain

Kij ∝ 2kT

3η
(R−1

i +R−1
j )(Ri +Rj).

(3.2.3)

Dt r

c(r,t)

a

Figure 3.7: Sketch of the concentration about an absorbing sphere according to the quasi-static approxima-
tion. The near- and far-zone concentrations match at r =

√
Dt.

What happens for d < 2? We could solve the diffusion equation with the absorbing boundary condition
and the unit initial condition, from which the time-dependent flux and thereby a time-dependent reaction rate
can be deduced. However, it is simpler and more revealing to apply the general quasi-static approximation.
The basis of this approximation is that the region exterior to the absorbing sphere naturally divides into
“near” and “far” zones. In the near zone, which extends to a distance

√
Dt from the sphere, diffusing particles

have ample time to explore this zone for thoroughly and the concentration is nearly time independent. In
the complementary far zone there is negligible depletion.

Based on this picture, we solve the Laplace equation in the near zone with the time-dependent boundary
condition c(r =

√
Dt) = 1 as well as c(a) = 0. By elementary methods, the solution is

c(r, t) =



























(r/a)
2−d − 1

(
√
Dt/a

)2−d − 1
d < 2,

ln (r/a)

ln
(
√
Dt/a

)
d = 2.

(3.2.4)

Using the definition of the time-dependent reaction rate from Eq. (3.2.2), we then obtain

K(t) ∝



















D × (Dt)(d−2)/2 d < 2,

4πD

ln
(

Dt/a2
) d = 2.

(3.2.5)

Notice that the rate does not depend on the cluster radius for d ≤ 2. This surprising fact arises because
of the recurrence of diffusion in d ≤ 2 so that two diffusing particles are guaranteed to eventually meet
independent of their radii.

General Features of the Reaction Rate

A major feature of aggregation kinetics is that only two features of the reaction rate matrix Kij determine
the asymptotic properties of the mass distribution. The first is the homogeneity index λ, defined by

Kai,aj ∼ aλKij ,
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which gives the overall mass dependence of the reaction rate. The second is the index ν defined by

K1,j = Kj,1 ∼ jν .

For example, the product kernel is characterized by (λ, ν) = (2, 1), the constant kernel by (λ, ν) = (0, 0),
and the “Brownian” kernel (for spherical droplets that move by Brownian motion) by (λ, ν) = (0,−1).

The role of these two indices may be best appreciated by considering the following pictorial form of the
reaction matrix

Kij =















SS · · · SL · · ·
...

. . . · · · · · ·
LS

... LL
. . .

...
...

. . .
. . .















The meta-entries SS, SL = LS and LL denote the reaction rates of small clusters with other small clusters,
large-small interactions, and large-large interactions, respectively. The exactly-soluble examples discussed
above are archetypes of three fundamentally different universality classes. The general behavior associated
with each of these classes are as follows:

• Type I: LL � LS, SS, corresponding to λ > ν. Because of the high reactivity of large clusters they
are few in number, while small clusters tend to remain. This leads to a monotonically decaying cluster
mass distribution as a function of mass. The product kernel is an example of this type of system.

• Type III: LS � LL, SS, or λ < ν. As the reaction develops, small clusters are quickly removed from
the system because of the dominance of large-small interactions. Thus the system has a dearth of small
clusters, leading to a mass distribution with a well-defined peak.

• Type II: all three reactions are of the same order. This marginal class contains the simplest soluble
case of Kij = 1. However the long-time behavior of this class of systems is sensitively dependent on
details of the reaction rates.

3.3 Scaling Theory

The distinction between these three universality classes is most naturally appreciated within a scaling de-
scription. As mentioned in Chapter 1, the basic idea of scaling is that the cluster mass distribution is not
a function of mass and time separately, but rather, depends on these variables through a natural scaling
combination, namely, the ratio of the mass to a well-defined typical mass. This simple observation allows us
to separate the dependences on time and on the scaled mass and analyze simpler equations for each of these
quantities. The power of the scaling approach is that it provides general results for the asymptotics of the
cluster mass distribution in terms of generic features of the reaction kernel.

In the scaling approach, it is convenient to treat the mass as continuous; thus ck(t) → c(x, t), with x a
continuous variable. For this case, the master equations for aggregation become

ċ(x, t) =

∫ x

a

dy K(y, x− y) c(y, t) c(x− y, t) − 2

∫ ∞

a

dyK(x, y) c(x, t) c(y, t). (3.3.1)

Here a is the minimum in the initial mass distribution. The scaling ansatz for the cluster mass distribution
is

c(x, t) =
1

s(t)2
f
( x

s(t)

)

;

that is, the distribution depends only on the scaled mass ratio, and the leading prefactor s(t)−2 enforces
mass conservation in a closed system, 〈x〉 =

∫

x c(x, t) dx = 1. What is the right definition for the typical
mass? From the scaling ansatz, the nth moment of the mass distribution is

〈xn〉 ≡
∫

xn 1

s2
f(x/s) ds ∝ sn−1.
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Thus 〈xn〉/〈xn−1〉 for any n all have units of s and specific examples, such as 1
〈x0〉 = 1

N or 〈x2〉 are reasonable

measures of the typical mass as long as the cluster mass distribution itself is not too singular. When scaling
holds, we can thus choose a definition for the typical mass that best suits the situation at hand.

There are several important reasons to emphasize scaling solutions. First, scaling generally provides
the simplest route to the asymptotic solution of the master equations, especially in complicated situations,
where exact solutions require considerable technical expertise. This simplification rests on the fact that
the scaling ansatz reduces a two-variable problem to two separate single variable problems. This reduction
is an important motivation for using the scaling approach for dynamic phenomena in general. Second, a
scaling solution is universal in that it is independent of initial conditions. Thus scaling provides a robust
classification of the solutions to the master equations for a wide wide class of aggregating systems.

Now let’s use scaling to determine basic features of the cluster mass distribution. As discussed above,
only the two characteristic indices of the reaction rate matrix—λ and µ—are needed to obtain asymptotic
properties of the mass distribution. We first assume that the reaction rate is a homogeneous function of
index λ, K(ax, ay) = aλK(x, y). Substituting the scaling form c(x, t) = s−2 f(x/s) into the master equation
(3.3.1), the left-hand side becomes

ċ(x, t) = − ṡ

s3
[2f(u) + uf ′(u)] ,

where u = x/s, while the right hand side is

sλ−3

[∫ u

ε

dv K(v, u− v) f(v) f(u− v) − 2

∫ ∞

ε

dv K(u, v) f(u) f(v)

]

,

with v = y/s and ε = a/s Equating these two sides sides and re-arranging, the dependences on time and on
the scaled mass u can be separated as

ṡ

sλ
= −

[∫ u

ε
dv K(v, u− v) f(v)f(u− v) − 2

∫ ∞

ε
dv K(u, v) f(u)f(v)

]

2f(u) + uf ′(u)
= Λ. (3.3.2)

Since the left-hand side is a function of time only while the right-hand side is a function of u only, they are
both equal to a constant, which is defined as the separation constant Λ.

The time dependence of the typical mass is determined from ṡ = Λsλ and gives three different types of
behavior:

s(t) ∼











t1/(1−λ) 0 ≤ λ < 1;

eΛt λ = 1;

(tc − t)−1 1 < λ ≤ 2.

(3.3.3)

Thus the time dependence depends only on the homogeneity index λ and not on any other feature of the
reaction rates. It is worth mentioning that the pathology of instant gelation occurs for λ > 2, in which an
infinite gel molecule appears for any positive time, no matter how small.

The behavior of the scaling mass distribution is more subtle and depends on the value of the index µ.
To be written: How to get information about the cluster size distribution from the scaling

approach. Scaling relations between exponents.

3.4 Extensions

In this last section, we discuss extensions of aggregation that each expose new phenomena and provide nice
testing grounds that illustrate the analysis methods of classical aggregation.

3.4.1 Exchange

Suppose that in an interaction event mass is exchanged rather than merged, as represented by the scattering
event

Ai +Aj
Kij;kl−→ Ak +Al.
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Thus when two clusters of mass i and j interact, the outcome is two clusters of mass k and l, with k+l = i+j.
Conventional aggregation corresponding to the special case l = 0. A natural setting for this reaction is the
wealth distribution in a toy model of an economy in which interacting individuals repeatedly exchange capital.
This exchange process gives a rich variety of mass (wealth) distributions as a function of the exchange rate
and its dependence on the reactant masses. Here we investigate the generic exchange rule of “random”
exchange: one mass unit is exchanged in an interaction, with the direction of the exchange independent of
reactant masses.

For random exchange, the master equation for the concentration of clusters of mass k is

ċk = N (ck+1 + ck−1 − 2ck) , (3.4.1)

with N(t) =
∑∞

k=1 ck the density of clusters. The first two terms account for the gain in ck due to the
exchanges (j, k ± 1) → (j ∓ 1, k), while the last term accounts for the loss in ck by (j, k) → (j ± 1, k ∓ 1).
Equations (3.4.1) apply for all k ≥ 1 if we impose the absorbing boundary condition c0 = 0. This means
that if a cluster reaches zero mass, it is removed from the system. This absorbing boundary condition
can be automatically satisfied by using the monomer-only initial condition that is augmented by an image
contribution; that is, ck(0) = δk,1 − δk,−1.
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Figure 3.8: Left side: Cluster concentrations ck(t) versus time for the random exchange process for k =
1, 2, 3, 4 (top to bottom). Right side: ck(t) versus k for t = 20, 50, 100, and 200 (top to bottom).

Defining the rescaled time, T =
∫ t

0 dt
′N(t′), we reduce Eq. (3.4.1) to the discrete diffusion equation

dck(T )

dT
= ck+1(T ) + ck−1(T ) − 2ck(T ). (3.4.2)

A standard way to solve this equation is to introduce the Fourier transform cα(T ) =
∑

ck(T ) cos kα to
transform the master equation into the ordinary differential equation ċα = (eα + e−α − 2)cα, with solution
cα(T ) = cα(0)e2(cos α−1)T . To invert this Fourier transform, we use the generating function representation
for Ik(z), the modified Bessel function of the first kind of order k,

ez cos α =

∞
∑

k=−∞

eiαkIk(z).

After some simple steps, we find

ck(T ) = e−2T [Ik−1(2T )− Ik+1(2T )] ∼ k√
4πT 3

exp

(

− k2

4T

)

T → ∞. (3.4.3)

Notice that the latter form coincides with the first-passage probability of one-dimensional diffusion on the
infinite half line. The total density N(T ) is

N(T ) = e−2T [I0(2T ) + I1(2T )] ∼ (πT )−1/2 T → ∞, (3.4.4)
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which is just the survival probability of diffusion on the infinite half line. To express this solution in terms

of the physical time t, we write t(T ) =
∫ T

0
dT ′/N(T ′) and obtain, in the long time limit,

N(t) '
(

2

3πt

)1/3

, (3.4.5)

ck(t) ' k

3t
exp

[

−
( π

144

)1/3 k2

t2/3

]

.

This latter expression can be recast into the scaling form ck(t) ∝ (N2x) e−x2

, with x ∝ kN , where the
prefactor again ensures that the total mass is conserved.

3.4.2 Aggregation with Input

An important extension of irreversible aggregation is to augment it with steady monomer input. Let’s first
consider this process for a constant reaction kernel. With steady input, the aggregation process is described
by the master equation

ċk = K
∑

i+j=k

cicj − 2Kck
∑

ci + Fδk,1 →
∑

i+j=k

cicj − 2ckN + δk,1. (3.4.6)

The second equality represents a convenient dimensionless form of the master equation in which the concen-
trations are rescaled by

√

K/F and the time by
√
KF .

To solve this system, we first solve for the total density. By summing the master equations (3.4.6) over
all k, we obtain Ṅ = −N2 + 1. For an initially empty system, the solution is

N(t) = tanh t. (3.4.7)

Thus the total concentration of clusters initially grows linearly with time but eventually saturates to the value
1. Once again, we can, in principle, successively solve for the k-mer concentrations one by one. However,
the generating function approach is much more elegant. Thus we multiply each of the master equations by
zk and sum over all k to find that the generating function, g(z, t) =

∑∞
k=1 ck(t)zk, satisfies (compare with

Eq. (3.1.12))
ġ(z, t) = g(z, t)2 − 2g(z, t)N(t) + z. (3.4.8)

As in our analysis of Eq. (3.1.12), it is convenient to define the generating function h = g−g(z = 1) = g−N ,
that then satisfies the closed equation ḣ = h2 + (z − 1). Solving for h, we then find the generating function
g(z, t) is

g(z, t) = N(t) −
√

1 − z tanh
(

t
√

1 − z
)

. (3.4.9)

While the generating function has a simple form, we really want the cluster concentrations as a function
of mass and time. We now give a simple but non-rigorous discussion of how to extract this information from
the generating function. We use the fact that probing the limit of large mass in the distribution necessarily
corresponds to z → 1 from below. Thus we let z = 1 − ε and consider the limit ε → 0. The generating
function can then be expressed as

g(z, t) =
∞
∑

k=1

ck(t) ek ln(1−ε) ∼
∫ ∞

1

c(k, t)e−kε dk ∼
∫ 1/ε

1

c(k, t) dk. (3.4.10)

Now if ck(t → ∞) has a power-law dependence ck ∼ k−τ for small k such that
∫ ∞

ck dk diverges, we can
replace the exponential cutoff in the second line by a sharp cutoff at a value k∗ = 1/ε and still preserve
the correct asymptotic behavior. Thus at long times, Eq. (3.4.10) shows that g will have the power-law tail
g(z, t → ∞) ∼ (1 − z)τ−1. Matching with the exact generating function in Eq. (3.4.9), we conclude that
ck ∼ k−3/2.

We can also extract the time-dependent behavior of the mass distribution by using the fact that (1 − z)
corresponds to the inverse of a characteristic mass scale. For large times, the function tanh(t

√
1 − z) remains

close to 1 until k ∗∼ (1 − z)−1 � t2, after which the power-law tail is strongly cut off. Thus we expect the
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power-law mass distribution k−3/2 for 1 � k � k∗ ∼ t2. This picture then gives for the total mass in the
system,

M(t) =

∞
∑

k=1

k ck(t) ∼
∫ k∗

1

k−1/2 dk ∼ (k∗)1/2 ∼ t.

The total mass equals the total elapsed time t, as it must for steady monomer input.
The generating function (3.4.9) can be inverted easily in the long-time limit, where the hyperbolic tangent

function can be replaced by 1. Expanding the factor
√

1 − z in a power series in z and expressing the resulting
factorials in the binomial coefficient in terms of the gamma function gives

ck(∞) =
1

2
√
π

Γ(k − 1
2 )

Γ(k + 1)
. (3.4.11)

Then from the large-k asymptotic form for the ratio of gamma functions we conclude that ck(∞) ∝ k−3/2.
Graph of the mass distribution is needed.

Another important example of aggregation with a steady source occurs in epitaxial surface growth phe-
nomena. The typical experimental setting is a constant flux of atoms that impinges on a clean metal surface.
In a suitable temperature range, the atoms adsorb irreversibly and diffuse freely on the surface. When
two adatoms meet they merge to form a dimer. If islands of all sizes are mobile, the aggregation process
continues ad infinitum, leading to a non-trivial size distribution for the adsorbate islands. Generally, the
mobility of an island is a rapidly decreasing function of its size. A very beautiful model arises by making
the drastic approximation that all islands of size 2 or greater are immobile. In this case, an island grows
only by the addition of adatoms to its boundary. This statement is appropriate only during the early stages
of this deposition and growth process so that there is no possibility for different islands to merge because of
geometrical overlap.

The basic processes in this deposition and subsequent growth of immobile islands are

0
F−→A1 A1 +A1 → A2 A1 +Ak → Ak+1,

where F is the input rate of monomers. Corresponding to these elemental steps, the master equations are:

ċ1 = −c21 − c1

∞
∑

k=1

ck + F

ċk = c1(ck−1 − ck) k ≥ 2. (3.4.12)

We can understand the basic physics of this process quite simply by focusing only on the behavior of the
monomers and of the immobile clusters—those whose mass is 2 or greater. We define I as the density of
the immobile islands, I =

∑

k≥2 ck. Then the monomers and the islands satisfy the coupled but closed rate
equations

ċ1 = −2c21 − c1I + F

İ = c21. (3.4.13)

A useful feature of this decomposition into monomers and immobile islands is that it is obvious that the
island density monotonically increases with time. With a little trial and error, it is easy to verify that the
only consistent possibility for c1 is that it asymptotically decays in time. Thus assuming that c1 decreases
with time, the last two terms in the first line of (3.4.13) are dominant and we obtain c1 ∼ 1/I . Substituting
this result into the second line of (3.4.13), we immediately obtain

I(t) ∼ (3t)1/3 c1(t) =
1

(3t)1/3
. (3.4.14)

Now we can solve for all the island densities by defining the rescaled time variable dT = c1dt to convert
the second line of (3.4.12) to

dck
dT

= ck−1 − ck. (3.4.15)
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Starting with the known result for c1, we can straightforwardly solve Eq. (3.4.15) one by one. The resulting
expressions are unwieldy, but the asymptotic behavior this can be obtained easily by going to the continuum
limit in k. In this case, Eq. (3.4.15) becomes the wave equation

∂ck
dT

+
∂ck
dk

= 0, (3.4.16)

with solution ck(T ) = f(T − k), where f is an arbitrary function that is fixed by matching the propagating
wave to the initial condition. As a preliminary, we solve for T to give T =

∫

dt/[(3t)1/3] = (3t)2/3/2. Inverting
this expression for t, Eq. (3.4.14) gives C1(T ) = (2T )−1/2. Matching this result to ck(T ) = f(T − k), we
obtain, for T � 1, c1(T ) = f(T − 1) ≈ f(T ) = (2T )−1/2. Thus the final expression for ck is:

ck(T ) =
1

[2(T − k)]
1/2

. (3.4.17)

From this expression, it is easy to verify that the total number of islands is proportional to t1/3, while the
total mass in the system is proportional to t.

3.4.3 Finite Systems

Thus far all of our discussion has been for infinite systems; however, real systems are always finite. We now
focus on properties of aggregation that specifically stem from finiteness. For a finite system, aggregation
eventually ends because all the mass has condensed into a single cluster. How many clusters are present
at time t and what is the distribution of the number of clusters? What is the condensation time, where a
single cluster remains, and its distribution? These types of first-passage questions become central in a finite
system. We will focus on the number of clusters and the condensation time for constant-kernel aggregation
where explicit and complete results can be obtained.

For constant-kernel aggregation let’s first determine the number of clusters, m, and its distribution as a
function of time. For simplicity, we consider the case of a constant reaction kernel. For a finite system, the
cluster number is a stochastic variable in which the change m→ m− 1 occurs with rate rm = m(m− 1)/N .
Here, the transition rate rm is proportional to the total number of distinct pairs,

(

m
2

)

and the normalization
is fixed by demanding that for m = N = 2 the rate should equal 1. Consequently, the average time for the
event m→ m− 1 is dtm = r−1

m and the time Tk until k clusters remain is

Tk =

k+1
∑

m=N

dtm = N

[

1

N(N − 1)
+

1

(N − 1)(N − 2)
+ · · · + 1

k · (k + 1)

]

= N

[(

1

N − 1
− 1

N

)

+

(

1

N − 2
− 1

N − 1

)

+ · · · +
(

1

k + 1
− 1

k

)]

=
N

k
− 1. (3.4.18)

Thus the average condensation time until a single cluster remains is T1 = N − 1.
At a more fundamental level, we study the probability Pm(t) that the system contains m clusters at time

t. This probability satisfies the master equation

d

dt
Pm = rm+1Pm+1 − rmPm, (3.4.19)

with the initial condition Pm(0) = δm,N, and the boundary conditions rN+1 = r1 = 0. This equation
expresses the fact that the gain process m+ 1 → m occurs with rate rm+1 while the loss process m→ m− 1
occurs with rate rm. The boundary conditions simply reflect that the maximum and minimum possible
number of clusters are N and 1, respectively. To solve the master equation (3.4.19), it is convenient to
rewrite it in terms of the Laplace transform to give

(s+ rm)Pm(s) = δm,N + rm+1Pm+1(s). (3.4.20)
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Let’s focus on the distribution of condensation times P (t) ≡ P1(t). Starting with PN (s) = (rN + s)−1

for (3.4.20), we can solve the rest of these equations recursively to give

P (s) =

N
∏

m=2

rm
s+ rm

=

N
∏

m=2

[

1 +
sN

m(m− 1)

]−1

. (3.4.21)

We are interested in the large N limit, where the product can be well-approximated by setting the upper
limit to infinity. Then using the identity

∞
∏

m=2

[

1 +
x

m(m− 1)

]−1

= πx sec
(π

2

√
1 − 4x

)

,

we may write the solution in the compact form

P (s) = πNs sec
(π

2

√
1− 4sN

)

. (3.4.22)

Expanding the Laplace transform as a power series, P (s) =
∑∞

n=0
(−s)n

n! 〈tn〉, then gives the moments
〈tn〉. The leading behavior is 〈tn〉 ' CnN

n, with the first three coefficients C1 = 1, C2 = π2/3 − 2, and
C3 = 12 − π2. Because the distribution (3.4.22) obeys scaling in the large-N limit in which P (s,N) = φ(z)
with z = sN , the distribution of condensation times becomes a function of the scaled time t/N ,

P (t) = N−1Φ
(

tN−1
)

. (3.4.23)

The limiting behavior of the scaling function Φ(x) can be obtained by inverting the Laplace transform. The
Laplace transform (3.4.22) has an infinite set of simple poles located at zk = −k(k+ 1), with k = 0, 1, 2, . . ..
The pole closest to the origin has the form P (z) ∼= 6(z+2)−1, which corresponds to an exponentially decaying
distribution at large times x � 1, Φ(x) ' 6 exp(−2x). Conversely, the short-time behavior is obtained by
Laplace inverting the large-z limit of Eq. (3.4.22), P (z) ' 2πz exp(−π√z). This inversion can be done by
the steepest-descent method. In summary, we obtain

Φ(x) '
{

6 exp(−x) x → 0;
1
4 (π/x)7/2 exp(−π2/4x) x → ∞.

(3.4.24)

The completion time distribution is sharply cut off in both the short- and long-time limits. This same
extreme tails also characterize the survival probability of a random walk in a finite interval.
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Problems

1. Use the scaling approach to determine the mass distribution for constant-kernel aggregation; that is
solve Eq. (??) for the scaling function.

2. Solve for the mass distribution under greedy exchange as represented by (j, k) → (j + 1, k − 1) for
j ≥ k. Starting with the master equations

ċk = ck−1

k−1
∑

j=1

cj + ck+1

∞
∑

j=k+1

cj − ckN − c2k, (3.4.25)

show that the total density of clusters obeys dN
dt = −c1N . To solve the master equations, consider the

continuum limit and show that they reduce to

∂c(k, t)

∂t
= −ck(ck + ck+1) +N(ck−1 − ck) + (ck+1 − ck−1)

∞
∑

j=k

cj ,

' 2
∂c

∂k

[
∫ ∞

k

dj c(j)

]

−N
∂c

∂k
. (3.4.26)

Next use the scaling ansatz ck(t) ' N2C(kN), to reduce the master equations to

dN

dt
= −C(0)N3,

C(0)[2C + xC′] = 2C2 + C′

[

1 − 2

∫ ∞

x

dyC(y)

]

. (3.4.27)

Solve this equation (hint: consider the equation for B(x) =
∫ x

0
dy C(y)) to show that the scaled distri-

bution C(x) = B′(x) coincides with the zero-temperature Fermi distribution,

C(x) =

{

C(0), x < xf ;

0, x ≥ xf .
(3.4.28)

3. Use a direct calculation to find the first few k-mer densities for constant kernel aggregation with steady
input.

4. Obtain the size of the largest cluster in a finite system in constant-kernel aggregation.


