
Chapter 3

COLLISIONS

3.1 Background

The foundational Boltzmann transport equation (BTE), which describes how a gas evolves by molecular
collisions, normally appears early in a non-equilibrium statistical physics course. Some basic consequences of
the BTE include the Maxwell-Boltzmann velocity distribution, the determination of transport coefficients,
and the derivation of the Navier-Stokes equations of hydrodynamics. The latter two items involve the
formidable and subtle Chapman-Enskog expansion, and the complexity of this approach makes kinetic theory
an intimidating subject with which to begin studying non-equilibrium statistical physics. We think it is more
useful pedagogically to focus on simpler and explicitly solvable models, such as the Lorentz gas, where a
test particle interacts with a fixed scattering background, and the Maxwell model, where the collision rate is
independent of the velocities of collision partners. The solutions of these models help illustrate the master
equation methodology that we use throughout this book, as well as provide intuition about how to deal with
more realistic collisional dynamics.

The Maxwell-Boltzmann Distribution

As a preliminary, let’s derive the Maxwell-Boltzmann (MB) velocity distribution for a classical gas of identical
molecules. The gas is in equilibrium at temperature T and two molecules scatter elastically when they are
sufficiently close due to a short-range repulsive intermolecular potential. Let P (v) dv be the probability to
find a molecule within a range dv about v when the temperature is T . The MB distribution is based on two
fundamental assumptions:

1. Spatial symmetry, which implies that the MB distribution is isotropic:

P (v) = P (v2); (3.1)

i.e., the distribution depends only on the magnitude v and not on the direction of v.

2. Molecular chaos, which implies that different velocity components are uncorrelated. Together with
symmetry, this assumption allows the velocity distribution to be factorized as

P (v2) = p(v2
x) p(v2

y) p(v2
z), (3.2)

where p(v2
i , T ) dvi is the probability that the ith velocity component is in a range dvi about vi.

Let us now derive the MB distribution using Maxwell’s original approach. First, take the logarithm of
(3.2) and then differentiate with respect to one velocity component to give
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Since this equation holds for any component, the right-hand side must be constant. Thus we conclude that
lnP = a+ bv2. The unknown constants in P = Aebv2

can then be found by normalization and equipartition
(each degree of freedom contributes an average energy per particle1 of 1

2m〈v2
x〉 = 1

2T ) to give

P (v) =
( m

2πT

)3/2

e−mv
2/2T . (3.3)

Notice that almost nothing about the interparticle potential enters into this argument. We only require
that there exists some scattering mechanism that conserves mass, momentum, and energy in each collision, so
that a steady state actually exists. With these modest requirements, the steady-state velocity distribution
is the Maxwell-Boltzmann form, independent of the intermolecular interaction. After this derivation, a
cynical physics student might ask: isn’t it simpler still to “derive” by MB distribution from the Boltzmann
factor, e−E/T of equilibrium statistical mechanics? While it is true that there is no work involved in writing
P ∝ e−E/T , considerable effort is involved in developing the entire apparatus of equilibrium statistical
mechanics, upon which the Boltzmann factor is based.

The Boltzmann Transport Equation (BTE)

It is instructive present some of the basic features of the BTE as a prelude for discussing the collisional
processes of this chapter. In classical kinetic theory, the fundamental quantity is the space- and velocity-
dependent distribution, P (r,v; t) dr dv, defined as the probability that a particle is within a range dr dv
about r,v at temperature T . This distribution evolves according to the BTE, which we write in the slightly
symbolic form:

(

∂

∂t
+ vi

∂

∂ri
+ Fi

∂

∂vi

)

P (r,v; t) =

=

∫

|v − v′| dσ

dΩ

[

P2(r,v; r,v′) − P2(r,v
′′; r,v′′′)

]

δ(p(i) − p(f))δ(E(i) − E(f))dv′ dv′ dv′′′ (3.4)
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Figure 3.1: Binary collision with pre-collision velocities u1 and u2 and post-collision velocities v1 and v2.

The terms on the left-hand side represent the change in P (r,v; t) due to particle motion in the absence of
collisions; these terms simply comprise the total time derivative. We use the Einstein summation convention
that repeated Cartesian indices are summed. The right-hand side represents the change in P (r,v; t) due
to collisions. The second term represents the loss of particles with phase space coordinates r,v due to
collisions with particles whose coordinates are r,v′. The total collision rate involves the product of the
relative speeds of the two particles, the cross section for their scattering into any outgoing state, and the
probability that the collision partners are at the same spatial point. This latter probability is expressed by
the two-body correlation function P2. The first term represents a gain in which particles with coordinates
r,v′′ and r,v′′′ collide, with one of the outgoing particles having coordinates r,v and the other r,v′ By time
reversal invariance, both the collision cross-section and the relative velocity of the gain term are the same as
that of the loss term. Finally, the delta functions impose overall momentum and energy conservation; here
the superscripts denote the total momentum and energy in the initial and final states.

As written, the BTE is not closed: the equation of motion of the first single-particle distribution in-
volves a two-body distribution. However, the equation for the two-body distribution involves the three-body

1In this chapter, we set Boltzmann’s constant kB = 1
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distribution, etc. To make this infinite equation hierarchy closed, it is necessary to break the hierarchy at
some level by replacing n-body distributions as products of lower-order distributions. For the BTE, the
conventional approach is to replace two-body distributions by the product of single-body distributions; that
is,

P2(r,v; r,v′) → P (r,v)P (r,v′).

This is the molecular chaos assumption, which is crucial for making further progress in solving the BTE.

At this point, it is worthwhile to highlight the assumptions underlying the BTE and some of their
implications:

1. The gas is sufficiently dilute that the one-body distribution P (r,v; t) describes the state of the gas
accurately.

2. The gas is sufficiently dilute that only binary collisions are important.

3. Particles move with constant velocity between collisions and undergo scattering events according to
classical mechanics when two molecules are in physical contact. We can therefore view molecules as
hard spheres.

4. We decompose a two-body distribution as a product of one-body distributions; that is, the states
of two particles are uncorrelated. This is the mean-field , or the molecular chaos assumption. This
decomposition may be regarded as a truncation at second order of an infinite hierarchy of equations
that describe the evolution of n-body correlation functions in terms of (n + 1)-body correlations. For
the BTE, the decomposition of the two-particle correlation function also leads to the crucial feature of
the breaking of time-reversal symmetry.

The solution of the equation hierarchy for multi-particle correlation functions has not been obtained for
any finite level of truncation, even for the simplest second-order truncation of the BTE. To make progress for
this second-order truncation, one normally resorts to the perturbative Chapman-Enskog expansion in which
the small parameter is the ratio of the mean-free path to a characteristic system size and the distribution is
expressed as a local Maxwell-Boltzmann distribution plus correction terms.

It is at this stage that we terminate our discussion of the BTE because of its technical complications
and instead turn to idealized and simpler descriptions of kinetic theory to avoid the daunting calculations
needed to deal the BTE. While these idealizations contain some element of fantasy, they are still sufficiently
grounded in the underlying kinetics that they provide useful insights about physical reality. An especially
useful simplification in this spirit is the Maxwell model . The basic feature of this model is the replace the
relative velocity inside the collision integral by a constant, a device that greatly facilitates further analysis.

This seemingly drastic approximation can also be justified physically, as a collision rate that is indepen-
dent of the relative velocity arises for a specific form of the interaction potential between molecules. Suppose
that this potential has the form U(r) = A

rn . We may then estimate the closest approach of two molecules in

equilibrium at temperature T by equating their interaction energy with the kinetic energy, A
rn = 1

2mv2 = T .

Thus r ∝ v−2/n; we may view this distance as the scattering radius of each molecule. Then the overall
collision rate has the following dependence on the relative velocity:

u
dσ

dΩ
∝ urd−1 ∼ u1−2(d−1)/n .

Thus the collision rate is independent of the relative velocity when n = 1/[2(d − 1)]. In the physical case of
d = 3, the Maxwell model corresponds to an r−4 interaction potential between molecules.

Another description is that of very hard particles in which the overall collision rate is written as the
square of the relative velocity between two molecules. Because of this quadratic interaction, the interaction
is “harder” than the hard-sphere interaction of classical kinetic theory. On the other hand, the Maxwell
model is a “softer” interaction because of the velocity-independent interaction. In fact, the Maxwell model
and very hard particles can be viewed bounds on classical kinetic theory.
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3.2 The Lorentz Gas

3.3 Inelastic Gases

While kinetic theory traditionally deals with gases whose molecules interact via elastic collisions, many new
and unexpected phenomena arise when collisions are inelastic. Perhaps the most spectacular is the large-
scale clustering and the inelastic collapse of a freely-evolving inelastic gas. At a more microscopic but still
fundamental level, the velocity distribution of inelastic gases is generally not Gaussian. We now discuss these
and related basic kinetic features of inelastic gases.

Figure 3.2: Example of inelstic clustering. The resitution coefficient is 0.6 and there are on average 500
collisions per particle. The number of particles is 40000 and the area fraction is 0.05.

where to put the statement of the origin of non-Gaussianity

Haff’s Law

Because of inelastic collisions, the mean kinetic energy, and correspondingly, the temperature decreases with
time. What is the time dependence of this cooling? Using simple ideas from kinetic theory, we can determine
this time dependence under the assumption that the gas remains spatially homogeneous. As we shall see,
homogeneity is a reasonable approximation at early times, but this naive assumption is quite wrong in the
long-time limit because large-scale density heterogeneities arise.

We estimate the cooling rate of an inelastic gas from the outcome of a typical collision. The kinetic
energy lost in an inelastic collision is ∆T = −ǫ(1 − ǫ)(∆v)2 ≈ −ǫ(∆v)2, with ∆v the relative velocity
between colliding particles. We consider the quasi-elastic limit ǫ → 0, where the spatial homogeneity
assumption is a reasonable approximation over a non-negligible time range. The typical time ∆t between
collisions is roughly ℓ/∆v, with ℓ the mean-free path. We assume that a single scale characterizes all
velocities so that ∆v ∼ v ∼

√
T . Putting these elements together, the temperature cooling rate therefore is

dT
dt ≈ −∆T

∆t ∝ −ǫT 3/2. From this rate equation, the temperature decays as

T (t) = T0(1 + cǫt)−2, (3.5)

with the constant c of the order of one. Notice that the gas remains effectively elastic T (t) ≈ T (0) for
t ≪ ǫ−1. This time range can be substantial if the dissipation by collisions is sufficiently small. Beyond this
time range, the temperature decays algebraically in time, T (t) ∼ (ǫt)−2.

Inelastic Collapse in One Dimension

In one dimension, many aspects of inelastic collapse can be quite simply understood and it is therefore
instructive to first focus on this case. In one dimension, the post-collision velocities (v1, v2) are related to
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the pre-collision velocities (u1, u2) of two approaching equal-mass particles by momentum conservation:

v1 =
1

2
(1 − r)u1 +

1

2
(1 + r)u2 ≡ ǫu1 + (1 − ǫ)u2 (3.6)

v2 =
1

2
(1 + r)u1 +

1

2
(1 + r)u2 ≡ (1 − ǫ)u1 + ǫu2,

where 0 ≤ r ≤ 1 is the restitution coefficient and, for later convenience, we define the collision parameter
ǫ ≡ 1

2 (1 − r). The restitution coefficient is defined by the incoming momenta ±p in the center-of-mass
reference frame becoming ∓rp after the collision. Setting the particle mass to one, the energy loss in a
collision is

∆E = (u2
1 + u2

2)/2 − (v2
1 + v2

2)/2 = −ǫ(1 − ǫ)(u1 − u2)
2.

The energy loss is maximal for a completely inelastic collision (r = 0, ǫ = 1/2) and vanishes for elastic
collisions (r = 1, ǫ = 0).

Consider now N particles that are initially at xi = i, i = 2, 3, . . . , N . Particle 1 is incident on particle
2 with velocity +1, leading to a subsequent series of inelastic collisions according to (3.6). How does this
deterministic system evolve with time?
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Figure 3.3: Illustration of the collision sequence for 3 unit-mass particles in one dimension. Particle 1 initially
moves at velocity +1, while particles 2 & 3 are at rest. Shown are the particle worldlines in the center-of-mass
reference frame that moves at velocity +1/3 for restitution coefficient r = 0.11 > rc(3). The trajectories
initially converge, but after the last collision between particles 1 & 2 at t ≈ 10.164, the trajectories diverge.

When there are two particles, they collide at most once. The first non-trivial case is N = 3, where a
sequence of alternating 12 and 23 collisions occurs (Fig. 3.3). Without loss of generality, let us assume that
the first collision is 12. The total number of collisions and the ultimate fate of the particles — either collapse
or diverging — depends on the restitution coefficient. It is convenient to represent the collision outcome in
matrix notation. Then after the pair of collisions 12 and 23, the post-collision velocities vi are related to the
pre-collision velocities ui by Eq. (3.6),





v1

v2

v3



 = M23M12





u1

u2

u3



 with M12 =





ǫ 1 − ǫ 0
1 − ǫ ǫ 0

0 0 1



 M23 =





1 0 0
0 ǫ 1 − ǫ
0 1 − ǫ ǫ



 . (3.7)

After 2n collisions, the particle velocities are given by v = Mnu0, where M = M23M12 and u0 is the initial
velocity vector, while after 2n + 1 collisions, the velocities are given by v = M12M

nu0. The nature of the
collisions follows from the eigenvalues of the matrix M whose values are

λ1,2 =
1

2

[

(ǫ2 + 2ǫ − 1) ±
√

(1 − 2ǫ − ǫ2)2 − 4(2ǫ − 1)2
]

, λ3 = 1.



32 CHAPTER 3. COLLISIONS
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Figure 3.4: “Bending” of a test particle as it collides inelastically to penetrate a static particle array. Particle
labels are exchanged in each collision so that particle 1 is decelerated by collisions.

When ǫ > ǫc = 2
√

3−3, corresponding to restitution coefficient r < rc = 7−4
√

3, then λ1,2 are both real with
absolute values less than 1. Consequently the particle velocities asymptotically decay as [max(|λ1|, |λ2|)]n.
Conversely for r > rc, the collision sequence terminates after a finite number as the particles ultimate diverge.

When N > 3, the collision sequence is not necessarily periodic and the matrix formulation no longer
provides the exact value of the critical restitution coefficient for collapse. However, we can give a simple
heuristic argument for the dependence of the critical restitution coefficient rc on N for large N . Consider a
test particle with speed 1 that is incident on an array of static, equally-spaced particles when the restitution
coefficient is nearly 1. After the first collision, the target particle moves with a slightly smaller speed, while
the incident particle comes nearly to rest.

It is now helpful to exchange the identities of the two particles when they collide, so that the worldline
of particle 1 is merely deflected slightly as it “passes through” particle 2. This same pattern continues in
subsequent collisions so that the initial particle worldline gradually bends as it penetrates the array (Fig. 3.4).
Let v(n) be the velocity of the initial trajectory after n collisions. From the collision rule (3.6) and accounting
for the change in particle labeling, v(1) = 1 − ǫ. Similarly, to first order in ǫ, v(n) = (1 − ǫ)n ≈ 1 − nǫ. If
n is sufficiently large, then the initial particle momentum is eventually exhausted and inelastic collapse has
occurred. Setting v(N) = 0 then yields the critical collision parameter ǫc(N) ∼ N−1 or critical restitution
coefficient

rc(N) ∼ 1 − 2

N
. (3.8)

Thus collapse occurs even for nearly elastic particles as N becomes sufficiently large — inelastic collapse
becomes inevitable in the thermodynamic limit!

Maxwell Model for Free Cooling in One dimension

Because it is not feasible to solve the inelastic collision dynamics of a gas analytically, we turn to the simpler
Maxwell model in which the collision rate is independent of particle velocities and positions — a particularly
simple version of mean-field theory. Operationally, we pick two particles at random and define them to
collide according to Eq. (3.6). Because of the simplicity of this collision dynamics, it is possible to solve the
underlying Boltzmann transport equation and determine the velocity distribution analytically.

The Boltzmann transport equation for this Maxwell model model is

∂P (v, t)

∂t
+ P (v, t) =

∫ ∫

P (u1, t)P (u2, t)δ [v − ǫu1 − (1 − ǫ)u2] du1 du2 . (3.9)

This BTE conserves both the total number of particles,
∫

P (v, t) dv = 1, and the total momentum,
∫

v P (v, t) dv =
0. Because the time between every collision is the same, the elapsed time is proportional to the average num-
ber collisions that any particle experiences up to time t.

As an instructive starting point, we study low-order moments of the velocity distribution. Multiplying
Eq. (3.9) by vn, integrating over v, and performing some straightforward algebra, the rate equations for the
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moments Mn(t) =
∫

vn P (v, t) dv are:

Ṁn + anMn =
n−2
∑

m=2

(

n

m

)

ǫm(1 − ǫ)n−mMmMn−m (3.10)

for n ≥ 1, with the coefficients an(ǫ) = 1− ǫn− (1− ǫ)n. These equations may be solved recursively, starting
with M0 = 1 and M1 = 0, and the first few non-trivial moments are:

M2(t) = M2(0)e−a2t,

M3(t) = M3(0)e−a3t,

M4(t) =
[

M4(0) + 3M2
2 (0)

]

e−a4t − 3M2
2 (t). (3.11)

The second moment quantifies velocity fluctuations through M2 ≡ T , where this equivalence defines the
effective temperature of the gas T . Since M2 decays exponentially with time, the particles continuously slow
down and eventually come to rest, with P (v) → δ(v).

In stark contrast to equilibrium statistical mechanics, however, the temperature does not characterize
the entire velocity distribution. The crucial point is that moments Mn with n ≤ 3 obey scaling, but higher
moments do not. For example, the leading asymptotic behavior of M3 is M3 ∼ e−a3t. Since an(ǫ) =

1 − ǫn − (1 − ǫ)n, with a3 = 3a2/2, one can also write M3 ∼ e−3a2/2 ∼ M
3/2
2 . Consequently, the second

moment characterizes the scaling behavior of the third moment. However, a4 < 2a2 so that the ratio M4/M
2
2

diverges as t → ∞. In general, the moments scale as

Mn ∼
{

e−na2/2 n ≤ n∗

e−ant n ≥ n∗,
(3.12)

with n∗ = 3.
This change in scaling behavior is a sign that the velocity distribution has a power-law tail, rather than

a Gaussian form. To determine the velocity distribution, we exploit the fact that the collision term in the
Boltzmann equation is a convolution, so that the Fourier transform of this term is just a product. We thereby
find that why F? also give a derivation step F (k, t) =

∫

P (v, t) eikv dv evolves according to following

derivation is too rushed
∂F (k, t)

∂t
+ F (k, t) = F ((1 − ǫ)k, t)F (ǫk, t) . (3.13)

We seek a scaling solution of the form P (v, t) = T−1/2P(w), with the scaling variable w = vT−1/2 to
account for the velocity distribution approaching its final state in a self-similar fashion. The equivalent
scaling of the Fourier transform is F (k, t) = f(z) with z = |k|T 1/2, and the two scaling functions are related
f(z) =

∫

P(w) eizw dw. Substituting the scaling ansatz into Eq. (3.13) and using the temperature decay rate
d
dtT = −ǫ(1 − ǫ)T , the scaling function f(z) satisfies the ordinary differential equation

−ǫ(1 − ǫ)zf ′(z) + f(z) = f(z − ǫz)f(ǫz). (3.14)

This equation is subject to the boundary conditions f(z) ∼= 1 − 1
2z2, that follows from F (k) ∼= 1 − 1

2k2T .
The solution to (3.14) is explain!!

f(z) = (1 + z) e−z. (3.15)

Inverting this Fourier transform, the scaled velocity distribution is2

P(w) =
2

π

1

(1 + w2)2
. (3.16)

Thus the velocity distribution of the inelastic Maxwell model gas has a power-law tail, P(w) ∼ w−4 for
w ≫ 1, whose exponent is independent of the collision parameter ǫ.

The same general approach can be pursued in spatial dimension d > 1 but the details are much more
complicated. The main point, however, is that the velocity distribution again has a power-law tail, but with
the exponent now dependent on d and the collision parameter ǫ. the

2The inverse Fourier transform of e−κz is 1
π

κ
κ2+w2

; the inverse transforms of zne−κz can be obtained using successive

differentiation with respect to κ.
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External Forcing

When energy is continuously injected into an inelastic gas, a steady state is reached as the energy input
balances the energy loss in the inelastic collisions. The most natural way to realize such an energy input
is by putting an inelastic gas in a closed container and shaking it. Experiments on this type of system
indicate that the velocity distribution generically has a non-Maxwellian tail for a host of geometries and
energy injection mechanisms. Here we discuss how to obtain this tail in the framework of the Maxwell model
of random collisions.

We model the effect of the energy input by white-noise forcing in which each particle experiences an
acceleration

dvj

dt
= ξj ,

due to random noise amplitude that has zero mean, 〈ξj〉 = 0, and no correlations in time, 〈ξi(t)ξj(t
′)〉 =

Dδijδ (t − t′). This white-noise forcing is equivalent to diffusion in velocity space with diffusion coefficient
D. To account for the external forcing, the Boltzmann equation (3.9) should be augmented by a diffusion
term in velocity space; that is

∂P (v, t)

∂t
→ ∂P (v, t)

∂t
− D

∂2P (v, t)

∂v2
.

With this additional term, the steady state velocity distribution P (v) ≡ P (v, t = ∞) now satisfies:

(

1 − D
∂2

∂v2

)

P (v, t) =

∫ ∫

P (u1)P (u2)δ [v − ǫu1 + (1 − ǫ)u2] du1 du2. (3.17)

The temperature changes according to dT/dt + 2p(1 − ǫ)T = 2D where does this come from? so the
steady state temperature is T = D/[ǫ(1 − ǫ)] and the relaxation toward the steady state is exponential,
|T − T∞| ∼ exp(−const. × t). In the steady state, the Fourier transform F (k) ≡ F (k, t = ∞) satisfies,
following (3.13):

F (k) = (1 + Dk2)−1F ((1 − ǫ)k) F (ǫk). (3.18)

To determine the large-velocity tail of the distribution, we solve (3.18) iteratively by repeatedly substi-
tuting the left-hand-side into the right-hand-side. Using the boundary conditions F (0) = 1 and F ′(0) = 0
imposed by the conservation of the total particle number and the total momentum, the solution is

F (k) =

∞
∏

l=0

l
∏

m=0

[

1 + ǫ2m(1 − ǫ)2(l−m)Dk2
]−( l

m)
. (3.19)

To extract the form of the high-velocity tail, we use the fact that the Fourier transform has an infinite series

of poles located at ±i
[

p2m(1 − ǫ)2(l−m) D
]−1/2

. The simple poles at ±i/
√

D closest to the origin imply an
exponential decay of the velocity distribution

P (v) ≃ A(ǫ)

v∗
e−|v|/v∗ (3.20)

with v∗ =
√

D when |v| → ∞ in which the dependence on the dissipation parameter appears only in the
prefactor. In the quasi-elastic limit ǫ → 1/2, A(ǫ) ∝ exp[π2/(12ǫ)].

The leading behavior of the high-energy tail can be alternatively obtained using a useful and generic
heuristic argument. For sufficiently large velocities, the gain term in the collision integral in Eq. (3.17) is
negligible. The resulting equation for the steady state distribution

D
d2

dv2
P (v) = −P (v) (3.21)

yields the exponential high-energy tail (3.20). This argument applies to arbitrary collision rates. For example,
if K(u1, u2) ∝ |u1 − u2|δ for |u1 − u2| → ∞, then the right-hand side in (3.21) becomes −|v|δP∞ implying
that P∞(v) ∝ exp(−|v|γ) with γ = 1+ δ/2. For hard spheres Boltzmann equation (δ = 1) one finds γ = 3/2.
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Another important observation is that in the quasi-elastic limit, the velocity has a substantial Maxwellian
core. In this limit, the Fourier transform (cumulant-1d) reads F (k) ∼ exp[−Dk2/ǫ], so the velocity distri-
bution is Gaussian. Comparing with the universal, dissipation-independent, tail behavior (3.20) shows that
there is a cross-over velocity v ∼ ǫ−1 marking the transition from the core to the tail. In summary,

P (v) ∼
{

exp(−ǫv2) |v| ≪ ǫ−1;

exp(−|v|) |v| ≫ ǫ−1.
(3.22)
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Figure 3.5: The steady state distribution versus the Maxwell-Boltzmann distribution. Shown is P (v) versus
v ≡ vx in the forced case for d = 2 and r = 0 (solid line). Also shown is the Maxwell-Boltzmann distribution
(3.3) (dashed line). Both distributions are normalized such that 〈v2〉 = 1. The distribution was obtained
using a Monte-Carlo simulation of the inelastic collision process with white noise forcing.

3.4 Agglomeration

A simple and beautiful model is ballistic agglomeration in which particles move in straight-line trajectories
and irreversibly stick together whenever a collision occurs. Such a model provides an idealized description
of the large-scale agglomeration of matter in the universe to form planets and stars. We start with a gas of
compact spherical objects that are randomly distributed in space, with masses mi and radii proportional to

m
1/3
i , and initial velocities vi. The initial values of mi and vi are drawn from some prescribed distributions.

When the separation between two aggregates is less than the sum of their radii, they are defined to collide
to form a larger aggregate, with the mass and the momentum conserved in the collision. That is

(m1,p1) + (m2,p2) → (m1 + m2,p1 + p2). (3.23)

The resulting aggregate is also assumed to maintain a spherical shape with a volume proportional to its
mass.

x(
t)

Figure 3.6: Illustration of ballistic agglomeration. The state of the system is illustrated at an early stage
(left) and a late stage (right).
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We anticipate that the aggregate growth proceeds in a self-similar manner, as illustrated in Fig. 3.6.
There are several heuristic arguments one can formulate to determine the time dependence of the process.
We give an argument that is based on elementary kinetic theory. A key assumption is that the momenta
of aggregates remain uncorrelated throughout the process. Consequently the momentum of an aggregate
of mass m is just the sum of m uncorrelated momenta. Thus p ∼ m ∼ m1/2 and the aggregate velocity is
v ∼ p/m ∼ m−1/2. If there exists a typical aggregate mass, then after one collision time τ , two aggregates
of approximately the same mass will meet, so that the typical mass should grow by of the order of itself.
Thus the growth of aggregates is described by the rate equation

dm

dt
∼ m

τ
. (3.24)

We estimate τ from the elementary kinetic theory criterion that a collision occurs when the density times
the volume of the collision tube swept out by the trajectory of an aggregate equals one: nℓRd−1 = 1, where
n is the aggregate density, ℓ ∼ vτ is the mean-free length, and R is the aggregate radius. Rewriting all these
quantities in terms of the typical aggregate mass we have

τ ∼ 1

nvRd−1
∼ m × m1/2 × m−(d−1)/d ∼ m(d+2)/2d .

Finally, using this dependence for τ in the rate equation (3.24), we obtain

m ∼ t2d/(d+2), v ∼ t−d/(d+2), n ∼ t−2d/(d+2) . (3.25)

Is the heuristic argument correct? Numerical simulations unambiguously support the result α = 2/3 in
one dimension. In this case, the theoretical argument stands on a firm ground: as agglomerates grow, they
encompass a growing linear segment of the initial conditions. The corresponding region in space is indeed
compact, so the constituent particles must be uncorrelated. In higher-dimensions the situation is less clear.
The exponent α = 1 certainly is close to the numerical results but recent simulations may be indicating
a departure from this law. Such a departure may be due to the blobs acquiring a nontrivial non-compact
geometry.

3.5 Jamming Traffic

An amusing application of kinetic theory is to traffic on rural highways, where often there is a single lane
in each direction with no passing allowed. As many of us have experienced, faster cars accumulate behind
slower-moving vehicles and significant clustering can arise. Each cluster is led by a slow vehicle that will
ultimate catch up to a still-slower cluster if the road is sufficiently long. We can view traffic as a one-
dimensional gas that evolves from a homogeneous to a clustered state because of the no-passing constraint.

We describe the traffic clustering phenomenon by the following idealized model. Each car has its own
intrinsic speed at which it would move on an empty road. When a faster car catches up to a slower car, both
cars subsequently move with speed the of the slower car (Fig. 3.7). Generally, when a cluster of m2 cars,
all moving at speed v2, catches up to a cluster of m1 cars moving at speed v1 < v2, the resulting “collision”
leads to a cluster of m1 + m2 cars that moves at speed v1. This clustering is described by the collision rule

(m1, v1) + (m2, v2) → (m1 + m2, v1). (3.26)

For simplicity, we assume: (i) instantaneous collisions, (ii) sizeless cars, (iii) the initial car speeds that are
drawn from an intrinsic distribution P (v, t = 0), and (iv) initial car spacings are drawn from an independent
exponential distribution with mean spacing equal to 1. Once the initial car speeds and positions are specified,
traffic evolves deterministically according to the collision rule (3.26). The only source of randomness is the
initial conditions. We are interested in the properties of the traffic, averaged over all initial configurations,
or alternatively, in an infinite-size system.

Let’s begin by giving a heuristic argument to obtain the basic characteristics of clustered traffic, namely,
the time dependence of the typical cluster mass m, the typical separation between clusters ℓ, and the
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Figure 3.7: Traffic with no passing. Shown are the world lines of position x versus time t for initially
unclustered traffic.

typical cluster speed v. As we shall see, these quantities are determined by the behavior of the initial speed
distribution of the slowest cars. As a general example, let us assume the initial distribution of speeds3

P (v, 0) ∼ a vµ (3.27)

as v → 0.
On dimensional grounds, the quantities ℓ and v are related by ℓ ∼ vt. Because the separation between

clusters should scale as the inverse of the concentration of clusters, which, in turn, is proportional to their
inverse mass, we also have ℓ ∼ m−1. Now let’s relate the mass and speed of a cluster. Consider a car
with speed v. The probability that a cluster of size k forms behind this car is given by P<P k

>, where
P< =

∫ v

0 P (v′, 0) dv′ and P> = 1 − P< are the respective probabilities to find a car with speed less than or
greater than v. Then the average size 〈m(v)〉 of the cluster behind a car of speed v is

〈m(v)〉 =

∞
∑

k=1

k P< P k
> =

P>

P<
.

For the power-law initial speed distribution P (v, 0) ∼ avµ as v → 0 , we then find 〈m(v)〉 ∼ v−1−µ. Finally,
we combine this relation with m ∼ vt to find

m ∼ tα α =
µ + 1

µ + 2

v ∼ t−β β =
1

µ + 2
. (3.28)

The decay exponents satisfy the scaling relation α + β = 1 which merely reflects the dimensions of the basic
relations ℓ ∼ vt and ℓ ∼ m−1.

Now let’s turn to the speed distribution of clusters. For simplicity, consider first the special case where
cars have only 2 possible speeds, v1 and v2, with respective probabilities P1(0) and P2(0). Slow cars never
catch any other vehicle, so their density is conserved, P1(t) = P1(0). Fast cars move at their intrinsic speed
v2 before colliding a slower car. To avoid a collision up to time t, a fast car must have a segment of length
(v2 − v1)t ahead of its initial position that is free of slow cars. Since the initial spatial distribution of cars
is random, this exclusion probability decays exponentially with the interval length exp[−P1(0)(v2 − v1)t)].
Therefore, the density of the faster cars is

P2(t) = P2(0) exp [−P1(0)(v2 − v1)t] . (3.29)

Now consider traffic with cars that move at three distinct intrinsic speeds v1 < v2 < v3. Clusters with
speeds v1 and v2 are simply unaffected by the presence of faster cars so the previous conclusions for their
densities P1(t) and P2(t) hold! On the other hand, for a fast car to maintain a speed v3, it must avoid
colliding with both clusters of speeds v1 and v2. The probability for these two independent events is given
by a product of the two “exclusion probabilities”

P3(t) = P3(0) exp[−P1(0)(v3 − v1)t] exp[−P2(0)(v3 − v2)t]. (3.30)

3Without loss of generality, we subtract the speed of the slowest car from all speeds so that the minimum speed is 0.
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We may now generalize the cluster speed distribution for an arbitrary initial speed distribution:

Pn(t) = Pn(0) exp

[

−t

n−1
∑

i=1

Pi(0)(vn − vi)

]

, (3.31)

where Pn(0) is the probability that a car has an initial speed vn for a discrete set of speeds {vn}, with
v1 < v2 < v3 < . . .. In the continuum limit, Eq. (3.31) now becomes

P (v, t) = P (v, 0) exp

[

−t

∫ v

0

dv′ (v − v′)P (v′, 0)

]

. (3.32)

Thus the density of cars of any positive speed decays exponentially in time, with a decay rate that is a
growing function of v — the faster the intrinsic speed of a car, the more likely it will become stuck behind
a bus.

We can express Eq. (3.32) in a Boltzmann-like form by differentiating the logarithm of this equation with
respect to time to give the linear evolution equation

∂P (v, t)

∂t
= −P (v, t)

∫ v

0

dv′(v − v′)P (v′, 0). (3.33)

As in the classic Boltzmann equation (3.4), there is an integration over all possible collision partners with
speeds v′ < v in which the collision rate is proportional to the relative speed |v − v′|. There does not exist,
however, a gain term because a cluster of a given speed cannot be created if it doesn’t already exist. However,
traffic theory has a fundamental difference with classical kinetic theory. The evolution equations of traffic,
Eqs. (3.32) of (3.33) are non-local in time because of the perpetual memory of the initial conditions: the
speed distribution at time t is expressed in terms of the initial speed distribution. paragraph incomplete

Substituting the initial distribution of speeds P (v, 0) ∼ a vµ as v → 0. in Eq. (3.32), we find, in the
long-time limit,

P (v, t) ∼ a vµ exp(−btvµ+2), (3.34)

with b = a/[(µ + 1)(µ + 2)]. Notice that the speed distribution can be written in the scaling form

P (v, t) ≃ tβ−αΦ(vtβ). (3.35)

However, the speed distribution near v = 0 is an invariant of the dynamics. No matter how long the time,
a small number of cars have yet to encounter still slower cars and P (v, t) ∼ P0(v) for these slow cars. From
this speed distribution, the leading asymptotic behaviors of the concentration, c(t) =

∫

P (v, t) dv, and the
average speed, 〈v(t)〉 = c−1

∫

v P (v, t) dv, are simply

c(t) ∼ At−α with A = (µ + 1)bβΓ(α), α =
µ + 1

µ + 2

〈v(t)〉 ∼ B t−β with B =
b−β

Γ(α)
, β =

1

µ + 2
. (3.36)

The asymptotic behavior reflects the initial conditions very strongly. The exponents are non-universal and
are dictated by a particular aspect of the initial conditions, namely, the form of the distribution of the slowest
cars. This of course reflects the nature of the collision rule as the slowest cars (unfortunately) govern the
congestion.

I don’t know how to derive the correlation function. Moreover, the joint probability density
P2(v, v′; t), the probability of finding two particles of speed v and speed v′ at time t, can be read immediately
from the integrand

P (v, v′; t) = P (v>, t)P (v<, 0) (3.37)

with v> = max(v, v′) and v< = min(v, v′). This joint density differs from the traditional mean-field theory
(the stossansatz) where P (v, v′; t) = P (v, t)P (v′, t). Such factorization does not hold because spatial correla-
tions build-up dynamically. Even though the initial state contains no correlations between the speeds of the
particles and their positions, such correlations do eventually develop. Intuitively, space-speed correlations
may reflect regions where particles have very close speeds and thus experience very few collisions due to this
“shielding” effect.
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Problems

1. Verify the general behavior of the moments quote in Eq. (3.12) for the one-dimensional inelastic gas by exploiting
the inequality an < am + an−m for all 1 < m < n − 1.inelastic.

2. Large moment as a characteristic of the tails of the distribution. Show that the for the 1D freely cooling
inelastic Maxwell model, kinetics of large moments limn→∞ Mn(t) coincide with the behavior of the tail of the
distribution limv→∞ P (v, t).

3. The quasi-elastic limit as a singular perturbation. Expand the rate equation (3.13) to first order in ǫ and then
solve it. Show that the emerging solution remembers the initial conditions forever.

4. Development of singularities in compact velocity distributions. Express the Fourier transform F (k, t) explicitly
in terms of the initial distribution F0(k). Introducing the transformations G(k, t) = etF (k, t) and τ = 1− e−t,
reduce the evolution equation (3.13) to Gτ (k) = G(ǫk)G(k − ǫk) and express then, express the solution as a
formal Taylor series in powers of τn.

5. Estimating the large-velocity tail σ. Find the leading asymptotic behavior of the exponent σ as d → ∞. To
perform this asymptotic analysis, note that for large dimensions, the integral 〈η(σ−d)/2〉 vanishes exponentially
with the dimension d and then write σ/d = f(ǫ).

6. Obtain the solution (cumulant-1d) from the solution (3.19).

Solutions

1. The large moments decay universally as Mn ∼ exp(−t) because an → 1 as n → ∞. For the tail of the velocity
distribution, the gain term is negligible in the rate equation (3.9) (Intuitively, large velocities can only shrink
due to collisions). Thus, d

dt
P (v, t) = −P (v, t) and the large-v tail of the velocity distribution also decays as

P (v, t) ∼ P (v, 0) exp(−t).

2. The equation is Ft + pkFk = 0 and using the method of characteristics, the solution is F (k, t) = F0(ke−pt). It
remembers the initial conditions forever, in contradiction with the similarity solution (3.16).

3. The formal Fourier expansion reads F (k, t) = e−t P

∞

n=0
(1−e−t)n

n!
Fn(k). The expansion functions Fn(k) are

obtained from the recursion relation Fn+1(k) =
Pn

m=0

`

n
m

´

Fm(k − ǫk)Fn−m(ǫk) and F0(k) ≡ F (k, t = 0).

The expansion functions are products of F0 with stretched arguments of the form kǫl(1 − ǫ)m. This implies
that starting from a compact initial distribution P (v, 0), the velocity distribution P (v, t) develops a set of
singularities. For instance, a distribution with support in [−v0, v0] becomes non-analytic at an infinite set of
points vl,m = ±ǫl(1 − ǫ)mv0.

4. f(ǫ) =
1+ 3

2
ǫ−ǫ3−ǫ1/2(1+ 5

4
ǫ)1/2

ǫ(1−ǫ2)
.

5. Assume that the restitution coefficient is randomly chosen according to the distribution f(ǫ). Generalize
Eq. (refroot).

1. Heuristic derivation of extremal statistics. Evaluate the limiting behaviors of the scaling function Φ(z) in
Eq. (3.35) when z → 0 and z → ∞. This scaling form is consistent with the exact solution (3.32) with the
scaling function (problem 2)

Φ(z) = azµ exp [−bzµ] . (3.38)

2. Evaluate the cluster size distribution P (v, t) and the cumulative distribution Qm(v, t) for the special case
P0(v) = e−v. Show that the result is consistent with the general scaling behavior.

3. Uniform final distribution. Obtain the initial speed distribution P0(v) and the flux for the final speed distri-
bution P (v) = c for 0 < v < 1. What is the corresponding µ?

4. What is the scaling distribution in the ballistic aggregation model. Evaluate the tail of the speed distribution
using the Lifshitz tail argument.

Solutions

1. The limit z → 0 is discussed in the text, P (v, t) ≃ P0(v). The limit z → ∞ is obtained from the Lifshitz tail
argument (see matters of technique and freely cooling inelastic gases) by noting that P (v, t) ∼ exp(−Ct) for
fast particles. An interval of the length t has to be empty ahead in the initial configuration.
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2. The cluster size distribution is P (v, t) = exp[−v − t(e−v + v − 1)]. The cumulative distribution is

Qm(v, t) = P (v, t)e−(m−1)vtn−1 Γ(t + 1)

Γ(t + m)
.

These solutions are consistent with the scaling behavior for the case a = 1 and µ = 1.

3. The initial speed distribution is P0(v) = R−1 + 1
2
cv2. The flux is J = [(3 + λ)

√
λ tan−1

√
λ + λ − ln(1 + λ)]/R

with λ = 1
2
Rc = 3

2
[
p

1 + 2R/2 − 1]. The corresponding µ = 2 and J ∼ R−1/4.

4. The speed distribution has the scaling form P (v, t) ≃ t−α+dβΦ(vtβ). The tail of the speed distributing is
Φ(z) ∼ exp(−zγ) with γ = d+2

d
.


