
Chapter 8

COARSENING

In the previous chapter, we discussed the coarsening of kinetic Ising models starting from an initial ho-
mogeneous high-temperature phase and suddenly lowering the temperature (quenching) below the critical
temperature. The ensuing coarsening is complex (see Fig. 7.6), and considerable effort has been devoted to
developing simpler continuum descriptions. While we lose a direct connection to individual spins in such a
formulation, continuum theories, while still quite formidable, are typically simpler than their discrete coun-
terparts. We will investigate some of the simplest geometries for coarsening dynamics that can be solved
explicitly. This includes freely diffusing interfaces in the absence of interactions, the single domain wall, and
a droplet of one phase that is immersed into another phase. For such cases, many aspects of the evolution
can be found analytically. For the more generic case of a random initial condition, the continuum approach
provides many new insights that seem to be impossible to obtain by a description at the level of individual
spins.

8.1 The Models

We tacitly assume that the order parameter is a scalar, and will state otherwise explicitly. We generally have
in mind magnetic systems and will use the terminology associated with such systems. However, this usage is
more reflective of tradition rather than the dominant application of coarsening. Even for the simplest case of
systems with a scalar order parameter, the distinction between non-conservative and conservative dynamics
is crucially important, and we now outline the generic models of these two dynamics.

Non-conservative dynamics

The basic ingredients that underlie non-conservative Landau-Ginzburg dynamics are the following:

• We deal with a continuous coarse-grained order parameter, or magnetization, m(x, t) rather than a
binary Ising variable σ = ±1 by defining m(x, t) ≡ ℓ−d

∑
σ. That is, m(x, t) is the average magne-

tization in a block of linear dimension ℓ; the sum runs over the ℓd spins in the block centered at x.
Here ℓ should be much greater than the lattice spacing a and much smaller than the system size L.
These restrictions give a coarse-grained magnetization that varies smoothly on a scale greater than ℓ
that can accommodate a non-trivial spatial dependence. This coarse-graining is appropriate over the
time range where the typical domain size is much larger than ℓ and much smaller than L.

• We describe the thermodynamics of the system by the coarse-grained Landau free-energy functional

F [m(x)] =

∫ [
1

2
|∇m(x)|2 + V (m(x))

]
dx, (8.1)

where the potential V (m) has a double-well structure with minima corresponding to the equilibrium
states. The standard example is V (m) = 1

2 (1 − m2)2 for systems with two degenerate minima; we
always assume that the minima occur at m = ±1 and that V (±1) = 0. While this coarse-grained
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free energy is intuitively plausible — it combines the Landau mean-field theory with the lowest order
contribution due to spatial variation of the order parameter — it is not possible to derive Eq. (8.1)
from first principles starting with a microscopic model, such as the Ising model.

• The final step in constructing a coarse-grained dynamical description is also phenomenological: we
simply assert that the order parameter changes at a rate that is proportional to the local thermodynamic
force δF

δm(x,t) , where δ
δm(x,t) denotes the functional derivative with respect to m at position x. Thus

we are considering overdamped dynamics because there is no second time derivative in the equation of
motion. This assumption is equivalent to ignoring inertia. Absorbing a coefficient of proportionality
into the time scale, we thus arrive at the time-dependent Ginzburg-Landau (TDGL) equation

∂m

∂t
= − δF

δm
= ∇2m − V ′(m). (8.2)

The TDGL equation is one of the central equations of coarsening.

There are three important aspects of the TDGL equation that merit emphasis. First, even though the
TDGL equation is widely accepted and used, this dynamics is impossible to derive from a microscopic theory,
such as the Ising-Glauber model. Second the TDGL equation is purely dissipative. This feature can be easily
shown by computing the change in the free energy as a function of time:

dF

dt
=

∫
δF

δm

∂m

∂t
dx = −

∫ (
δF

δm

)2

µdx ≤ 0.

Thus a system governed by the TDGL equation simply “flows” down the free energy gradient until one of
the two potential minima is reached. A third important point is that the TDGL equation has a natural
interpretation as a reaction-diffusion process. For the standard potential V (m) = 1

2 (1 − m2)2, the explicit
TDGL equation is:

∂m

∂t
= ∇2m + 2m(1 − m2). (8.3)

If we view m as a density, then the above equation describes the evolution of a diffusing population of
particles that give birth, m → 2m, and undergo 3-body coalescence, 3m → m. The rate equation for this
reaction, dm

dt = 2m − 2m3, has an unstable fixed point at m = 0 and a stable fixed point at m = 1. When
diffusion is included, the resulting equation of motion (8.3) describes the infiltration of a stable high-density
phase (m = 1) into a low-density (m = 0) region. In fact, Eq. (8.3) is just one example of the family of
self-regulating reactions of the form

∂m

∂t
= ∇2m + f(m), (8.4)

with f(0) = f(1) = 0, f(m) > 0 for 0 < m < 1, and f(m) having a single maximum in the range [0, 1].
The most famous of this class of equations arises when f(m) = m(1 − m), and is known as the Fisher-
Kolmogorov-Petrovsky-Piscounov (FKPP) equation (see the highlight below).
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The FKPP Equation

The FKPP equation
∂A

∂t
= D∇

2A + kA(N − A), (8.5)

describes the evolution of a diffusing population where individuals give birth (A → A + A) and
quadratically self-regulate (A + A → A). If spatial fluctuations are neglected, then in the resulting
rate equation, Ȧ = A(N − A), there is a stable fixed point when A = N and an unstable fixed
point for A = 0. Here N should be viewed as the maximum number of particles that can be
accommodated on a single site in the lattice version of the reaction. Starting with any non-zero
density in a finite system, a final density of N is reached. An important example for population
biology is the case where A = N in the half-space x < 0 and A = 0 for x > 0. By diffusion alone,
the sharp interface between these two regions would become smoother. However, because of the
interplay between diffusion and reaction, the stable high-density phase propagates as a stationary
wave into the low-density phase.

Let’s study the basics of this wave propagation in one dimension. Proceeding in a naive way, we
assume that the stable state infiltrates as a stationary propagating wave. As a preliminary, it is
useful to rescale the density by A → A/N , time by t → kt, and then the length by x → x

p

k/D to
non-dimensionalize the FKPP equation to ∂A

∂t
= ∇

2A + A(1−A). The simplest assumption is that
the leading edge of this wave decays exponentially with position:

A(x, t) ∼ e−λ(x−vt) .

Substituting this form into Eq. (8.5) and dropping the non-linear term that is negligible at the
leading edge of the wave, we obtain the dispersion relation

v = λ +
1

λ
.

Thus the velocity ostensibly depends on λ and we can only surmise that v ≥ 2. The equation
of motion does not provide any information about which velocity is selected. Nature appears to
be wise, however, and typically “selects” the minimum velocity vmin = 2 that arises when λ = 1.
In fact, for most “reasonable” initial conditions, this minimum velocity is the one that is actually
selected.

More precisely, if the initial density decays as e−λ0x with λ0 > 1, then the leading edge of the wave

asymptotically evolves to an exponential with decay parameter λ = 1 and velocity v = vmin. We call

such wavefronts “sharp”. On the other hand, if λ0 < 1, then the leading edge of the wave preserves

this slower decay, e−λ0(x−vt), and the velocity is v = λ0 +λ−1
0 > vmin. However, this behavior is still

not the full story! A more complete analysis for the FKPP equation shows that for an initially sharp

wavefront the velocity slowly approaches its asymptotic value as v(t) = vmin(1 − 3/Nt). Moreover,

in the leading edge of the wave, the density is small and there is no reason that the evolution

of the first few invaders can even be described by a continuum equation. If one accounts for the

discrete nature of the particles, then the wave velocity is reduced compared to the continuum value:

v = vmin(1 − π2/ ln2 N) — surprisingly rich behavior from such a basic equation of motion.

Conservative dynamics

In two-component alloy systems, the natural order parameter is the difference in the concentration of the
two constituent elements. By its construction, this order parameter is conserved in an isolated piece of alloy.
Thus dynamics different from the TDGL is needed to account for this microscopic conservation of material.
At a phenomenological level, we seek a governing dynamical equation that ensures that the flux of atoms of
each element of the alloy can be expressed in the form of a (conserved) continuity equation

∂m

∂t
+ ∇ · J = 0, (8.6)

where we again consider overdamped dynamics so that the equation of motion is first order in time. In
Eq. (8.6), the flux vector J should depend on the order parameter through the free energy (8.1). The
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simplest choice that is both conservative and involves simple gradient flow is J ∝ −∇ δF
δm . We again absorb

the proportionality factor into the time scale to then obtain the equation of motion

∂m

∂t
= ∇2 δF

δm
= −∇2

[
∇2m − V ′(m)

]
. (8.7)

This is the Cahn-Hilliard (CH) equation for zero-temperature conservative dynamics.
The absence of thermal noise in Eqs. (8.2) & (8.7) suggests that we are effectively dealing with systems

at zero temperature. To phenomenologically model the behavior at a positive temperature, we should add
a (Langevin) noise term to the right-hand side of (8.2) or (8.7). There is a belief that this additional term
should not change qualitative dynamical behavior as long as the temperature is below the critical temperature
Tc. This belief boils down to the hypothesis that under renormalization, there are three possible behaviors:

• zero-temperature dynamics in which dynamical behavior is essentially the same for all T < Tc;

• critical dynamics (T = Tc);

• infinite-temperature dynamics in which the dynamical behavior for all T > Tc are essentially the same,
and trivial.

In this chapter, we will discuss zero-temperature dynamics because this case embodies many of the
outstanding issues associated with coarsening. Typically, one starts with the initial temperature Ti = ∞
where the system is completely disordered and quenches the system to Tf = 0. The coarse-grained form of
this disordered initial condition is

〈m(x, 0)〉 = 0, 〈m(x, 0)m(x′, 0)〉 = δ(x − x′). (8.8)

Thus the mathematical challenge is to determine the long-time behavior of the solutions of the deterministic
nonlinear partial differential equations (8.2) and (8.7) subject to the random initial conditions (8.8).

8.2 Free Evolution

Numerical and analytical work has clearly shown that the solutions of (8.2) and (8.7) exhibit scaling, i.e., a
scale-invariant coarsening domain mosaic morphology develops at late times. This morphology is (statisti-
cally) independent of time when all lengths are rescaled by the typical domain size L(t). This length scale
grows algebraically with time, L(t) ∼ tz, with a nearly universal dynamical exponent z:

z =

{
1/2 (TDGL);

1/3 (CH);
(8.9)

for systems with a scalar order parameter. One important exception to Eq. (8.9) is one dimension, where
we shall derive that domains grow logarithmically in time for the TDGL equation, L(t) ∼ ln t, so that the
dynamical exponent z = 0.

As always, scaling greatly simplifies the description of the dynamics. The evidence in favor of scaling
is compelling, but it has not been proven except for the TDGL in one dimension and for a small class of
microscopic models, such as the one-dimensional Ising-Glauber model and the n-vector model with n = ∞.
It is therefore important to show that scaling arises in the TDGL and the CH equations, even for an
oversimplified setting. Such an example is provided by the toy model where the potential vanishes, V (m) = 0.
The dynamical equation then reduces to the diffusion equation, ∂m

∂t = ∇2m, for a non-conserved order

parameter, and to the bidiffusion equation, ∂m
∂t = −∇4m, for a conserved order parameter. In these cases,

the presence of a single growing length scale, L(t) ∼ t1/2 (TDGL), and L(t) ∼ t1/4 (CH), is obvious from
dimensional analysis (see the subsections on dimensional analysis and scaling in Sec. 1.1 for further discussion
of this point).

If a spin system is initially in the random state specified by Eq. (8.8), then the magnetization remains
zero throughout the evolution. We therefore need two-body correlation functions to investigate the nature of
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the coarsening; we already encountered this same issue in our study of the voter model and the Ising-Glauber
model in the previous chapter. We thus define the two-body correlation function

C(r1, t1, r2, t2) ≡=
〈m(r1, t1)m(r2, t2)〉√
〈m2(r1, t1)〉 〈m2(r2, t2)〉

(8.10)

to probe the domain structure at two different space-time points. Our choice for the normalization makes
the correlation function dimensionless. For simplicity, we use the shorthand 1 ≡ (x1, t1) and 2 ≡ (x2, t2).
Translational invariance implies that C(1, 2) = C(r, t1, t2) with r = r1 − r2. It is also useful to explicitly
study the autocorrelation function A(t1, t2) = C(0, t1, t2) that measures the probability that the sign of the
magnetization coincides at times t1 and t2.

Let’s begin by investigating coarsening in the potential-free TDGL (diffusion) equation

∂m

∂t
= ∇2m (8.11)

for the random initial condition of Eq. (8.8). The solution is

m(r1, t) =
1

(4πt)d/2

∫
m(z1, 0) e−(r1−z1)2/4t dz1.

Then the average of the product of the magnetization at two different space-time points is

〈m(r1, t1)m(r2, t2)〉 =
1

[(4π)2t1t2]d/2

∫ ∫
〈m(z1, 0)m(z2, 0)〉︸ ︷︷ ︸

δ(z1−z2)

e−(r1−z1)2/4t1 e−(r2−z2)
2/4t2 dz1dz2

=
1

[(4π)2t1t2]d/2

∫
e−(r1−z)2/4t1 e−(r2−z)2/4t2 dz

=
1

[(4π)2t1t2]d/2

∫
e−r2

1
/4t1 e−r2

2
/4t2 e−z2(1/4t1+1/4t2) ez·(r1/2t1+r2/2t2) .

We perform the integral in the last line by completing the square in the exponential to give

〈m(r1, t1)m(r2, t2)〉 =
1

[4π(t1 + t2)]d/2
e−(r1−r2)

2/4(t1+t2) . (8.12)

Finally, the normalized two-body correlation function defined by Eq. (8.10) is

C(1, 2) =

[
2
√

t1t2
t1 + t2

]d/4

e−(r1−r2)
2/4(t1+t2) . (8.13)

Let’s now study coarsening for the potential-free CH (bidiffusion) equation

∂m

∂t
= −∇4m . (8.14)

Notice that the right-hand side now has a minus sign. The simplest way to solve the bidiffusion (and the diffu-
sion) equations is with Fourier transforms. Using the Fourier expansion m(r, t) = (2π)−d

∫
m̂(k, t) e−ik·r dk

reduces (8.14) to an algebraic equation whose solution is simply m̂(k, t) = m̂0(k) e−k4t, with m̂0(k) ≡
m̂(k, t = 0). Inverting this Fourier transform gives

m(x, t) = (2π)−d

∫
m̂0(k) e−ik·x−k4t dk. (8.15)

For the white noise initial condition, the initial value of the correlation function in Fourier space is just

〈m̂0(k)〉 = 0, 〈m̂0(k) m̂0(k
′)〉 = (2π)dδ(k + k′). (8.16)
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Using these facts, the mean-square magnetization 〈m2(x, t)〉 can be immediately found from Eqs. (8.8),
(8.15), & (8.16), and the result is:

〈m2(x, t)〉 = (2π)−d

∫
e−2k4t dk = Bd(2t)−d/4 , (8.17)

where Bd = (2π)−dΩdΓ(d/4)/4, Ωd = 2πd/2/Γ(d/2) is the area of the unit sphere in d dimensions, Γ is the
Euler gamma function, and the subscript d refers to the spatial dimension of the system.

Similarly, the correlation function is

〈m(1)m(2)〉 = (2π)−d

∫
e−ik·r−k4(t1+t2) dk . (8.18)

When spatial points coincide, r = 0, we obtain the autocorrelation function

A(t1, t2) =

[
2
√

t1t2
t1 + t2

]d/4

, (8.19)

which has the same form for both the diffusion [Eq. (8.13)] and the bidiffusion equation. If the spatial points
are different, r1 6= r2, we perform the integral in Eq. (8.18) by introducing spherical coordinates in k-space
for d ≥ 2 so that k · r = kr cos θ and dk = kd−1 Ωd−1 sind−2 θ dθ dk to give

〈m(1)m(2)〉 =
Ωd−1

(2π)d

∫ ∞

0

kd−1 e−k4(t1+t2) Fd(kr) dk ,

where

Fd(u) =

∫ π

0

(sin θ)d−2 e−iu cos θ dθ .

This integral may be readily determined for d ≤ 3 and the two-body correlation function C(r, t1, t2) is:

C(r, t1, t2) =






2(4t1t2)
1/8

Γ(1/4) r

∫ ∞

−∞
cos q e−q4τ dq d = 1;

4(4t1t2)
1/4

√
π r2

∫ ∞

0

q I0(q) e−q4τ dq d = 2;

2(4t1t2)
3/8

Γ(3/4) r3

∫ ∞

0

q sin q e−q4τ dq d = 3.

(8.20)

In these equations, we use shorthand notations q = kr, τ = (t1 + t2)/r4, and I0 is the modified Bessel
function of order 0.

Finally, the temporally normalized correlation function G(r, t1, t2) ≡ C(r, t1, t2)/A(t1, t2) is a function of a
single scaling variable τ (here the term “temporally normalized” reflects the property G(0, t1, t2) ≡ 1). This
single-parameter scaling is a peculiarity of the toy model rather than a universal rule; generally, rotational
symmetry and dynamical scaling would imply that G(r, t1, t2) is a function of two variables. Finally at equal
times t1 = t2 = t, both correlation functions C(r, t, t) and G(r, t, t) reduce to the equal-time correlation
function G(τ) which is the function of the single scaling variable τ = 2t/r4. For the potential-free CH
equation, the precise form of the equal-time correlation function G(τ) is

G(τ) =






2τ1/4

Γ(1/4)

∫ ∞

−∞
cos q e−q4τ dq d = 1;

4τ1/2

√
π

∫ ∞

0

q I0(q) e−q4τ dq d = 2;

2τ3/4

Γ(3/4)

∫ ∞

0

q sin q e−q4τ dq d = 3.
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8.3 Case Studies in Non-Conservative Dynamics

We now turn to explicit solutions of the basic equations of motion. Because domain interfaces in coarsening
are geometrically complex, we first study the simplest settings that admit an exact analysis yet still allow
for non-trivial dynamics. There are several classical such examples, such as a single domain wall and a
single spherical droplet. We also discuss additional examples that are not so widely appreciated yet are
rich laboratories to develop understanding. These include a single finger, a single wedge, and an isolated
shrinking grain.

Straight domain wall

The simplest example of an interface is a straight domain wall. For the discrete Ising-Glauber model, this flat
interface is trivial because it is merely a step function. For the continuum TDGL equation, a flat interface
is a bit more interesting because the coarse-grained magnetization has a non-trivial spatial variation across
the interface. Since a flat interface is stationary, the TDGL equation reduces to the ordinary differential
equation for the order parameter

d2m

dx2
= V ′(m), (8.21)

subject to the boundary conditions m(±∞) = ±1 that lead to the domain wall being stationary.

m

−V(m)

(a)

x

m

+1

−1

(b)

Figure 8.1: (a) The effective potential −V (x) = − 1
2 (1 − m2)2 and the motion of the analogue particle that

corresponds to a single kink. The particle starts at the top of the left maximum at m = −1 and moves
without dissipation until it eventually stops at the maximum at m = +1. (b) The corresponding dependence
of m on x.

Before solving (8.21), we emphasize a neat interpretation of the domain wall in terms of classical mechan-
ics: Treating x as the time variable and m as the coordinate, we see that the problem is equivalent to the
motion of a fictitious, analogue unit-mass particle in the potential −V . The energy of this analogue particle

E =
1

2

(
dm

dx

)2

− V (m) (8.22)

does not change with “time” x. The boundary conditions imply that the total energy equals zero. Thus
dm
dx =

√
2V (m), or

x =

∫ m(x)

m(0)

dµ√
2V (µ)

, (8.23)

where it is customary to set the “initial condition” to be m(x = 0) = 0; this then corresponds to the “energy”
E = 0. For the classic potential V (m) = 1

2 (1 − m2)2, the domain wall profile from solving (8.23) is then

m(x) = tanhx . (8.24)

This solution is known as a “kink” in a φ4 theory. The width of this kink is of the order of 1, while its free
energy density is

1

2

(
dm

dx

)2

+ V (m) = 2V (m(x)) =
1

cosh4 x
, (8.25)
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and the total free energy per unit area, that is, the surface tension, is

σ =

∫ ∞

−∞
2V (m) dx =

∫ ∞

−∞
2V (m)

(
dm

dx

)−1

dm =

∫ 1

−1

√
2V (m) dm =

4

3
. (8.26)

Within the classical mechanical analogy, the governing equation (8.21) can be derived by minimizing the
“action”

∫ ∞

−∞

[
1

2

(
dm

dx

)2

+ V (m)

]
dx,

and because the kinetic and potential energies are equal, the action associated with the analogue particle
coincides with the surface tension.

The mechanical analogy provides many useful insights about the phase behavior of a system in situations
where an analytical description of domain walls is not feasible. For example, suppose that the initial condition
is a combination of two static solutions, such as a kink-antikink configuration. That is, the order parameter
starts at m ≈ −1 for x → ∞ and increases to m ≈ +1 over some intermediate range of x, and then returns to
the value m ≈ −1 for x → +∞. Can such a configuration be stable? Within the mechanical analogy, we are
asking if it is possible for the analogue particle to start at the maximum at m = −1, move to the maximum
at m = +1, and then return to the maximum at m = −1 (see Fig. 8.1). Clearly this motion is impossible,
so we conclude without calculation that a kink-antikink pair cannot be stable. Numerical simulations show
that the kink and antikink slowly move toward each other and eventually annihilate. We shall analyze this
motion later in this chapter.

Another useful aspect of the mechanical analogy is that it can characterize all possible one-dimensional
stationary solutions that correspond to a finite free energy per unit area. For any potential function, the
analogue particle (i) must start at one maximum of the potential [−V ] at “time” x = −∞ and reach another
maximum of the potential [−V ] at x = ∞, and (ii) if the maxima are different, they must be adjacent. Thus
for potentials with two degenerate minima (at m = ±1) there are two types of static solutions — a kink and
an antikink — that we symbolically denote as [−1, 1] and [1,−1], respectively. Similarly for potentials with
three three degenerate minima (for example, a 3-state spin system with minima at m = ±1 and m = 0)
there are four types of static solutions: [−1, 0], [0,−1], [1, 0], [0, 1]. A domain wall of the form [−1, 1] cannot
occur. To be concrete, for the potential V (m) = 1

2 m2 (1−m2)2, the exact static solutions of Eq. (8.23) that
separate the phases with m = 0 and m = ±1 are

m(x) = ±
(
1 + e±x

)−1/2
. (8.27)

Higher dimensions

Perhaps the simplest interface dynamics example in higher dimension is the evolution of a small droplet of
one phase with m = −1 in a sea of the opposite phase with m = +1. From the perspective of individual spins,
we expect that a small cluster of minority spins will be overwhelmed by the large majority of oppositely-
oriented spins. This is precisely what happens in the continuum picture. Moreover, the consideration of
a small droplet avoids all the complexities associated with the tortuous interface between two competing
phases, as the droplet becomes spherical as it shrinks to zero at long times.

Since the droplet shrinks, we must use the full time-dependent TDGL equation to describe its evolution.
Due to spherical symmetry, the TDGL equation (8.2) simplifies to:

∂m

∂t
=

∂2m

∂r2
+

d − 1

r

∂m

∂r
− V ′(m). (8.28)

Provided that the droplet radius R greatly exceeds the interface width, we anticipate that the magnetization
has the form m(r, t) = f(r − R(t)). Substituting this ansatz into (8.28) and defining x = r − R(t) gives

f ′′ +

(
d − 1

r
+

dR

dt

)
f ′ − V ′(f) = 0. (8.29)
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Let’s now multiply this equation by f ′ and integrate with respect to x through the interface. For a large
droplet, the interface is relatively sharp and localized to a narrow region around a value R(t). Consequently,
we can set the lower limit of the integral, −R, to −∞. This gives

(f ′)2
∣∣∣
∞

−∞
+

∫ ∞

−∞

(
d − 1

r
+

dR

dt

)
(f ′)2 dx − V (x)

∣∣∣
∞

−∞
= 0. (8.30)

We now use the fact that f(x) changes suddenly from −1 to 1 near x = 0 (corresponding to r = R(t)), so
that f ′ is sharply peaked near the origin. Thus the first term vanishes. Similarly, the last term is zero, since
the potential has the same value at x = ±∞. Finally, the integral is non-zero only very close to x = 0 and
we may replace the integrand by its value at r = R to give

d − 1

R
+

dR

dt
= 0. (8.31)

Solving this equation gives the fundamental result that a small droplet shrinks as R2 = R2
0 − 2(d − 1)t, so

that the time τ for a droplet to disappear is τ ∝ R2
0.

The virtue of this focus on the interfacial region is that, instead of the unsolvable TDGL equation (8.28),
we obtain a more tractable equation for the interface dynamics. This simplified description of interface
dynamics applies for an arbitrarily complex domain geometry, provided that the characteristic length scale
associated with the interface morphology greatly exceeds the interface width. This construction is partic-
ularly simple in two dimensions. Locally an interface has a curvature 1/R and therefore the interface can
be approximated by a circle of radius R. As a result, the velocity normal to the interface is v ≈ −1/R.
Generally in d dimensions, the interface is a (d−1)-dimensional manifold and we denote by R1, . . . , Rd−1 its
principal radii of curvature (which depend on the local position on the interface). Then the normal interface
velocity is the sum of the principal curvatures 1/Rj; this leads to the Allen-Cahn (AC) equation for this
velocity:

v = −(d − 1)K, (8.32)

where K is the mean curvature, K = (d − 1)−1
∑

1/Rj.

There are two noteworthy points about the AC equation. First, the AC equation does not apply in one
dimension, where the interface between two domains is a point. Here the interface velocity is an exponentially
small function of the domain lengths on either side of the interface. This feature leads to domains that grow
logarithmically in time and to extremal dynamics in which only the smallest domain merges with its neighbors
in an update event. A second, more important, point is that the interface dynamics derived from the TDGL
equation is an example of curvature-driven flow, in which general shapes evolve in arbitrary dimension due
to a local velocity that is proportional to the local curvature. Curvature-driven flows have been thoroughly
investigated and much is known about evolution of a single closed interface. In two dimensions, every such
interface asymptotically approaches a (shrinking) circular shape. The same happens in three dimensions
if the initial interface is everywhere convex. However, an interface that contains both convex and concave
portions can fission if the concave portion of the manifold is sufficiently thin, such as an elongated liquid
drop with an extremely thin neck of fluid in the middle. The classification of all possible topology changes
in higher dimensions due to curvature-driven flow is still incomplete.

Two-dimensional unbounded domains

A beautiful set of domain evolution problems is inspired by returning to a discrete Ising spin system on the
square lattice and asking: what are the simplest initial states for which evolution under zero-temperature
Glauber dynamics can be studied analytically? A example that is too simple because it is static is a single
straight domain wall that cuts a finite system in two. To have a system that actually evolves, the initial
interface must contain at least one corner and we now study two such examples (Fig. 8.2): (a) the semi-
infinite finger (2 initial corners), and (b) the 90◦ infinite wedge (1 initial corner). Curiously, although the
finger appears to be more complex than the wedge because there are two initial corners, its dynamics is
simpler than that of the wedge. The wedge is, in fact, extremely rich, with nice connections between the
shape of the wedge and the famous number theoretic-problem of partitioning of the integers.
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Figure 8.2: (a) A semi-infinite finger and (b) a 90◦ infinite wedge, showing both the initial state (left of each
figure) and the system at a later time (right side). For the wedge, the evolving interface encloses an area St

at time t.

Let’s begin with the semi-infinite finger. At the individual spin level, the interface develops a series of
terraces that culminate at the tip. At the tip isolated islands can even pinch off. A detailed understanding of
these microscopic details has yet to be achieved. However, within the continuum description the asymptotic
behavior is quite simple. Let the minority phase initially occupy the semi-infinite region y > 0 and |x| < L.
The interesting limit is t ≫ L2 where sufficient time has elapsed so that the two corners of the initial finger
interact. In this long-time regime, the finger relaxes to a limiting shape that recedes at a constant velocity.
In a reference frame that moves with the finger, the interface y(x) is then stationary.

For this geometry, the AC equation is

vn =
y′′

[1 + (y′)2]3/2
. (8.33)

Here vn is the velocity normal to the interface. The right-hand side is just the curvature of the locus y(x)
that defines the finger boundary and the prime denotes differentiation with respect to x. In the steady state,
only the vertical component of the velocity, given by vy = vn/ cos θ = vn

√
1 + (y′)2, is relevant (see Fig. 8.3).

Thus the vertical velocity satisfies the equation

vy =
y′′

1 + (y′)2
, (8.34)

subject to the boundary condition y → ∞ when |x| → L. The solution to this equation is

y = −2L

π
ln

[
cos

(πx

2L

)]
. (8.35)

Substituting this profile into Eq. (8.34), we find that the finger recedes at a constant velocity v = π/2L.
Next we study the infinite wedge (Fig. 8.2). For concreteness, let the corner be at the origin so that the

wedge initially occupies the region x, y ≥ 0. The corner of the wedge recedes diffusively, x, y ∝
√

t, both
in Ising-Glauber dynamics and in the continuum description. Because of the absence of any constant with
dimension of length in Eq. (8.34), the corresponding solution admits the self-similar form

X = x(t)/
√

t, Y (X) = y(x, t)/
√

t , . (8.36)

Notice that the increase of the magnetization is equal to twice the area under the curve y(x, t). From (8.36),
the area is proportional to t, so that the magnetization also grows linearly with time. To determine the
evolution of the wedge, we substitute the ansatz Eq. (8.36) into the equation of motion (8.34) and find that
the scaling function Y (X) obeys

Y − XY ′

2
=

Y ′′

1 + (Y ′)2
, (8.37)

where prime indicates differentiation with respect to X . Equation (8.37) should be solved subject to the
constraints limX→∞ Y (X) = 0 and limX→+0 Y (X) = ∞ that correspond to the wedge geometry. A wedge
that initially occupies the region y > |x| tan θ could also be studied if we impose the constraints Y → ±X tan θ
as X → ±∞.
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Figure 8.3: (Left) Schematic illustration of the receding finger, showing the normal velocity vn and the
vertical velocity vy. (Right) Comparison of the finger shape predicted by the TDGL approach given in
Eq. 8.35 (dashed) with simulation results for a system of width 2L = 400 at long times (solid).

We introduce the polar coordinates (X, Y ) = (r cos θ, r sin θ) to recast Eq. (8.37) into the following
equation for r = r(θ):

2r
d2r

dθ2
−

(
4 + r2

) (
dr

dθ

)2

= r2
(
2 + r2

)
. (8.38)

Writing dr
dθ = R(r), reduces Eq. (8.38) to a first-order equation whose solution is R2 = r4 er2/2 F (r, r0), with

F (r, r0) =

∫ r

r0

(
2

ρ3
+

1

ρ

)
e−ρ2/2 dρ , (8.39)

and r0 is the scaled distance from the origin to the closest point on the interface. The interface is now
determined from

dr

dθ
= ±r2 er2/4

√
F (r, r0), (8.40)

with the plus sign for θ ≥ π/4 and the minus sign for θ ≤ π/4 to give a symmetric solution about the
diagonal θ < π/4. Integrating Eq. (8.40) gives the explicit equation for θ = θ(r)

θ =

∫ ∞

r

ρ−2 e−ρ2/4 [F (ρ, r0)]
−1/2 dρ (8.41)

for θ ≤ π/4. For π/4 < θ < π/2, we simply use r(θ) = r(π
2 − θ) to ensure symmetry of the interface about

the diagonal. The value of the unknown r0 may now be obtained by ensuring that θ = π/4 when r = r0.
This gives the criterion ∫ ∞

r0

r−2 e−r2/4[F (r, r0)]
−1/2 =

π

4
dr , (8.42)

whose numerical solution is r0 ≈ 1.0445. Equation (8.41), with F given by (8.39), provides an explicit
representation of θ(r) on the interface in terms of the (scaled) distance r ∈ [r0,∞) from the origin. For

r → ∞, the interface becomes much simpler. From Eqs. (8.39) and (8.41) we obtain θ → Ar−3 e−r2/4 with
A = 2 [F (∞, r0)]

−1/2 which, in Cartesian coordinates, is

Y → AX−2 e−X2/4 . (8.43)

Apart from the numerical factor A, the asymptotic behavior follows directly from Eq. (8.37) after dropping
the subdominant terms.

The staircase profile of the interface in Fig. 8.2(b) has a simple relation to the famous number-theoretic
problem of the partitions of the integers. Given an arbitrary integer N , how many different ways can we
break up this number into k integer pieces n1, n2, . . . , nk with

∑
k nk = N?. Geometrically, this question is
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Figure 8.4: The Young diagram that is based on the interface profile of Fig. 8.2. This diagram corresponds
to a partition of the integer 22 into the set {7, 6, 4, 2, 1, 1, 1}.

the same as enumerating all possible interfaces with a given number of flipped spins in the wedge geometry!
The interface height yk and the kth column is same as nk in the partitioning problem. For N → ∞, the
staircase generated by its partition approaches a limiting shape. The equation for this shape is remarkably
simple:

e−λx + e−λy = 1, with λ =
π

6
√

N
. (8.44)

In scaled units, the asymptotic shape of the integer partition limiting staircase is Y ∼
√

6
π e−πX/

√
6, whereas

the asymptotic Ising staircase is given by Y ∼ 1.0445...
X2 e−X2/4. The existence of two distinct shapes arises from

the different construction rules of the Ising interface and the interface generated by the integer partitions. In
the partitioning of the integers, each staircase corresponding to fixed N is generated with the same weight.
On the other hand, the Ising interface is generated dynamically and when its area reaches N , the interface
contains an imprint of its entire history.

8.4 Conservative Dynamics

The influence of a conservation law severely limits the way in which an interface between two domains can
move. While an interface should move to reduce its local curvature and consequently the energy, such an
evolution has to be accompanied by a global rearrangement of interfaces to ensure that the order parameter
is conserved. While the full problem remains quite open, much progress has again been made in studying
the simplest geometries, such as a single droplet or a dilute population of droplets immersed in a majority
phase. Here, each droplet remains spherical throughout the evolution, so that one avoids the geometrical
complexity associated with random interfaces. Nevertheless, the kinetics of this dilute limit is still quite
subtle and rich.

Evolution of a single droplet

As an essential preliminary, consider the evolution of a single droplet of one phase that is immersed in
a background of the opposite phase. This statement, however, has a basic inconsistency that requires
clarification. If the two phases were perfectly separated, then the droplet could not evolve because any
change in the droplet size would violate the conservation of the order parameter. Instead, we should think
of a single drop of liquid that is floating in a closed container of gas that is saturated with the liquid in
the vapor phase. At the surface of the droplet there is both evaporation as well as condensation of vapor
molecules back into the droplet. It is through the combination of these two processes that the droplet can
evolve while still conserving the order parameters.

The condensation rate is given by the flux of vapor molecules to the droplet which, in turn, is determined
by vapor concentration in the gas. In principle, the vapor concentration exterior to the droplet obeys the
diffusion equation. However, because the droplet radius changes slowly with time, we apply the quasi-
static approximation (see Sec. 2.5) in which we ignore the time dependence and deal with the much simpler
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Figure 8.5: Dependence of the concentration of the minority phase as a function of radius.

Laplace equation to determine the external vapor concentration. Schematically, the concentration of the
minority phase as a function of distance from the center of a droplet of radius R should then have the
dependence sketched in Fig. 8.5. The average concentration of the minority phase in the entire system c̄
must be larger than the supersaturation value c∞, i.e., there must be supersaturation, so that a droplet can
form in the first place. (Conversely, for c̄ < c∞, the minority phase remains as a homogeneous vapor in the
gas.) Inside the droplet, the concentration is much higher than c̄ by the very definition of a droplet. Outside
the droplet, the vapor concentration obeys Laplace’s equation with the boundary conditions c(r → ∞) → c̄
and c(R) determined by the Gibbs-Thompson relation (see below). In three dimensions, c(r) therefore has
the dependence

c(r) = c̄ − [c̄ − c(R)]
R

r
. (8.45)

The Gibbs-Thompson relation relates c(R) to c∞ by the following physical picture: for a bulk liquid
in equilibrium with a saturated vapor, the vapor concentration at the interface must be c∞ by definition.
For a small droplet, the vapor concentration is larger than that of a bulk liquid because a larger fraction of
molecules are at the interface. Thus c(R) should exceed c∞ by an amount that vanishes as the droplet radius
goes to infinity. This relationship is encapsulated by the Gibbs-Thompson relation c(R) = c∞

(
1 + ν

R

)
, where

ν is known as the capillary length and is simply related to the surface tension and the temperature.
Assembling these elements, the volume V of an isolated droplet changes with rate

dV

dt
= 4πR2 dR

dt
= 4πR2 D

∂c

∂r

∣∣∣
r=R

, (8.46)

from which Ṙ = D[c̄ − c(R)]/R. We now define ∆ = c̄ − c∞ as the degree of supersaturation, and use the
Gibbs-Thompson relation to eliminate c(R) in (8.46) to give

dR

dt
=

D

R

(
∆ − c∞

ν

R

)
≡ α

R2

(
R

Rc
− 1

)
. (8.47)

From the latter form, it is clear that for R > Rc = c∞ν/∆ the droplet grows, while for R < Rc the droplet
shrinks. More importantly, we see by power counting that this equation contains the seeds of t1/3 coarsening.
An isolated supercritical droplet asymptotically grows as t1/3, while a subcritical droplet shrinks to zero size
in a time that scales as the cube root of its initial radius.

Lifshitz-Slyazov-Wagner coarsening

The foregoing discussion provides the basis for understanding the coarsening of a dilute heterogeneous
population of droplets in a supersaturated background. This problem was independently analyzed by Lifshitz
and Slyozov, and by Wagner, and we refer to the problem as LSW coarsening. The dilute limit allows us
to make the approximation that droplets are non-interacting so that the concentration field around each
droplet is the same as that of an isolated droplet. The basic feature of this coarsening is already contained in
Eq. (8.47): droplets whose radii is larger than Rc grow and those with smaller radii shrink. In a population
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of heterogeneous droplets, the value of Rc has to be determined self consistently, and we show that this
calculation gives Rc ∝ t1/3.

Let f(R, t), be the concentration of droplets of radius R at time t. This concentration evolves by the
continuity equation

∂f

∂t
+

∂j

∂R
= 0, (8.48)

where the flux j = Ṙf(R, t) is just the difference between the increase and decrease of droplets of radius R
due to their evolution. We wish to solve this equation of motion with Ṙ given by Eq. (8.47) and subject to
the constraint that the total mass of the minority phase is conserved. This constraint may be written as

c̄ − c∞ +
4π

3

∫ ∞

0

R3 f(R, t) dR = const. (8.49)

In the minority limit, the volume fraction of the minority phase that exists as freely diffusing monomers is
vanishingly small. Thus the conservation law reduces to the condition that the total volume of the droplets is
fixed. With this proviso, Eqs. (8.47)–(8.49) constitute the governing equations of coarsening in the minority
limit with a conserved order parameter.

To solve these equations of coarsening, it is again very useful to apply scaling. The natural scaling ansatz
for this system, under the assumption that the mass of all droplets is conserved, is

f(R, t) =
1

R4
c

φ

(
R

Rc

)
.

Here the prefactor is determined by the conservation of the total mass of the minority phase, namely,∫
R3 f(R, t) dR = const. Substituting this scaling ansatz into (8.48), the first term in this equation becomes

∂f

∂t
= −4Ṙc

R5
c

φ − 1

R4
c

φ′ RṘc

R2
c

= − Ṙc

R5
c

(4φ + zφ′),

where the prime denotes differentiation with respect to the scaled variable z ≡ R/Rc. Similarly, the second
term in (8.48) becomes

∂

∂R

[
α

R2

(
R

Rc
− 1

)
1

R4
c

φ

]
=

α

R7
c

[(
1

z
− 1

z2

)
φ′ +

(
2

z3
− 1

z2

)
φ

]
.

With these preliminaries the partial differential equation of (8.48) is converted into the ordinary differential
equation

R2
cṘc = α

[(
1

z
− 1

z2

)
φ′ +

(
2

z3
− 1

z2

)
φ

]

4φ + zφ′ ≡ αγ, (8.50)

where we rearranged the terms to put all the time dependence of the left and all the z dependence on the right.
Since both sides are functions of different variables they each must be constant. In the simplest applications
of scaling, such as the scaling solution to the diffusion equation in Sec. 1.1, the value of the separation
constant plays little role in the scaling solution. In contrast, for coarsening, the separation constant γ is
essential. Depending on the value of γ, there are three different regimes of behavior, only one of which is
physically meaningful.

Let us now examine the separated equations and thus determine the condition that gives the physical
value of γ. For the time dependence we have

R2
c Ṙc = αγ, (8.51)

with solution
Rc(t) = (3αγt)1/3. (8.52)

Thus coarsening under the constraint of a conserved order parameter leads to a t1/3 growth of the typical
droplet radius. This slower-than-diffusive growth of the typical droplet also justifies for the quasi-static
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approximation that was used to determine the concentration outside a droplet. For the z dependence of the
scaling function, the governing equation (8.50) becomes, after some simple rearrangement:

aφ′ + bφ = 0, with a = − 1

z2
+

1

z
− zγ, b =

2

z3
− 1

z2
− 4γ . (8.53)

Thus the scaling function is formally given by

lnφ =

∫ z

− b(y)

a(y)
dy =

∫ z 2 − y − 4γy3

1 − y + γy3

dy

y
. (8.54)

Thus far, the reasoning is standard: we’ve used scaling to separate the partial differential equation (8.48)
into two ordinary differential equations. As is generally the case, the time dependence then follows easily.
For LSW coarsening, the analysis of the z dependence is subtle because of the essential role of the separation
constant γ. The first basic and somewhat surprising consequence of Eq. (8.54) is that φ(z) must have a
sharp cutoff at a value zmax, beyond which φ(z) = 0. To demonstrate this fact, suppose the opposite is true.
Then as z → ∞, Eq. (8.54) would tell us that φ(z) should asymptotically vary as

lnφ ∼
∫ z

−4
dy

y
∼ −4 ln z −→ φ ∼ z−4 .

A power law tail for φ is impossible, however, as this asymptotic decay would lead to a divergence of the
total mass of the minority phase:

∫
R3 φ (R, t) dR ∼

∫
z3 z−4 dz → ∞.

Thus we conclude that φ(z) has a sharp cutoff beyond some value zmax.
A second and more profound fact is that only one value of the separation constant γ is physically allowed.

To see why this is the case, let’s re-examine the behavior of Ṙ in scaled units. Using Eqs. (8.47) and (8.51),
we find, after some simple algebra:

ż =
1

3γt

(
1

z
− 1

z2
− γz

)
≡ 1

3γt
g(z) . (8.55)
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Figure 8.6: Sketch of ż = g(z)/(3γt) versus z for the 3 cases: (a) γ < γ∗, (b) γ > γ∗, and (c) γ = γ∗. The
arrows on the z-axis shows the flow of z in Eq. (8.55).

Let’s now examine the behavior of g(z) for different values of γ. There are 3 cases:

(a) γ < γ∗ = 4/27. Here z(t) flows exponentially quickly to the stable fixed point at z2 for z(0) > z1

(Fig. 8.6). That is, the radii of all droplets approach the common value Rcz2, which diverges as t → ∞.
Such a distribution cannot satisfy mass conservation.

(b) γ > γ∗. Here z(t) → 0 exponentially quickly in time for any initial value of z. Thus all droplets shrink
to zero and mass conservation is again violated.
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(c) γ = γ∗. In this case z = 3/2 is a fixed point, but one that is approached as a power law in time. This
subtle behavior is the mechanism that allows mass conservation to be satisfied. If the fixed point at
z = 3/2 was reached exponentially quickly, then again all droplet radii would approach the common
value of 3Rc/2 and mass conservation would be violated. The slow decrease in z ensures the delicate
balance between growth and shrinking of clusters in a mass-conserving way.

For the physical case of γ = γ∗, Eq. (8.54) for the scaling function can be factorized as

lnφ =

∫ z 2 − y − 16
27y3

(y − 3
3 )2(y + 3)

dy

y
.

Evaluating the latter integral by a partial fraction expansion now gives the quite complex form of the scaling
function (in three dimensions):

φ(z) ∝ z2 (z + 3)−7/3 (3 − 2z)−11/3 e−3/(3−2z) z < 3/2;

= 0 z > 3/2, (8.56)

and a plot of this scaled droplet radius distribution is shown in Fig. 8.7.
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Figure 8.7: The scaling function φ(z) for LSW coarsening given by Eq. (8.56).

8.5 Extremal Dynamics

Shrinking of a single domain

While power-law domain growth is a generic feature of zero-temperature coarsening, there is one important
case where much slower logarithmic growth occurs — the TDGL equation in one dimension. The case of one
dimension is special because there is no local curvature to drive an interface; rather the interface moves by a
net flux of order parameter across neighboring domains that is determined, in turn, by their lengths. In the
long-time limit, this flux vanishes as e−L, where L is the length of a typical domain; the smallness of this flux
is responsible for logarithmic coarsening. As a consequence of this slow growth, the asymptotic dynamics
of the one-dimensional TDGL equation has an extremal character in which only the smallest domain in the
system merges with its two nearest neighbors in a single update state. This extremal picture then provides
a natural way to determine the domain dynamics.

To understand the origin of the slow domain growth, consider a single large domain of length L = x2−x1

of magnetization is close to +1 that is immersed in a sea with the magnetization close to −1 (Fig. 8.8). The
two interfaces of this bubble consist of a kink at x = x1(t) and an antikink at x = x2(t) = x1 + L. If L is
much larger than the width of each interface, which is a good approximation at long times, the kink and
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Figure 8.8: A single domain with magnetization close to +1 in a background where the magnetization is
close to −1.

antikink are nearly independent. Under this assumption, the spatial dependence of the order parameter is,
using Eq. (8.24),

m(x, t) ≈ tanh(x − x1(t)) − tanh(x − x2(t)) − 1. (8.57)

Let’s now estimate how the interfaces move for this kink/antikink pair. Substituting the profile (8.57) into
the TDGL equation (8.2) and keeping only the lowest-order terms, we find that asymptotically

ẋ1 = −ẋ2 ≈ e−2(x2−x1). (8.58)

Consequently the domain length L = x2 − x1 shrinks according to L̇ ≈ −2e−2L which gives L(t) =
1
2 ln

[
e2L(0) − 4t

]
, while the time for the domain to disappear is τ = 1

4e2L(0).

Figure 8.9: Extremal dynamics. The shortest domain merges with its two neighbors, while all other domains
remain static.

This exponential length dependence of the shrinking time has profound consequences for the evolution
of a heterogeneous domain array in one dimension. In the long-time limit, the shrinking time of the smallest
domain is orders of magnitude shorter than that of the next smallest domain. As a result, the order in which
domains merge with their neighbors becomes deterministic. This length ordering leads to the following
simple extremal dynamics for TDGL domain evolution: (i) pick the smallest domain and merge it with its
two nearest neighbors while keeping all other domains fixed; (ii) repeat ad infinitum (Fig. 8.9).

The domain length distribution

We now study how the domain length distribution evolves by this extremal dynamics. For simplicity, we
assume that the total initial magnetization vanishes, so that the average length of domains of positive and
negative magnetization are equal. The ensuing extremal dynamics coarsening resembles the Swendsen-Wang
and Wolff cluster dynamics that were discussed in Sec. 7.5. However, in extremal dynamics, the natural time-
like variable is the length ℓ of the shortest domain. Our goal is to determine c(x, ℓ), the density of domains
of length x when the shortest domain has length ℓ. We choose the initial domain lengths from a continuous
distribution so that each domain has a distinct length. The total density of domains is ρ =

∫
ℓ c(x, ℓ) dx and

by definition
∫ ∞

ℓ x c(x, ℓ) dx = 1.
Let’s first show how the shortest domain plays the role of a time-like variable. When the shortest domain

has length ℓ, suppose that a certain number of mergings occur so that all domains with lengths in the range
(ℓ, ℓ + ∆ℓ) merge with their neighbors so that the length of the shortest domain increases from ℓ to ℓ + ∆ℓ.
The density of the domains in this length range is c(ℓ, ℓ)∆ℓ. Since there is a net loss of two domains in each
merger, ρ(ℓ + ∆ℓ) = ρ(ℓ) − 2c(ℓ, ℓ)∆ℓ. Thus the domain density obeys

dρ

dℓ
= −2c(ℓ), (8.59)



156 CHAPTER 8. COARSENING

and in this rate equation the minimal length ℓ plays the role of a time.
The master equation for the domain length distribution may now be written in terms of this time-like

variable. When the length of the shortest domain increases from ℓ to ℓ + ∆ℓ, the length distribution c(x, ℓ)
changes as follows:

c(x, ℓ + ∆ℓ) − c(x, ℓ) =

[
−2

c(x, ℓ)

ρ
+ Θ(x − 3ℓ)

∫ x−2ℓ

ℓ

c(y, ℓ)

ρ

c(x − ℓ − y, ℓ)

ρ
dy

]
c(ℓ, ℓ)∆ℓ. (8.60)

The first term on the right accounts for the loss of a domain of length x due to its merging. the factor of
2 stems from the fact that a domain of length x can be either to the left or to the right of the minimal
domain. The second term accounts for the gain of a domain of length x due to the merging of three domains
of lengths ℓ, y, and x − ℓ − y. The Heaviside step function Θ(x − 3ℓ) enforces the condition that when the
smallest domain has length ℓ, the smallest domain that can be created by merging must have length equal
to at least 3ℓ. The last factor c(ℓ, ℓ)∆ℓ counts the number of merging events that occur as the minimal size
increases from ℓ to ℓ + ∆ℓ.

In close analogy with the discussion of cluster dynamics in Sec. 7.5, a remarkable feature of extremal
evolution is that if the domains are initially uncorrelated, they remain uncorrelated at all times. Merging of
domains do not affect their neighbors, nor are domains affected by their neighbors. Therefore the domain
length distribution evolves according to the exact equation

dc(x, ℓ)

dℓ
= c(ℓ, ℓ)

[
−2

c(x, ℓ)

ρ
+ Θ(x − 3ℓ)

∫ x−2ℓ

ℓ

c(y, ℓ)

ρ

c(x − ℓ − y, ℓ)

ρ
dy

]
(8.61)

for x > ℓ. At this point, it is again convenient to introduce the normalized length density P (x, ℓ) = c(x, ℓ)/ρ
whose governing equation includes only the gain term:

dP (x, ℓ)

dℓ
= Θ(x − 3ℓ)P (ℓ, ℓ)

∫ x−2ℓ

ℓ

P (y, ℓ)P (x − ℓ − y, ℓ) dy. (8.62)

Let’s now investigate the asymptotic behavior of the domain length distribution. The ever-growing
minimal domain length ℓ defines a basic scale, and we postulate that ℓ is the only length scale in the long
time limit. Thus we assume that P (x, ℓ) approaches the scaling form

P (x, ℓ) ≃ ℓ−1Φ
(
xℓ−1

)
(8.63)

as ℓ → ∞, where the prefactor is fixed by the normalization condition
∫ ∞
1

P (x, ℓ) dx = 1. As a result, the

scaling function must satisfy the normalization condition
∫ ∞
1

Φ(z) dz = 1. Substituting the scaling ansatz for
P (x, ℓ) into the master equation (8.62), the scaling function obeys the nonlinear integro-differential equation

z
dΦ(z)

dz
+ Φ(z) + Θ(z − 3)Φ(1)

∫ z−2

1

Φ(y)Φ(z − 1 − y) dy = 0. (8.64)

Given that the master equation involves a convolution, we again study the master equation in the Laplace
domain. Here we introduce the Laplace transform φ(s) =

∫ ∞
1 Φ(z)e−szdz with the lower limit of 1 because

the convolution has this same lower limit. Multiplying (8.64) by e−sz and integrating by parts, the Laplace
transform then obeys the ordinary differential equation

s
dφ

ds
= −Φ(1)

(
1 − φ2

)
e−s, (8.65)

with the boundary condition φ(0) = 1. Expanding φ(s) = 1 + sφ′(0) on the right hand side and evaluating
the equality at s = 0 yields the normalized density of the shortest domains Φ(1) = 1/2. Consequently, the
asymptotic density of the shortest domains is given by

P (ℓ) ≃ (2ℓ)−1. (8.66)
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Substituting Φ(1) = 1
2 into (8.65) and solving this equation yields the Laplace transform

φ(s) = tanh [Ei (s)/2] , (8.67)

where Ei(x) is the exponential integral Ei(x) ≡
∫ ∞

x
1
u e−u du.

The average domain length, 〈x〉 ≃ 〈z〉ℓ, follows from the small-argument behavior φ(s) ≈ 1 − s〈z〉 and
the asymptotic properties of the exponential integral1 to give

〈x〉 ≃ 2eγ ℓ. (8.68)

The ratio between the average length and minimal domain length approaches 2eγ = 3.562144. The conser-
vation law ρ〈x〉 = 1 then gives the total domain density ρ ≃ 1

2e−2γℓ−1. Indeed, the density satisfies (8.59)
dρ
dℓ = −2P (ℓ)ρ ≃ ρ/ℓ.

Extremal properties of the domain distribution can be evaluated directly from the integro-differential
equation (8.64). In the length range 1 < z < 3, the integral drops out. The scaling function obeys the
differential equation z d

dzΦ(z) = −Φ(z) with the boundary condition Φ(1) = 1/2, so

Φ(z) = (2z)−1, 1 ≤ z ≤ 3. (8.69)

Interestingly, the normalized domain density becomes time-independent, P (x, ℓ) → (2x)−1, in the (time-
dependent) range ℓ < x < 3ℓ.

add exponential tail of distribution

The scaling analysis employed effectively resets the length of shortest domain to one after each merger.
The similarity solution can be viewed as a fixed-point of this renormalization procedure. This technique is
sometime termed real space renormalization or strong disorder renormalization.

Section on persistence has been temporarily commented out.

Also the subsection on the autocorrelation function has been commented out.

8.6 Nucleation and Growth

Nucleation-and-growth processes2 are useful for modeling a remarkable wealth of phenomena. In this process,
size-less islands (seeds) nucleate with a spatially-homogeneous rate γ(t). The shape of the islands is spherical
and their radius is r(s) where s is the island lifetime. A point in space may be covered by multiple islands
(figure 8.10).

Eventually, space becomes completely filled. The volume fraction, ρ(t), the fraction of space covered by
islands, can be calculated exactly. Its complement, 1−ρ(t), the fraction of uncovered space, is the probability
that a given point in space, say the origin, remains uncovered at time t. For the origin to remain uncovered,
no nucleation events may occur at a distance smaller than r(t − τ) from the origin at all times τ < t; the
corresponding volume is V (t−τ) = Vd[(r(t−τ)]d with Vd = πd/2/Γ(1+d/2) the volume of the d-dimensional
unit hypersphere. Since the nucleation process is random, the probability that no nucleation events occur in
all of these volumes is

1 − ρ(t) = exp

[
−

∫ t

0

dτγ(τ)V (t − τ)

]
. (8.70)

There are two important special cases: (i) Homogeneous nucleation where the nucleation rate is constant,
γ(t) = γ; (ii) Instantaneous nucleation where all nucleation seeds appear at the same time, γ(t) = σδ(t). For
a constant growth velocity, dr/dt = v, the uncovered fractions are

1 − ρ(t) =

{
exp[−γUdv

dtd+1] homogeneous nucleation;

exp[−σVd(vt)d] instantaneous nucleation.
(8.71)

Here, Ud = Vd/(d + 1). The argument of the exponential equals the nucleation rate times the “excluded”
volume, i.e., the volume of the space-time (y, τ) region where nucleation events affect the origin (0, t). For
homogeneous nucleation, this region is a d-dimensional hyper-cone of radius v0t and height t; namely, a
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Figure 8.10: Nucleation-and-growth in two-dimensions (instantaneous nucleation).

Figure 8.11: Homogeneous nucleation-and-growth in one-dimension. For a point to remain uncovered, no
nucleation events may occur in a spacetime triangle.

triangle in one-dimension (Fig. 8.11), a cone in two-dimensions, etc. For instantaneous nucleation, the
exclusion region is a d-dimensional sphere of radius v0t.

Multiple-point correlation functions can be calculated as well. To distinguish the covered phase from the
uncovered one, we introduce the phase parameter

φ(x, t) =

{
1 if uncovered

0 if covered.
(8.72)

The multiple-point correlation function Gn(x1, . . . ,xn; t) = 〈φ(x1, t) · · ·φ(xn, t)〉 equals the probability that
all n points xi remain uncovered at time t. This probability is evaluated following the very same reasoning
used to evaluate the uncovered fraction. One should ensure that all nucleation events that can lead to
covering of any of these points do not occur. The multiple point correlation function is

Gn(x1, . . . ,xn; t) = exp

{
−

∫
dy

∫ t

0

dτ γ(τ)

[
1 −

n∏

i=1

Θ
(
|xi − y| − r(t − τ)

)
]}

, (8.73)

1For small-x, Ei (x) ≃ −γ − ln x with γ = 0.577215 the Euler constant.
2This process is refereed to as the Kolmogorov-Avrami-Johnson-Mehl or KAJM process.
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where Θ(x) is the Heaviside step function; Θ(x) = 1 for x > 0 and Θ(x) = 0 for x < 0. The integration is
over all possible nucleation sites y and nucleation times τ with the appropriate measure, the nucleation rate
γ(τ). The integrand is zero when none of the points xi are affected by a nucleation event at (y, τ). It equals
one when at least one of the points xi would become covered due to nucleation at (y, τ). We check that the

one-point function G1(t) = G1(x, t) = 1 − ρ agrees with (8.70): G1(t) ≡ exp[−
∫ t

0 dτ γ(τ)
∫
y<r(t−τ) dy]; the

spatial integral yields V (t− τ). The crucial feature that allows us to obtain the correlators is that nucleation
events are uncorrelated, neither in space, nor in time.

In what follows, we consider constant growth velocities dr/dt = v0. When all pairs of points are sepa-
rated by distances larger than 2v0t, the integral (8.73) separates into n non-overlapping integrals, and the
correlation function factorizes

Gn(x1, . . . ,xn; t) = G1(x1, t) · · ·G1(xn, t), (8.74)

when |xi − xj | > 2v0t for all i 6= j. This simply reflects that there are no nucleation events that affect more
than one point. Consequently, correlations vanish at large enough distances.

On the other hand, when there is a pair that is sufficiently close, correlations become nontrivial. Consider
the pair correlation function G2(x1,x2) for homogeneous nucleation. The integral in (8.73) is proportional
to the volume enclosed by the two hyper-cones originating at x1 and x2 (Fig. 8.12). The pair correlation
function G2(x, t) ≡ G2(0,x) may be written using the one point correlation G1(t) ≡ G1(x, t) in a way that
manifests whether or not correlations are nontrivial

G2(x, t) = [G1(t)]
2 exp

[
γUdv

dtd+1Fd

( |x|
2v0t

)]
. (8.75)

The characteristic function 0 ≤ Fd(z) ≤ 1 quantifies the degree of correlation in d-dimensions. The charac-
teristic function is normalized, Fd(0) = 1, and it vanishes, Fd(z) = 0, for z ≥ 1.

Figure 8.12: Pair correlation for homogeneous nucleation-and-growth in one-dimension. The overlap region
between two spacetime triangle is highlighted.

The argument of the exponential in (8.73) equals the space-time volume of the overlap region involving
two d-dimensional hyper-cones. For example, when d = 1, the overlap region is formed by two identical
triangles of width 2v0t and height t whose vertices are separated by distance x < 2v0t. The overlap region is
itself a triangle (figure 8.12) with width 2v0t−x and height t−x/(2v0) and thus, its area is (2v0t−x)2/(4v0).
Hence, the characteristic function is F1(z) = (1 − z)2 for z < 1.

Generally, the characteristic function Fd(z)Ud = Voverlap(z) is obtained from the overlap volume Voverlap(z)
formed by two d-dimensional hyper-cones of radius 1 and height 1 whose vertices are separated by distance
2z. Specifically,

Fd(z) =






1 − z2 d = 1,
2
π

[
cos−1 z − 2z

√
1 − z2 + z2 ln 1+

√
1−z2

z

]
d = 2,

1
2 (1 − z)3(1 + z) d = 3.

(8.76)

In the complementary case of instantaneous nucleation, the pair correlation can be expressed as follows

G2(x, t) = [G1(t)]
2 exp

[
σVdv

dtdFd

( |x|
2v0t

)]
. (8.77)
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Now, the characteristic function Fd(z)Vd = Voverlap(z) is obtained from the overlap volume Voverlap(z) formed
by two d-dimensional hyper-cones of radius 1 separated by distance 2z. For instance,

Fd(z) =






1 − z d = 1,
2
π

[
cos−1 z − z

√
1 − z2

]
d = 2,

1
2 (1 − z)2(2 + z) d = 3.

(8.78)

This geometric procedure extends to higher-order correlation functions. For example, the three-point
correlation function is exponential in the total volume Vtotal = V1 +V2 +V3− (V12 +V13 +V23)+2V123 where
Vi is the single-point exclusion volume, Vij is the volume of the exclusion region common to two points, and
Vijk is the volume of the exclusion region common to three points.


