Elementary kinetic theory

of transport processes

IN THE preceding chapters our concern has been almost exclusively with equilib-
rium situations. General statistical arguments were quite sufficient to treat
‘problems of this sort, and there was no need to investigate in detail the inter-
action processes which bring about the equilibrium. Many problems of great
physical interest deal, however, with nonequilibrium situations.

Consider, for example, the case where the two ends of a copper rod are
maintained at different temperatures. This is not an equilibrium situation,
since the entire bar would then be at the same temperature. Instead, energy
in the form of heat flows through the bar from the high- to the low-temperature
end, the rate of this energy transfer being measured by the “thermal conduc-
tivity”’ of the copper bar. A calculation of the coefficient of thermal conduc-
tivity thus requires a more detailed consideration of the nonequilibrium proces-
ses . whereby energy is transported from one end of the bar to the other.
Calculations of this sort can become quite complicated, even in the rather
simple case of ideal gases which we shall treat in these next chapters. It is
therefore very valuable to develop simple approximate methods which yield -
physical insight into basic mechanisms, which elucidate the main features of
phenomena in a semiquantitative way, and which can be extended to the dis-.
cussion of more complicated cases where more rigorous methods might become
hopelessly complex. Indeed, it is very often found that simple approximate
calculations of this sort lead to the correct dependence of all significant parame-
ters, like temperature and pressure, and to numerical values which differ by
no more than 50 percent from the results of rigorous calculations based on the
solution of complicated integrodifferential equations. In this chapter, there-
fore, we shall begin by discussing some of the simplest approximate methods
- for dealing with nonequilibrium processes. Although we shall treat the case of
dilute gases, the same methods are useful in more advanced work, e.g., in
discussing transport processes in solids in terms of “dilute gases’ of electrons, .
“‘phonons” (quantized sound waves with particlelike properties), or “mag-
nons” (quantized waves of magnetization). '
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In a gas, molecules interact with each other through collisions. If such a
gas is initially not in an equilibrium situation, these collisions are also respon-
sible for bringing about the ultimate equilibrium situation where a Maxwell-
Boltzmann veloeity distribution prevails. We shall diseuss the case of a gas
which is dilute. The problem is then relatively simple because of the following
features:

4. Each molecule spends a relatively large fraction of its time at distances
far from other molecules so that it does not interact with them. In short, the
time between collisions is much greater than the time involved in a collision.

b. The probability of more than two molecules coming close enough to each
other at any time so as to interact with each other simultaneously is negligibly
small compared to the probability of only two molecules coming sufficiently
close to another to interact. In short, triple collisions occur very rarely com-
pared to two-particle collisions. Thus the analysis of collisions can be reduced
to the relatively simply mechanical problem of only fwo interacting particles.

¢. The mean de Broglie wavelength of molecules is small compared to the
mean separation between molecules. The behavior of & molecule between col-
lisions can then be described adequately by the motion of a wave packet or
classical particle trajectory, even though a quantum-mechanical calculation
may be necessary to derive the scattering cross section deseribing a collision
between two molecules.

Finally, it is worth adding a very general comment about the distinction
between equilibrium and steady-state situations. An isolated system is said
to be in equilibrium when none of its parameters depends on the time. It is,
however, also possible to have a nonequilibrium situation where a system 4,
which is not isolated, is maintained in such a way that all of its parameters are
time-independent. The system A is then said to be in a “steady state,” but
this situation is not one of equilibrium, since the combined isolated system A
consisting of 4 and its surroundings is not in equilibrium, i.e., since the parame-
ters of A’ vary in time.
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12 . 1 Collision time
Consider a molecule with velocity v. Let

P(?) = the probability that such a molecule survives a time

¢t without suffering a collision. (12-1-1)

Of course P(0) = 1, since a molecule has no chance of colliding in a time ¢ — 0,
i.e., it certainly manages to survive for a vanishingly short time. On the other
hand P(t) decreases as the time ¢ increases, since a molecule is constantly
exposed to the danger of suffering a collision ; hence its probability of surviving
a time ¢ without suffering such a fate decreases as time goes on. Finally,
P(t) > 0at t— . (The situation is similar to one very familiar to all of us;
being constantly exposed to the vicissitudes of disease and accident, each one
of us must die sooner or later.) The net result is that a plot of P(¢) versus ¢
must have the shape indicated in Fig. 12-1-1. '
To describe the collisions, let

w dt = the probability that a molecule suffers a collision

between time ¢ and ¢ + di. (12-1-2)

The quantity w is thus the probability per unit time that a molecule suffers a
collision, or the “collision rate.”” We shall assume that the probability w is
mdependent of the past history of the molecule; i.e., it does not matter when
the molecule suffered its last collision. In-general w may, however, depend on
the speed v of the particular molecule under consideration, so that w = w(v).

Knowing the collision probability w, it is possible to calculate the survival
probability P(f). This can be done by noting that [the probability that a
molecule survives a time ¢ 4 d¢ without suffering a collision] must be equal to
[the probability that this molecule survives a time ¢ without suffering a col-
lision] multiplied by [the probability that it does not suffer a collision in the

=l
dt

Fig. 12:1-1 Probability P(t) of surviving a time t without suffering a colli-
sion. (The shaded area represents the probability ®(t) di of su_ﬂ'enng a '
collision in the time interval between t and t + dt after surmmng atimel
without collisions.)
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subsequent time interval between ¢ and t + di}. In symbols, this statement
becomes ' :

Pt +d) = PR — wdi) (12-1-3)
Hence P{t) + C—ig dt = P() — P(wdt
or }Pcil_lt) = —w (12-1-4)

Between collisions (i.e., in a time or the order of w—?) the speed v of a molecule
does not change at all; or, if the molecule is subject to external forces due to
gravity or electromagnetic fields, its speed changes usually only by a relatively
small amount in the short time w='. Hence the probability w, even if it is &
function of ¥, can ordinarily be considered essentially a constant independent of
time. The integration of (12- 1-4) is then immediate and gives

In P = —w! + constant
or P=Ce

Here the constant of integration C can be determined by the condition that
P(0) = 1. Thus one obtains € =1 and

> P(t) = e (12-1-5)
Multiplication of (12-1-1) by (12- 1:2) gives then
®(t) dt = the probability that a molecule, after surviving

without collisions for a time ¢, suffers a collision in the time (12-1-6)
~ interval between ¢ and ¢ + dt. '
Thus _
> @) dt = ewdl | (12-1-7)

The probability (12-1-7) should be properly normalized in the sense that
[T ewmat =1 (12-1-8)

This asserts simply that there is probability unity that a molecule collides at
some time. Indeed, by (12-1-7), one finds

fom e~vtw di = f: evdy = 1_

so that the normalization condition (12-1-8) is verified.
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Let r = { be the mean time between collisions. This is also called the
“collision time’ or “‘relaxation time” of the molecule. By (12-1-7) one can
write

M

T

= j:' @) dt ¢
= ﬁ)we""’fwdtt

1o 1
_.a];]eyydy_

w
‘since the integral is of the type evaluated in (A-3-3). Thus

I .

and (12-1-7) can equally well be written in the form

> O () di = e-tff%t (12.1-10)

Since in general w = w(), r may depend on the speed » of the molecule. The
mean distance traveled by such a molecule between collisions is called the
“mean free path” I of the molecule. One has thus

W) = 7(0) (12-1-11)

A gas of molecules can then conveniently be characterized by the average col-
lision time, or the average mean free path, of the molecules traveling with a
mean speed 7.

Remarks on the similarity to a game of chance The problem of molecular
collisions formulated in the preceding paragraphs is similar to a simple game of
chance. The molecule in danger of a collision is analogous to & man who keeps
on throwing a die in a game where he has to pay $100 whenever the throw of the
die results in the “fatal event” of a 6 landing uppermost. (The game of

Russian roulette described in Problem 1.5, might be a more bloody analogue.)
Let

p = the probability that the fatal event oceurs in a given trial.

This probability pis assumed to be indepehdent of the past history of occurrence
~ of fatal events. Then

¢ =1 — p = the probability that the fatal event does not occur in a
given trial. '
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The probability P, of surviving n trials without a fatal event is thus given by
P,=({1—p)" (12-1-13)

The probability ®,. of surviving (n — 1) trials without a fatal event and then
suffering the fatal event at the nth trial is then

CCn=(1—p)~p=g"p (12-1-14)

This probability is properly normalized so that the probability of suffering the
fatal event at ‘some time is unity, i.e., '

2;_@n =1 | ” (12-1-15)
.This can be verified b#f using (12  1-14}); thus
zf%=2ﬂ”%=pﬂ+q+¢+-*%
By summing the geometric series, we obtain properly

z@nz—_p '—_—1—9:
. l1—q¢ p

The mean number of trials is given by

= i ®n = 2 g~ ipn .=2; i.q“n (12-1-16)

. p _p_1 1.
) A=t p* 7 (12-1-17)
All these results are analogous to those obtained in discussing a molecule.
To make the correspondence exact, consider time. to be divided into fixed
infinitesimal intervals of magnitude di. Each such interval represents a “‘trial”
for the molecule in its game of chance. The fatal event is, of course, the suffer-
ing of  collision. In terms of the collision rate w of (12-1-2), the probability p
is then given by ' ' : _
p=wdl (12-1-18)
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Furthermore, the number of trials experienced by a molecule in a time ¢ is
given by

"= | (12-1-19)

Note that as dt— 0, p — 0 and n — « in such a way that
pn = wi (12-1-20)
By (12-1-13) the survival probability is then given by
Pt) = (1 —p)m
Since p < 1, this can be approximated by writing

InP=nln{l—p) ~ —np
Hence P(t) = g = gt (12-1-21)

where we have used (12-1-20). Thus we regain (12-1-5).
Similarly, one obtains by (12-1-14)

@) dt = (1 — p)p = e di (12-1-22)
which agrees with (12-1-7). TFinally (12-1-19) gives
t = 7 dt
which becomes, by (12-1-17),
1 dt 1
T_E)dg_m_a (12-1-23)

and agrees thus with (12-1-9).

12 -2  Collision time and scattering cross section

Scattering cross section An encounter (or collision) between two particles
1s described in terms of a “seattering cross section’” which can be computed by
the laws of mechanics if the interaction potential between the particles is
known. Consider two particles of respective masses m; and ms. Denote their
respective position vectors by r, and rs, and their respective velocities by ©v;
and v;. View the situation from a frame of reference fixed with respect to
particle 2; the motion of particle 1 relative to 2 is then described by the relative
position vector R = r; — ry, and the relative velocity ¥ = v, — v,. In this
frame of reference where the “target” particle 2 is at rest, consider that there
is a uniform flux of &; type 1 particles per unit area per unit time incident with
relative velocity ¥ on the target particle 2. As a result of the scattering process
a number d¥ of particles of type 1 will emerge per unit time at large dis-
tances from the target particle with final velocity in the range between ¥’ and
V' + dV’. This defines a small solid angle range dQ' about the direction
Vi = V'/|V'| of the seattered beam. (If the collision process is elastic so that
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Classical particle trajectory

Fig. 12-2-1 Scattering process viewed from the frame of reference where
the target particle 2 is at rest.

energy is conserved, |V’ = |V].) This number dJt is proportional to the
incident flux ¥, and to the solid angle d@’. One can then write
dN = Fio dQ' (12-2-1)

where the factor of proportionality o is called the “differential scattering cross
section.” It depends in general on the magnitude V of the relative velocity of
the incident particle and on the particular direction V' (specified by the polar
angle §’ and azimuthal angle ¢') of the scattered beam relative to the incident
direction V. This differential scattering cross section ¢ = o(V; ¥') can be
computed by classical or quantum mechanics if the interaction potential
between the particles is known. Note that ¢ has the dimensions of an area,
sinee the flux ¥, is expressed per unit area.

The total number 9t of particles scattered per unit time in all directions is

obtained by integrating (12-2-1) over all solid angles. Thus
N = o 3:10' dﬂ' = 510’0 (1?22)

where wo(V) = [, a(V; P") a2 (12-2-3)

is called the “‘total scattering cross section.” - In general o depends on the
relative speed V of the incident particles.

The calculation of scattering cross sections for various types of forces
between particles is a problem discussed in courses on mechanics. Let us here
tecall only briefly the very simple result obtained in classical mechanics for
the total scattering cross section between two ‘hard spheres’” of respective
radii a; and a,. (This means that the interaction potential V(R) between the
particles is a function of the distance R between their centers such that
V(R) = 0 when B > (a: + as) and V(R) — » when R < (a1 + as).) The
relative initial motion of the two spheres isindicated in Fig. 12-2-2. Notethat
scattering_takés place only if the distance b (called the “impact parameter’) is
such that b < (a. + as). Hence, out of an incident flux of % particles per
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Fig. 12-2-2 Collision process between two hard
spheres of radii o, and a,.

unit area per unit tirhe, only that fraction of particles incident on the circular
area m(ay + az)? is scattered. By the definition (12-2-2) one thus obtains for
the total scattering cross section between two hard spheres

7 = 3 = n(a + ap)® (12-2-4)
1

If the two particles are identical, this reduces simply to
oo = m d? (12-2-5)

where d = 2q is the diameter of the spherical particle.

Relation between collision time and scattering cross section If the
scattering cross section o for collisions between molecules is known, one can
readily find the probability +—! per unit time that a given molecule in a gas
suffers a collision. We shall give the argument in simplified fashion without
being too careful about the rigorous way of taking various averages. .
Consider a gas consisting of only a single kind of molecule. Denote the
mean number of molecules per unit volume by n. Let 7 be the mean speed of
these molecules, V their mean relative speed, and o, their mean total scattering
cross section at this speed. Focus attention on the particular type of molecules
(say those of velocity near v;) whose collision rate r—1 we wish to calculate, and
let 7, denote the number of such molecules per unit volume. Consider now
how this type of molecule (call it type 1) is scattered by all the molecules in an

Type-1 molecules

Vde

Area dA.
4/

«+«—— Scattering molecule

Fig. 12:2-3 If there are n; molecules per unit volume with relative velocity
near V, all of these contained in the volume (V dt d4) collide with the atrea
d4 in time dt and thus constitute a flux n,V incident upon the scattering
molecule. - '
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element of volume d?r of the gas. The relative flux of type 1 molecules incident
on any one molecule in d*r is given by the familiar argument as

17 TidA =V (12-2-6)

By (12-2-2) a number nVae of these incident molecules is then scattered per
unit time in all possible directions by this one target molecule. The total
number of type 1 molecules scattered by all the molecules in d%r is then given by

(ﬁ1vo'u) (n d"r)

Dividing this by the number 7, d°r of type 1 molecules in the element of volume
under consideration, one then obtains the collision probability w = ! per
unit time for one molecule of this type. Hence

> 1 = Voon (12-2-7)

The collision probability is thus enhanced by a large density of molecules, a
large molecular speed, and a large scattering cross section.

Equation (12-2-7) yields for the average mean free path ! defined in
(12-1-11) the result

81

l=71=—3

v 2 12.2-9)
V’nd'u (

Here the {atio (#/V) of mean speed to mean relative speed is close to unity.
Actually V is somewhat larger than . The following simple argument makes
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this clear. Consider two different molecules with velocities vy and »v,. Their
relative velocity is then given by '

V=v,— v '
Hence V2 = v? + vy — 2’!}1 * D2 (122 10)

If one takes the average of both sides of this equation, v, - v, = 0, since the

cosine of the angle between v, and v, is as likely to be positive as negative for

molecules moving in random directions. Thus (12-2-10) becomes
V=T

Neglecting the distinction between root-mean-square and mean values, this
can be written

V = /5.2 + 5,2 (12-2-11)
When the molectiles in the gas are all identical, #; = %, and (12-2-11) becomes
V=425 (12-2-12)
Then (12-2-9) becomes _
. 1 P
I~ —— (12-2-13)
> ’ ‘\/2 Nag

Although this fact is not too interesting, it may be remarked parenthetically
that a suitable average of (12-2-8) over the Maxwell velocity distribution
yields for hard-sphere collisions precisely the result (12-2-13).

It is of interest to estimate the mean free path for a typical gas at room
temperature (=~ 300°K) and atmospheric pressure (106 dynes em=2).’ The
number density n can be calculated from the equation of state. Thus -

n = P _ 10° = 2.4 X 101 moie(':ules/cm3 )
kT (1.4 X 10-'%(300) = '
A typical molecular diameter d might be 2 X 10-8%¢m. Hence (12-2-5) gives
oo = 7(2 X 10~%)2 =~ 12 X 10~ ¢m? and (12-2-13) yields the estimate

 ~3 % 10-5 ¢m (12-2-14)
Thus . [>>d ., (12-2-15)

80 that our approximations based on relatively infrequent encounters between
molecules are justified. If the gas is nitrogen, the mean speed of a N'; molecule
15, by (7-10-19), of the order of 5 ~ 5 X 10¢em/sec. Its mean time 7 between
collisions is then roughly + ~ /5 ~ 6 X 101 sec. Thus its collision rate is
771 ~ 2 X 10% sec~!, which is a frequency in the microwave region of the
electromagnetic spectrum.

12 - 3 Viscosity

Definition of the coefficient of viscosity Consider a fluid (liquid or gas).
Imagine in this fluid some plane with its normal pointing along the z direction.
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Z = constant

-

Fig.12:3-1 A plane z = constant in a fluid. The fluid below the plane exerts
a force P, on the fluid above it.

Then the fluid below this plane (i.e., on the side of smaller z) exerts a mean
force P, per unit area (or “‘stress’’) on the fluid above the plane. Conversely,
it follows by Newton’s third law that the fluid above the plane exerts a stress
—P, on the fluid below the plane.

The mean force per unit area normal to the plane, i.e., the z component of
P., measures just the mean pressure p in the fluid; to be precise, P.. = P.
When the fluid is in equilibrium, so that it is at rest or moving with uniform
velocity throughout, then there is no mean component of stress parallel to the
plane. Thus P,, = 0. Note that the quantity P, is labeled by two indices,
the first of them designating the orientation of the plane and the second the
component of the force exerted across this plane.*

Consider now a nonequilibrium situation where the liquid does not move
with the same velocity throughout. To be specific, consider the case where
the fluid has a constant mean velocity u, in the z direction, the magnitude of
u, depending on z so that u, = u.(z). This kind of situation could be produced
if the fluid is enclosed between two plates a distance L apart, the plate at z = 0
being stationary and the plate at z = L moving in the z direction with constant
velocity uo. The layers of fluid adjacent to the plates assume, to a good
approximation, the velocities of the plates, so that there is no relative velocity
of slip between the fluid and the plates. Layers of fluid between the plates
have then different mean velocities u, varying in magnitude between 0 and we.
In this case the fluid exerts a tangential force on the moving plate, tending to
slow it down so as to restore the equilibrium situation.

More generally, any layer of fluid below a plane z = constant exerts a
tangential stress P,, on the fluid above it. We already saw that P.. = 0 in
the equilibrium situation where u.(z) does not depend on 2. In the present
nonequilibrium case where du./dz ¥ 0 one expects, therefore, that P, should

* The quantity Pay (where « and v can denote , y, or 2) is called the “pressure tensor.”

z z =1L

z = constant

w, = 0

Fig.12-3:2 A fluid contained between two plates. The lower plate is at
rest while the upper one moves with velocity u.; there thus exists a velocity
gradient (du,/3z) in the fluid. ' -
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be some funetion of derivatives of u: with respect to z such that it vanishes
when u, is independent of 2. But if du,/dz is assumed to be relatively small,
the leading term in a power-series expansion of this function should be an
adequate approximation, L.e., one expects 2 linear relation of the form

Here the constant. of proportionality 4 is called the “coefficient of viscosity.”
If u, increases with increasing z, then the fluid below the plane tends to slow
down the fluid above the plane and thus exerts on it 5 force in the —z direction.,
That is, if du,/92 > 0, then P,, < 0. Hence the minus sign was introduced

explicitly in (12-3. 1) 50 as to make the coefficient  a positive quantity. The -

¢gs unit of 4 is, by (12-3-1), that of gm em™ sec~l. (It is also commonly
called a “poise” in honor of the physicist Poiseuille.) The proportionality
implied by (12-3. 1) between the stress P.. and the velocity gradient du,/9z is
experimentally well satisfied by liquids and gases if the velocity gradient is not
too large.

Note the various forces which act in the z direction in Fig. 12-3-2. The
fluid below the plane 7 = constant exerts a force P,, per unit area on the fluid
above it. Since the fluid between this plane and the plate at z = I, moves
without acceleration, this plate must exert a foree — P,, per unit ares on the
fluid adjacent to it. By Newton’s third law, the fluid must then also exert on
the plate at z = I a force per unit area +P,, given by (12-3-1).

Calculation of the coefficient of viscosity for a dilute gas In the simple
case of a dilute gas, the coefficient of viscosity can be calculated fairly readily
on the basis of microscopic considerations of kinetic theory. Suppose that
the mean fluid velocity component 1, (which is assumed to be very small com-
pared to the mean therma] speed of the molecules) is a function of 2. How does
the stress P,, come about in this situation? The qualitative reason is that in
Fig. 12-3-2 molecules above the plane z = constant have a somewhat larger
T component of momentum than molecules below this plane. As molecules
cross back and forth across this plane they carry this z component of momen-
tum with them. Hence the gas below the plane gains momentum in the z
direction from the molecules coming from above the plane; conversely, the gas

above the plane loses momentum in the direction by virtue of the molecules -

arriving from below the plane. Since the rate of change of momentum of a
system is, by Newton’s second law, equal to the foree acting on the system, it
follows that the gas above the Plane is acted on by a force due to the gas below
the plane. More Drecisely,

P.. = mean increase, per unit time and per unit area of the
plane, of the z component of momentum of the gas above the
plane due to the net transport of momentum by molecules
crossing this plane.

(12-3-2)
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Let us now give an approximate simple calculation of the coefficient of
viscosity. If there are n molecules per unit volume, roughly one-third of
them have velocities along the z direction. Half of these, or $n molecules
per unit volume, have mean velocity 7 in the +z direction; the other half have
a mean velocity 7 in the —z direction. On the average there are, therefore,
(3n%) molecules which in unit time cross a unit area of the plane z = constant
from below; similarly, there are ($n5) molecules which in unit time cross a unit
area of this plane from above. But molecules which cross the plane from
below have, on the average, experienced their last collision at a distance
I (I = mean free path) below the plane. Since the mean velocity u, = u.(2)
is a function of z, the molecules at this position (¢ — I) had on the average a
mean z component of velocity u.{(z — [). Thus each such molecule of mass m
transports across the plane a mean z component of momentum [muz(z — 0)].
Hence one concludes that

The mean z component of momentum transported per unit

time per unit area across the plane in the upward direction = (12-3-3)
(%nﬁ)[mux(z — D]

Similarly, the mean x component of momentum transported

per unit time per unit area across the plane in the downward (12-3-4)
direction = ({nd)[mu.(z + D].

By subtracting (12-3-4) from (12-3-3) one obtains the net molecular transport
of z component of momentum per unit time per unit area from below to above
the plane, i.e., the stress P, described in (12-3-2). Thus

: P.. = ({n0)[mu.(z — )] — (Fnd)[mu(z + D]
or P, = dndmlu(z — 1) — uu(z + )] -~ (12-3-5)

Here u.(z) can be expanded in Taylor’s series and higher-order terms can be
neglected, since the velocity gradient du,/dz is assumed to be small (i.e., small

g = constant

Fig, 12:3-3 Momentum transport by molecules crossing a plane.
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enough that the mean velocity'u,, does not vary appreciably over a distance of
the order of I}). Thus

uz ,
us(z + 1) = ux(z).—f—. 5 l
Uz,
u(2 — 1) = uz) — 5 l
1 u, OU,
x = = NI —2 = — 12-3-6
Hence P A nvm( 5 l) ", ( )
where
> - 9 = tnoml (12-3-7)

Thus P.. is indeed proportional to the velocity gradient du./dz (as expected by
(12-3-1)), and (12-3-7) provides an explicit approximate expression for the
viscosity coeflicient 4 in terms of the microscopic parameters characterizing
the molecules of the gas.

Our calculation has been very simplified and careless about the exact way
various quantities ought to be averaged. Hence the factor 4 in (12-3-7) is
not to be trusted too much; the constant of proportionality given by a more
careful calculation might be somewhat different. On the other hand, the
essential dependence of 5 on the parameters n, 7, m, and [ ought to be correct.

Discussion The result (12-3-7) leads to some interesting predictions. By
(12-2-13)

1
| ~ — (12-3-8)
‘\/2 oy
Thus the factor # cancels in (12-3-7), and one obtains
T m_ |
= — ¥ R
7 32 o0 (12-3-9)
But the mean molecular speed, given by (7-10-13) as*
p= SR (12-3-10)
T m

depends only on the temperature but not on the gas density n. Hence (12-3-9)
is independent of the gas density n, or equivalently, of the gas pressure
p = nkT.

This is a remarkable result. It asserts that in the situation illustrated in
Fig. 12-3-2, the viscous retarding force exerted by the gas on the moving
upper plate is the same whether the pressure of the gas between the two plates
is, for example, equal to 1 mm Hg or is increased to 1000 mm Hg. At first
sight such a conclusion seems strange, since a naive intuition might lead one

* In the approximate calculations of this chapter one could just as well replace the mean
speed 7 by the rms speed /3%T/m obtained from the equipartition theorem.



476 secTtion 12+ 3

to expect that the tangential force transmitted by the gas should be propor-
tional to the number of gas molecules present. The paradox is resolved by
noting that if the number of gas molecules is doubled, there are indeed twice
as many molecules available to transport momentum from one plate to the
other; but the mean free path of each molecule is then also halved, so that it
can transport this momentum only half as effectively. Thus the net rate of
momentum transfer is left unchanged. The fact that the viscosity n of a gas
at a given temperature is independent of its density was first derived by Max-
well in 1860 and was confirmed by him experimentally.

It is clear, however, that this result cannot hold over an arbitrarily large
density range of the gas. Indeed, we made two assumptions in deriving the
relation (12-3-7):

1. We assumed that the gas is sufficiently dilute that there is negligible
probability that more than two molecules come simultaneously so close together
as to interact appreciably among themselves. Thus we were allowed to con-
sider only two-particle collisions. This assumption is justified if the density n
of the gas is sufficiently low so that

1> d (12-3-11)

where d =~ 4/, is a measure of the molecular diameter.

2. On the other hand, we assumed that the gas is dense enough that the
molecules collide predominantly with other molecules rather than with the
walls of the container. This assumption implies that » is sufficiently large that

1< L (12-3-12)

where L is a measure of the smallest linear dimension of the containing vessel
(e.g., L is the spacing between the plates in Fig. 12-3-2).

'If the gas is made so dilute that the condition (12-3-12) is violated, then
the viscosity n must decrease, since in the limiting case when n — 0 (perfect
vacuum) the tangential foree on the moving plate in Fig. 12-3-2 must clearly
go.to zero. (Indeed, in this limit the mean free path ! in (12-3-7) must
approach the container dimension L.) Note, however, that the range of densi-
ties where both (12-3-11) and (12-3-12) are simultaneously satisfied is quite
large, because L >> d in usual macroscopic experiments. Thus the coefficient
of viscosity n of a gas is independent of its pressure over a very considerable
range.
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Let us now discuss the temperature dependence of 4. If the scattering of
molecules is similar to that of hard spheres, then the cross section oy is by
(12-2-5) a number independent of 7. Then it follows by (12-3-9) that the

temperature dependence of 3 is the same as that of 7; i.e., for hard—sphere
scattering,

g oo TH (12-3-17)

More generally, oo = oo(V) depends on the mean relative speed of the mole-
cules. Since V « T% o) becomes then also temperature dependent. The
result is that n tends to vary with temperature more rapidly than in (12-3-17),
somewhat more like 7°7. This can be qualitatively understood since there
exists not only a repulsive but also a longer-range attractive interaction
between the molecules. This latter interaction tends to increase the scattering
probability of a molecule and becomes more effective at low temperatures,
where the molecules have low velocities and are thus more readily deflected.
Hence the scattering cross section o, tends to decrease with increasing tem-
perature. As T increases, the viscosity n « T%/¢, tends, therefore to increase
with temperature more rapldly than 7%,

Note that the viscosity of a gas increases as the tempe'ra_ture is raised.
This behavior is quite different from that of the viscosity of liquids, which
generally decreases rapidly with increasing temperature. The reason is that
in a liquid, where molecules are close together, momentum transfer across a
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plane occurs by direct forces between melecules on adjacent sides of the plane
as well as by virtue of their motion across this plane. :

Finally we estimate the magnitude of 5. Since the mean pressure of the
gas is, by (7-13-1), approximately given by § = 3nmi?, the expression (12-3-7)
can be written as

QA |y

I =

P

5/ (12-3-18)
In words this says that the coefficient of viscosity is of such a magnitude that
it would give rise to a stress equal to the gas pressure in the presence of a
veloeity gradient equal to the mean molecular speed divided by the mean free
path. For air at atmospheric pressure (10% dynes em~?) and room temperature
(300°K) one has approximately & ~ 5 X 104 ¢cm sec—! and [ ~ 3 X 10~% em-
hence (12-3-18) gives as an order-of-magnitt_lde estimate

7 = 108/(1.7 X 10%) = 6 X 10-+ gm cm~! sec!
The measured value of n for N, gas at this temperature is 1.78 X 10— gm cm~!
sec™ L
For purposes of later comparisons with more exact calculations, we can
combine (12-3-9) and (12-3-10) to obtain the following explicit expression
for n obtained by our simple theory:

=2 VMET _ o oo \/mET (12-3-19)
3 ‘\/11" [ ] a0

ﬂ=

12 ‘4 Thermal conductivity

Definition of the coefficient of thermal conductivity Consider a sub-
stance in which the temperature is not uniform throughout. In particular,
imagine that the temperature 7 is s function of the z coordinate so that
T = T(2). Then the substance is certainly not in a state of equilibrium. As
a result, energy in the form of heat flows from the region of higher to that of
lower temperature. Iet

Q: = the heat crossing unit area of a plane (in the z direction
_ e (12-4-1)
normal to the plane) per unit time. \ ‘
r, > T,
9, < 0
Z
Z = constant

Fig. 12-4-1 A substance in thermal contact with two heat reservoirs at
constant temperatures T; and T,. If T, > T, heat Sflows in the —z direction
Jrom the region of higher to that of lower temperature,
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The quantity @, is called the “heat flux” in the z direction.  If the temperature
were uniform, Q. = 0. If it is not uniform, one expects that @, should to good
approximation be proportional to the temperature gradient a7/98z if the latter
is not too large. Thus one can write

aT

> 9, = —Kk o (12-4-2)
The constant of proportionality « is called the “coefficient of thermal con-
ductivity” of the substance. Since heat flows from the region of higher to
that of lower temperature, 9, < 0 if 37/3dz > 0. The minus sign was intro-
duced explicitly in (12-4-2) s0 as to make x a positive quantity. The relation
(12-4-2) is found to be well obeyed in practically all gases, liquids, and isotropic
solids. :

Calculation of the coefficient of thermal conductivity for a dilute gas
In the simple case of a dilute gas the coefficient of thermal conductivity can be
readily caleulated by simple microscopic arguments similar to those used in
discussing the viscosity of a gas. Consider a plane z = constant in the gas
where T = T(z). The mechanism of heat transport is due to the fact that
molecules cross this plane from above and below. But if aT/dz > 0, a mole-
cule coming from above has a mean energy €(T) which is larger than that of a
molecule coming from below. Thus there results a net transport of energy
from the region above the plane to that below it. More quantitatively, there
are again roughly ¢n# molecules which in unit time cross unit area of this plane
from below and an equal number of molecules which cross it from above.*
Here n is the mean number of molecules per unit volume at the plane
z = constant, and # is their mean speed. Now molecules which cross this
plane from below have, on the average, experienced their last collision at a
distance ! (! = mean free path) below the plane. But the mean energy ¢ of a
molecule is a function of T and, since T = 7'(z) in the present case, conse-
quently a function of z so that ¢ = &(z). Hence the molecules crossing the
plane from below carry with them a mean energy é(z — 1) corresponding to the

*Bince the thermal conductivity of a gas is measured under steady-state conditions
where there is no convective motion of the gas, the number of molecules crossing unit area
of any plane per second from one side must always be equal to the number of molecules
crossing the plane in the opposite direction. It is therefore unnecessary in this simple dis-
cussion to worry about the fact that the temperature gradient causes » and 7 to be slightly
different above and below the plane. (Such questions can be investigated more carefully
by the methods of the next chapters.)

Fig. 12-4-2 Energy
transport by molecules
crossing a plane.
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mean energy assumed by them at their last collision at the position (z — D).
Thus one obtains

Mean energy transported per unit time per unit area across (12-4-3)
the plane from below = nie(z — ).

Similarly, in considering molecules coming from above the plane where they
suffered their last collision at (z + I), one obtains

Mean energy transported per unit time per unit area across (12-4-4)
the plane from above = 3nbe(z + 1).

By subtracting (12-4-4) from (12-4-3) one then obtains the net flux of
energy Q. crossing the plane from below in the -z direction

Q. = gnbl{e(z — 1) — &(z + )}
- %nv l[é’(z) _ zg] _ [a(z) + lgf:]}

1 . O€ 1 de 9T
0 =il =2 — ) = —Z il — — 12-4-
r- ¢ 6 nv( az) : 3 T dz (12:4-)

since é depends on z through the temperature 7. Let us introduce the
abbreviation

%
o= (12-4-6)
which is the specific heat per molecule. Then (12-4-5) becomes
- 8T
where
> k= dnicl (12-4-8)

The relation (12-4-7) shows that @, is indeed proportional to the temperature
gradient (as expected by (12-4-2)), and (12-4-8) provides an explicit expres-
sion for the thermal conductivity « of the gas in terms of fundamental molecular
quantities. :

Once again the precise factor 4 in (12-4-8) is not to be trusted too much
in this simplified ealculation, but the dependence on the other parameters
ought to be correct. Since ! « n~1 the density n again cancels; i.e., using
(12-3-8), the thermal conductivity (12-4-8) becomes

K :,_.___1 _25 (12'4:'9)
L

3

which is independent of the pressure of the gas. This result is due to the
same reasons mentioned in connection with the similar property of the viscosity
coefficient 4 and is again valid in a density range where d << [ < L.

Note that for a monatomic gas the equipartition theorem gives ¢ = $k7T
so that the specific heat per molecule is simply given by ¢ = k.
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Since 7 « T* and since ¢ is usually temperature independent, (12-4-9)
gives for hard-sphere interaction between molecules

k< Th | (12-4-10)

More generally, oo also tends to vary with the temperature in the manner

~discussed in the last section in connection with the viscosity. As a result,

x increases again somewhat more rapidly with increasing temperature than is
indicated by (12-4-10). ‘ ' |

An estimate of the order of magnitude of « for a gas at room temperature
can readily be obtained by substituting typical numbers into (12-4-8). A
representative value is the measured thermal conductivity of argon at 273°K,
namely x = 1.65 X 10~¢ watts em~' deg™.

By using the result (12-3-10) for 7, the approximate expression (12-4-9)
for the thermal conductivity becomes explicitly

k=20 [FT (12-4-10)
3 ‘\/‘II’ ag m :
Finally, comparison between the expressions (12-4-8) for the thermal
conductivity « and (12-3-7) for the viscosity » shows that these are quite
similar in form. Indeed, one obtains for their ratio the relation
£-Z (12-4-12)
7 m
Equivalently, multiplying both numerator and denominator by Avogadro’s
number N, '
K (12-4-13)
i H
where ¢y = Noc is the molar specific heat of the gas at constant volume and
where u = Nam is its molecular weight. Thus there exists a very simple
relation between the two transport coefficients x and », a relation which can
readily be checked experimentally. One finds that the ratio («/m){(c/m)~* lies
somewhere in the range between 1.3 and 2.5 instead of being unity as predicted
by (12-4-12). In view of the very simplified nature of the arguments leading
to these expressions for 5 and «, there is greater justification for being pleased
by the extent of agreement with experiment than there is cause for surprise at
the discrepancy. Indeed, part of the latter is readily explained by the mere
fact that our calculation did not take into account effects due to the distribu-
tion of molecular velocities. Thus faster molecules cross a given plane motre
frequently than slower ones. In the case of thermal conductivity these faster
molecules also transport more kinetic energy; but in the case of viscosity they
do not carry any greater mean r component of momentum. Thus the ratio
«/n should be increased to a value larger than that given by (12-4-12).

* Application to nonclassical gases It is worth pointing out that the sim-
ple considerations of this section are applicable to a much wider class of
physical situations. Consider, for example, the thermal conductivity of a
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metal. Heat in such a metal is predominantly transported by the conduction
electrons. The latter would travel through a perfect periodic crystal lattice
without being scattered (since the electrons have wave properties in a quantum
description). -They do, however, get scattered because every metal contains
some impurities or other lattice imperfections, and because at a finite tempera-
ture the lattice vibrates (i-e., the perfect periodicity of the lattice is then
disturbed by thermally excited sound waves, or phonons, traveling through the
lattice).

In order to apply (12-4-8) to the conduction electrons which form a
highly degenerate Fermi-Dirac gas, we note first that only those electrons
lying within a range of the order of kT around the Fermi energy g, i.e., only
the fraction kT/u of electrons which contribute to the electronic specific heat
(an amount 4% per electron) contribute to the thermal conductivity x. Hence.
the product ne in (12-4-8) involves only these effective electrons; thus it
becomes approximately n(kT/u)($k), i.e., it is proportional to T. All these
electrons move nearly with the Fermi velocity vp; thus & =~ vpin (12-4-8), and
this is essentially temperature independent. If the temperature is low enough,
the number n, of thermally excited phonons per unit volume becomes suffi-
ciently small compared to the number n; of impurities per unit volume that
impurity scattering of the electrons is predominant. But since #; is a fixed
number independent of T, the electron mean free path ! « n;"!isindependent of
T (assuming the electron-impurity scattering cross section to be essentially
constant). Hence (12-4-8) predicts that, for impurity scattering,

ki« T (12-4-14)

This proportionality is experimentally found to be well satisfied for metals
(and alloys, which are, of course, very impure) at sufficiently low temperatures.
At higher temperatures, scattering by phonons becomes predominant. If
the temperature is still sufficiently low that all thermally excited phonons (or
lattice vibrations) have large wavelengths compared to the interatomic spacing
(i.e., if T is still appreciably less than the Debye temperature of Sec. 10-2),
then the problem is quite analogous to that of photons, and the mean number
of phonons per unit volume np « I3 (see (10-2-27)). Hence the electron
mean free path due to collision with phonons is given by ! « n,! « 7-3
(assuming an essentially constant electron-phonon scattering cross section).
The temperature dependence of « in (12-4-8) then becomes, for phonon
scattering, | :
Ky T(-,IITS) o Ti2 (12-4-15)
More generally, the electrons are scattered independently by both impuri-
ties and phonons at the same time, Hence the thermal resistivities (i.e., the
reciprocals of the respective conductivities) due to these processes simply add.
The resultant thermal conductivity x must then be given by a relation of the
form

Kl ‘ + b7 (12-4-16)

I a
to =T
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where «; and «, are given by (12-4- 14) and (12-4-15), and where @ and b are
two constants. The temperature dependence (12-4-16), with its character-
istic maximum as a function of T, is experimentally well verified.

Let us finally consider the thermal conductivity of an insulating solid at
low temperatures. Since there are no conduction electrons, the thermal con-
ductivity is low and is entirely due to heat transport by lattice vibrations, i.e.,
by phonons. In order to apply (12-4-8) to these phonons, we note that
np « 1% if T is sufficiently low. The speed 7 of a phonon is the velocity of
sound, which is essentially temperature-independent. The mean energy ¢ of a
phonon is of the order of kT, so that, c= 9g/d7T is of the order k and tempera-
ture-independent. If T is sufficiently low, the mean free path of a phonon is
essentially imited by scattering from the boundaries of the specimen; thus I is
of the order of the specimen dimensions and therefore temperature-independ-
ent. Hence one obtains for an insulator at low temperature simply

x o« T3 O (12-4-17)

This temperature dependence is experimentally found to be approximately
correct.

12 - 5 Self-diffusion

Definition of the coefficient of self-diffusion Consider a substance con-
sisting of similar molecules, but assume that a certain number of these mole-
cules are labeled in some way. For example, some of the molecules might be
labeled by the fact that their nuclei are radioactive. Let n; be the mean
number of labeled molecules per unit volume. In an equilibrium situation the
labeled molecules would be distributed uniformly throughout the available
volume, so that », is independent of position. Now suppose that their dis-
tribution is not uniform, so that n, does depend on position, e.g., n: = n1(2),
even though the fotal mean number n of molecules per unit volume remains
constant. (This constancy guarantees that there is no mass motion of the
whole substance.) This is not an equilibrium situation and thus there will be
a motion of labeled molecules tending to increase the entropy, i.e., tending to
make the concentration n: more nearly uniform. Let the flux of labeled mole-
cules be denoted by J, i.e., let '

J. = the mean number of labeled molecules crossing unit
area of a plane (in the z direction normal to the plane) per -(12-5-1)
unit time. :

If n; were uniform, J, = 0. If ny is not uniform one expects that J, should to
good approximation be proportional to the concentration gradient of labeled
molecules. Thus one can write

an,
= — 2:-5-2
J. D — 3 (12-5-2)
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Fig. 12+5-1 Diagram illustrat-
ing the conservation of the
number of molecules during
diffusion.

The constant of proportionality D is called the ‘coeflicient, of self-diffusion” of
the substance. 1If In1/dz > 0, the flow of labeled particles is in the —2z direc-
tion so as to equalize the concentration, i.e., J, < 0. Hence the minus sign
was introduced explicitly in (12-5-2) to make D positive quantity, The
relation (12-5-2) is found to describe quite adequately the self-diffusion* of
molecules in gases, liquids, or isotropic solids. ‘

It i useful to point out that the quantity n; satisfies, by virtue of the
relation (12-5. 2), a simple differentia] equation. Consider g one-dimensional
problem where n1(z,t) is the mean number of labeled molecules per unit volume
located at time ¢ near the position 2. Focus attention on a slab of substance of
thickness dz and of ares 4. Since the total number of labeled molecules is
conserved, one ean make the statement that the fincrease per unit time in the
number of labeled molecules contained within the slab] must be equal to [the
number of labeled molecules entering the slab per unit time through its surface
at z] minus [the number of labeled molecules leaving the slab per unit time
through its surface at z+dz]. In symbols, '

5"3 (mA d) ~ AJ.(2) — AT,z + do)

6n1 _ an
or Wdz = J,(2) — [Jz(z) + 5 dz]
Thus T % (12-5-3)

This equation expresses just the cdnservation of the number of labeled mole-
cules. Using the relation (12-5-2), this becomes

on *n

This is the desired partial differential equation, the “diffusion equation,” satis-
fied by n1(2,f). '

Calculation of the coefficient of self-diffusion for a dilute gas In the
simple case of g dilute gas, the coefficient of self-diffusion can readily be
- caleulated by mean-free-path arguments similar to those used in the last two
- sections. Consider 3 plane z = constant in the gas. The mean number of

* One speaks of self-diffusion if the diffusing moleculeg are, except for being labeled,;
identical to the remaining molecules of the substance. The more general and complicated
situation would be that of mutual diffusion where the molecules are unlike, e.g., the diffusion
of He molecules in argon gas. :
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% = constant

Fig. 12-5-2 Traﬁsport
of labeled molecules

across a plane.

labeled molecules which in unit time cross a unit area of this plane from below
is equal to $on:(z — I); the mean number of labeled molecules which in unit
time cross a unit area of this plane from above is §on.1(z + 1). Hence one
obtains for the net flux of labeled molecules crossing the plane from below in
the -z direction :

J. = toni(z — 1) — Fon.(z —}— 1)
! (e — D) — mz + D] = L3 (—z I z)
6 ! 0z

6
or J, = —pu 3”1 - (12-5-5)
where
> | D = il | (12:5-6)

Thus (12-5-5) shows explicitly that J, is proportional to the concentration
gradient (in accordance with the general relation (12-5-2)}, and (12-5-6) gives
an approximate expression for the coefficient of self-diffusion in terms of

fundamental molecular quantities.
To express D in more explicit. form one need only use the relations

1 : 1 kT : N
=L 1 kT (12-5-7)
V2ns VZ2oo P :
and f)=\/§k—i—j_ (12-5-8)
T m -
2 1 [FT) |
Thus D= . — ) 12-5-9
3 /7 Poo m ( )

Hence the coefficient of self-diffusion. D does depend on the pressure of the ga,s;
At a fixed temperature T,

D« (12-5-10)

o

S| =
231t

Also at a fixed pressure, ' |
if the scattering is like that between hard spheres so that oy is a constant mde-

pendent of 7. :
By virtue of (12-5-6), the order of magnitude of D at room temperature

and atmospheric pressure is 39 =~ (5 X 104(3 X 1075 = 0.5 cm? sec™l.
The experimentally measured value for N, gas at 273°K and 1 atmosphere
pressure is 0.185 cm? see—L. :
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Comparison between (12-5-6) and the coeﬁ‘iment of viscosity nin ( 12-3-7)

yields the relation
D_1

7 nm

(12-5-12)

-

where p is the mass density of the gas. Experimentally, one finds that the
ratio (Dp/4) lies in the range between 1.3 and 1.5 instead of being unity as
predicted by (12-5-12). In view of the crude nature of our simple calculations
this extent of agreement between theory and experiment can be regarded as
quite satisfactory.

Diffusion regarded as a random walk problem 1t is possible to look
upon the diffusion problem as a random walk executed by the labeled molecule.
Assume that successive displacements suffered by the molecule between col-
lisions are statistically independent and denote by ¢; the z component of the
th displacement of the molecule. If the molecule starts at z = 0, the z com-
ponent of its position vector after a total of N displacements is then given by

z = g& & (12-5-13)

We calculate mean values as in Sec. 1-9. By virtue of the random direction
of each displacement, ¢; = 0 so that 2 = 0. On the other band, one obtains
for the dispersion

=Y+ Y Y (12-5-14)
' i
Now, by virtue of the statlstlcal independence, {;{; = {:f; = 050 that (12-5-14)

reduces simply to 7
2? = N¢2 (12-5-15)

The mean-square displacement % per step can readily be computed. The
z component of this dlsplacement in time t is { = v,{. Hence '

But, by symmetry, v.2 = 402 Furthermore, one has by (12-1-10)
3v )

t_2=j:é—‘f’dt = j;we"?u2du=212

.
Hence 2 = 2%, (12-5-16)

cgw

Since each displacement between collisions requires a mean time r, the total
number N of dlspla.cements suffered in a time ¢ is equal to t/'r Hence
(12-5-15) yields for the mean- square z component of displacement of a mole-
cule in time ¢ the result

hs

> 20 = (L) ¢ (12-5-17)

On the other hand, one can also calculate the mean-square displacement
22(t) by purely Macroscopic reasoning based on the diffusion equation (12-5-4).
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0 z

Fig. 12-5:3 The number density m(z,t) as a function of z at various times
t after molecules are introduced at time | = 0 near the plane z = 0. The
areas under all the curves are the same and equal to the total number N, of

labeled molecules.

Imagine that a total of N labeled molecules per unit area are introduced at
time ¢ = 0 in an infinitesimally thick slab near z = 0. The molecules then
proceed to diffuse (see Fig. 12.5-3). Conservation of the total number of

Iabeled molecules requires that

[ m dz = Ny (12-5-18)
at all times. By definition one also has
— 1 f=

TR — 2 2-5-19

70 = 5 [, #med de (12-5-19)

To find how 72 depends on f, multiply the diffusion equation (12-5-4) by
2? and integrate over z. This yields

[ -] © 2
f zﬂ%%dz = D[ 226 "1 ds (12-5-20)

—= —= 92t

The left side gives, by (12-5-19),

® d71 d @® 0 =
g Y701 —— ) ly = Y2
[_wz Mz = o f_m #nyde = N1 @)

The right side of (12-5-20) can be simplified by successive integrations by part

w a2n, ani |° . v dng
2 - g U741 — hdhd
f_m Sy dz iy » 2 f_m 2, dz

=0 — 2{2’!’&1]‘_),:=° + 2 [::u V(31 dz
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since n, and (dn1/9z) — 0 as [z| — «. Thus (12-5-20) becomes

%(z“?) — 2D | (12-5-21)
or
> a 2 = 2Dt (12-5-22)

where the constant of integration has been set equal to zero, since z? = 0 for
t = 0 by virtue of the initial condition that all molecules start at z = 0.
By comparing (12-5-22) with the random walk result (12-5-17) one
obtains
D = i (12-5-23)
or D = 4ol . (12-5-24)

if one neglects the distinction between »* and #* and sets #r = I. " Thus one
regains the result (12-5-6).

12 - 6  Electrical cénductivity

Consider a system (liquid, solid, or gas) containing charged particles which are
free to move. If a small uniform electric field & is applied in the z direction,
a nonequilibrium situation results in which an electrie current density j, is set
up in this direction. By definition

J: = the mean electric charge crossing a unit area (perpen- (12-6-1)
dicular to the z direction) per unit time.

If the electric field & is sufficiently small, one expects that
jz:(’elg (1262)

where the constant of proportionality o, is calied the “electrical conductivity”
of the system. The relation (12-6-2) is called “Ohm’s law.”

Consider now a dilute gas of particles having mass m and charge ¢ and
interacting with some other system of particles by which they can get scattered
with collision time 7. A particularly simple case would be that of a relatively
small number of ions (or electrons) in a gas where these ions are predominantly
scattered by collisions with the neutral gas molecules.

When an electric field & is applied in the z direction, it gives rise to a mean
z component of velocity 7. of the charged particles. The mean number of such
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particles crossing a unit area (perpendicular to the 2 direction) per unit time is
then given by n7, if n is the mean number of charged particles per unit volume.
Since each particle carries a charge ¢, one thus obtains

jz = neb, (12:6-3)
It only remains to calculate #,. Let us measure time from the instant

t = 0 immediately after the particle’s last collision. The equation of motion
of the particle between this collision and the next one is

dv,
mﬁ = g&
Hence b, = ;ﬁ i+ (0) (12-6-4)

In order to calculate the mean value 7., we assume that as a result of each
collision the particle is, at least on the average, restored to thermal equi-
librium; its velocity v(O) has then random direction and #.(0) = 0 irrespective
of the particle’s past history before that collision.* Taking the mean value of
(12-6-4) over all possible times ¢ between collisions, as given by the prob-
ability (12-1-10), we then obtain

=Lyt [Tewmdy B, (12-6-5)

m m Jo T m
that is, we have just used the familiar result that the mean time { between col-
lisions is equal tor. We have also treated the collision probability = per unit
time as a constant, even though it may depend on the particle speed. This is
justified because the electric field & was assumed to be sufficiently small that
the increment in the particle’s speed produced by & between successive col-
lisions is negligibly small compared to the thermal speed of the particles.
By using (12-6-5) in (12-6-3), one obtains

.

j, = i’_"%fs (12-6-6)

or i =ou (12-6-7)
where 7
2

| gl = %f (12-6-8)

Thus j, is indeed proportional to & (as expected by (12-6-2)) and (12-6-8) pro-
vides an explicit expression for the electrical conductivity oa in terms of
microscopic parameters of the gas.

If the conductivity is due to a relatively small number of ions in a gas,
the collisions limiting the mean free path are predominantly those between

* One can expect this to be a very good approximation if the charged pattlcle suffers
collisions with particles of much larger mass. Otherwise the charged particle retains after
esch collision some memory of the z component of velocity it had before that collision. For
the time being we negleet corrections due to such “persistence-of-velocity” effects.
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ions and neutral gas molecules.* Suppose that the total scattering cross
section of an ion by a molecule is oim and that there are, per unit volume,
n, molecules of mass m; > m. The thermal speed of the ions is then much
greater than that of the molecules, and the mean relative speed of an ion-
molecule encounter is simply the mean ion speed #. Thus the collision rate of
an ion is approximately equal to
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PROBLEMS

12.1 A large number of throws are made with a single die.

(a) What is the mean number of throws between the appearances of a six?
At any stage of the process what is the mean number of throws

{b) before the next appearance of a six;

{¢) since the last appearance of a six?

12.2 Let [ denote the mean free path of a molecule in a gas. Suppose that such a
molecule has just suffered a collision. What is the mean distance

(a) it travels before it suffers the next collision;

{b) it has traveled sinee it suffered the last collision?

(¢} What is the mean distance traveled by the molecule between two suc-
cessive collisions?

12.3 An ion of mass m and electric charge e is moving in a dilute gas of molecules
with which it collides. The mean time between collisions suffered by the ton
is 7. Suppose that a uniform electric field & is applied in the z direction.

(a) What is the mean distance % (in the direction of &) which the ion
travels between collisions if it starts out with zero z component of velocity
after each collision? '

(6) In what fraction of cases does the ion travel a distance z less than E?

12.4 Calculate the differential scattering cross section o for the scattering of a hard

* Actually, even if ion-ion collisions occurred frequently, they would not affect the
electrical conductivity, since the colliding ions would, effectively, simply exchange roles in
carrying the electric current. This will be shown in greater detail in Sec. 14-6.



