Chapter 6

ADSORPTION

This chapter is concerned with the kinetics of adsorption in which gas molecules impinge upon and then
adsorb on a surface, or substrate. What is the rate at which adsorbed molecules fill the substrate? If the
incident molecules are monomers that permanently attach to single adsorption sites on the surface and if
there are no interactions between adsorbed monomers, then the fraction p of occupied sites increases at a
rate proportional to the density of vacancies,

dp
where we set the an intrinsic adsorption rate to 1 without loss of generality. The solution to this rate equation
is p(t) = 1—e™ %, so that vacancies disappear exponentially in time. However, if each arriving molecule covers
k > 1 substrate sites, then an unfilled region of less than k vacant sites can never be filled. The system
therefore reaches a jammed state in which the substrate cannot accommodate additional adsorption, even
though it is not completely filled. What is the filling fraction of this jammed state? What is the rate at
which this final fraction is reached? These are the basic questions of adsorption kinetics.

6.1 Random Sequential Adsorption in One Dimension

Dimer adsorption

A simple example that exhibits non-trivial collective behavior is the irreversible and random sequential
adsorption of dimers — molecules that occupy two adjacent sites of an infinite one-dimensional lattice
(Fig. 6.1). We model the steady influx of molecules by adsorption attempts occurring one at a time at
random locations on the substrate. An adsorption attempt is successful only if a dimer is incident onto
two adjacent empty sites. If a dimer lands onto either two occupied sites or onto one occupied and one
empty site, the attempt fails. That is, multilayer adsorption is forbidden, so that each site is either empty
or contains 1 particle, but no more. The dimer coverage grows with time and eventually only isolated empty
sites remain. When this occurs, the substrate is jammed and no further adsorption is possible.
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Figure 6.1: Irreversible dimer deposition. The dimer on the left successfully adsorbs onto two adjacent
vacant substrate sites, while the dimer on the right does not adsorb.

For dimer adsorption, a jammed state consists of strings with an even number of occupied sites (o) that
are separated by isolated vacant sites (o), as illustrated below:
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Figure 6.2: A jammed configuration in the random sequential adsorption of dimers.

In principle, the fraction of occupied sites in the jammed state, pjam = p(t=00), can have any value between
2/3 and 1, with the two extreme limits achieved by the respective configurations:

Figure 6.3: Minimum-density and maximum-density jammed dimer configurations.

A beautiful result, first derived by Flory, is that the value of pj,m in random sequential dimer adsorption is
Piam = p(t =00) =1 —e 2 =0.864664 ... (6.1)

Flory’s original derivation was based on enumerating all possible jammed configurations directly. Here we
adopt a kinetic viewpoint and determine the time evolution of the coverage. The final coverage will then
emerge as a direct consequence.

To determine the evolution of the substrate coverage, we need, in principle, the probabilities P(n,t) for
the occupation state of each lattice site. Here n = {n;}, with n; = 1 if the 4t site is occupied, and nj =0
if this site is empty. However these probabilities contain more information than necessary. What we really
need are the empty interval probabilities, namely, the probability that a string of m consecutive sites are
empty. We first define

E,, =prob(xo---ox)="Plo---0]

———"

m m

as the probability that there exists a string of m consecutive empty sites. Here the symbol x signifies that the
state of the sites on the periphery of the m-interval are unspecified; they could be either occupied or empty.
Consequently, E,, is also the probability to find an empty interval of length m or greater. In particular, £
is the density of empty sites and p(t) = 1 — E; is the density of occupied sites. Thus from the empty interval
probabilities, we can obtain the particle density. This is one reason why the empty interval probabilities are
so useful.
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Figure 6.4: Changes in the empty interval probability F,, for m = 4. Shown are an adsorption event in the
interior of the interval (left) and at the edge of the interval (right).

For irreversible dimer adsorption, the master equations that describe the evolution of the empty interval
probabilities F,, are:

dE,

“dt =—(m—-1)Eyn —2E,11 m > 1. (6.2)

The first term on the right side accounts for the loss of an m-interval due to the adsorption of dimers inside
the interval. There are m — 1 distinct locations at which the dimer can adsorb such that it lies entirely
within the interval (Fig. 6.4). The second term accounts for the two adsorption events in which one end
of the incident dimer is outside the m-interval. For these latter events, the empty interval must contain at
least m + 1 empty sites, hence the factor F,,+1. Notice that (6.2) contains only loss terms. This feature is
a consequence of using the empty interval probabilities E,, as the basic dynamical variables. Pictorially, we
are looking at the substrate through eyes that see only m consecutive sites at a time and E,, is merely the
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fraction of these intervals that are empty. In this representation, there is no way to create an empty interval
of length > m by the adsorption of a dimer onto a still-larger empty interval.
It might seem more natural to write master equations for the void densities

VmEP[oo-uoo],
N——

defined as the probability for m consecutive empty sites that are bounded on either site by an occupied site.
The master equations that describe the evolution of the void densities V,,, for irreversible dimer adsorption
are:
o0
ddL;“ = —(m—1)Vpn +2ZVm+j. (6.3)
Jj=2
The first term again accounts for the adsorption of a dimer in the interior of a void. The sum accounts for
the creation of a void of m sites by the adsorbing a dimer into a void that contains > m + 2 unoccupied sites.
Notice the close correspondence between this master equation and those for fragmentation [e.g., Eq. (5.3)].
There are no hard and fast rules for which set of quantities — E,,, or V,;,, — are more useful for determining
the dynamics of these type of kinetic problems. For adsorption, the master equations for E,, are typically
easier to solve and we focus on these quantities in what follows:
Returning to the F,,, we now solve (6.2) for the initial condition of an initially empty system, E,,(0) = 1.
Because an integrating factor for the master equations is e~ (™~1* this fact suggests seeking a solution of
the form

Ep(t) = e~ M=V &(¢), (6.4)

where ® coincides with Fj (¢), and with ®(0) = 1 to match the initial condition. Notice also that Fj(t) =
1 — p(t), where p(t) is the density of occupied sites. This connection allows us to determine how the surface
coverage evolves. Using (6.4), the infinite set of master equations (6.2) miraculously reduces to the single

equation % = —2¢7'®, whose solution immediately yields the empty interval probabilities

Ep(t) = e~ (m=Dt=2(1=e""), (6.5)

Empty gaps of length greater than 1 decay exponentially with time and only gaps of length 1 remain in the
final jammed state. From (6.5), the density of such gaps is E;(c0) = =2, so that the jamming coverage is

Piam = p(t =00) =1 — €2 =0.864664,... (6.6)

as first derived by Flory from a direct enumeration of all possible final state configurations.
While we have reproduced the classic Flory result with little labor, we also have much more — the
coverage throughout the entire evolution:

pt) =1—By(t) =1 —e2(1=¢7), (6.7)

The jamming coverage therefore approaches the jamming coverage exponentially in time, p(co) — p(t) —
2e 2e~t, a feature that typifies lattice models of irreversible adsorption.

Adsorption of longer molecules

What happens if the incident molecules are k-mers that occupy k consecutive substrate sites? A nice
illustration of the power of the master equation is that the coverage for this more general adsorption process
can be obtained by a straightforward extension of the theory for dimers. The master equations for the empty
interval probabilities F,, in k-mer adsorption are now:

k—1
—(m—k+1)En(t) =2 Emnij(t) m>k
j=1

dE,,
= (6.8)

—(k—m+1)Ek(t)—2mi EkJrj(t) m < k.
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The terms in this equation mirror those in the master equation (6.2) for dimer adsorption. In the first line,
the first term accounts for the m — k + 1 distinct ways that a k-mer can adsorb in the interior of an m-site
empty interval. The second term accounts for 2(k — 1) ways that the k-mer can adsorb, with the k-mer
partially outside and partially inside the original m-interval. For m < k, the first term accounts for the
k —m + 1 ways that the k-mer can cover the m-interval as well as k — m sites outside the interval. The
second term accounts for the ways in which the k-mer partially covers the interval. The equation for m < k
can be obtained quite simply by merely interchanging the roles of £ and m in the equation for m > k.

For m > k, the structure of the equations again suggests the ansatz E,,(t) = e~ (™ *+Dt®(t) which
reduces Egs. (6.8) for m > k to ® = —2® 25;11 e~7t. Thus we obtain

k—1 —jt
Em(t)zexp[—(m—k—i—l)t—Qzl%] m > k. (6.9)
j=1

To find the time dependence of the coverage, p = 1 — E; we use the fact that E; (t) satisfies the master
equation By = —k E(t), with Ej determined from Eq. (6.9) with m = k. The coverage p = 1 — Ey, may

then be expressed as
¢ il —eiu
p(t) = k/ exp {—U—ZZ%} du. (6.10)
0 = J

Numerical evaluation of this integral gives a jamming coverage that decreases monotonically with &k (table
6.1 and Fig. 6.5). The jammed state becomes less full as k increases because empty regions as large as k — 1
can arise. seems incomplete

Pjam

1
0.864665
0.823653
0.803893
0.792276
0.747597

R U W |

Table 6.1: Jamming coverage for random sequential adsorption of k-mers in one dimension.
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Figure 6.5: Jamming coverage for random sequential adsorption of k-mers in one dimension.

Irreversible car parking

The limit of k-mer adsorption with & — oo defines the car parking problem. In this limit, the position
of an adsorbed k-mer becomes continuous and it is simpler to think of unit-length “cars” that irreversibly
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park anywhere along a one-dimensional curb (no marked parking spots) and then are abandoned. The only
constraint is that cars cannot overlap; however a car can fit into a parking spot that is infinitesimally larger
than the car itself. For this parking problem, the jamming coverage was found by Rényi to be 0.747597 .. .,
and is simply the & — oo limit of the k-mer jamming coverage.

We may again solve this parking problem by the master equation approach. The length of a car is
immaterial if we seek the fraction of the line that is covered, and for convenience we define the car length
to be 1. The appropriate dynamical variable is FE(x,t), the probability that a randomly-chosen interval of
length = is empty. As in the discrete case, this region may be part of an even longer empty interval. When
the rate at which cars park equals 1, the master equation for E(x,t) is [compare with Eq. (6.8)]

r+1
—(x—l)E(z,t)—Q/ E(y,t)dy z>1
- (6.11)

x+1
—(1—17)E(1,t)—2/1 E(y,t)dy x <1

OE(x,t)
ot

The terms in this master equation have direct counterparts with the terms in (6.8) for k-mer adsorption. For
x > 1, the first term on the right of Eq. (6.11) accounts for adsorption events that lie completely within the
interval, while the second term accounts for adsorption events that partially overlap this interval. A similar
correspondence also applies for the second line of (6.11).

To solve this master equation, consider first the regime x > 1. As in the discrete case, we seek a solution
of the form

E(x,t) = e @V E(1,1). (6.12)
Substituting this expression into the first of Egs. (6.11), the z-dependent terms cancel, and integrating the

resulting equation for E(1,t) gives
t _
1 _ u
E(1,t) = exp [—2/ c } du,
0 u

with which Eq. (6.12) gives E(z,t) for > 1. From the second of Egs. (6.11), aEa(?’t) = —FE(1,t), from which
the coverage p(t) = 1 — E(0,t) is

p(t) = /Ot exp [—2 /0” du ! —ue“] dv. (6.13)

For t — oo, numerical evaluation of this integral gives the jamming coverage p(oc) = 0.747597 . . ..
A qualitative new feature of continuum car parking is that the approach to jamming is much slower than
for adsorption of discrete molecules. Let’s examine how p(oo) — p(t) vanishes as t — oo:

The crucial step occurs in the second line. As discussed in Section A.2, we may replace the function 1 —e™%,

which gradually crosses over from 0 to 1 as u passes through 1, by a step cutoff that equals 0 for v < 1 and
equals 1 for v > 1. Then the integral in the exponent is elementary and the asymptotic behavior follows
straightforwardly. More precisely, the asymptotic behavior of fot du 1_§7u isnt 4+~ +t"tet +..., where
v =0.577215. .. is Euler’s constant. Thus

p(0o) = plt) =t et oo

the approach to jamming is much slower on continuous substrates than on discrete substrates.



94 CHAPTER 6. ADSORPTION

6.2 Combinatorial Approach for Adsorption

Enumeration of dimer configurations

Flory originally determined the jamming coverage for dimer adsorption by a combinatorial method that we
now present to contrast with the kinetic approach. In the combinatorial method, we write a recursion for
the jamming density on a finite interval of length L in terms of jamming densities on shorter intervals. Let
Ay be the average number of occupied sites in all final jammed states for dimer adsorption. If the first dimer
lands on the sites (i,7+ 1), then the remaining intervals of lengths ¢ — 1 and L —i — 1 get filled independently.
Therefore for L > 2, the coverage obeys the recurrence

L-1

Ap=——) (A 1+2+ AL ;1)

j=1
_2+—ZAJ, (6.14)

with Ag = A; = 0. That is, the number of occupied sites in the jammed state equals 2 for the initial dimer
plus the sum of the number of sites occupied in the two remaining subintervals. In the second line, we use
the fact the two sums are identical. A crucial element of this recursion is the implicit assumption that dimers
are added one at a time. Thus the final state will be the same as the jamming density that was obtained
previously by the master equation description of the dimer deposition.

To solve for Ay, we introduce the generating function A(z) = Y7, Arz?~2, multiply Eq. (6.14) by

(L —1)2"~2, and sum over all L. The left-hand side is Y 5" (L — 1)2*2 A = d(;f). For the second term
on the right-hand side, we interchange the order of summations (in close analogy with the interchange of

integration order discussed on page 79) to give

2Z:CL QZA —QZA Z xt

L=j+2

=234
j=0

2
_ 2z A@),

1—x

so that the recurrence (6.14) can now be recast as the differential equation

d 2 212
%(IA) = 0T=ae + 1—:vA’ (6.15)

subject to the initial condition A(x = 0) = As = 2. The solution to Eq. (6.15) is

1 e 2 10 74
Alg) = ——"— =24 20 4 —a® + 42® + — 6.16
@) = ca— 2 o gt et (6.16)

and we can now read off the average number of occupied sites in the jammed state for small systems: Ay = 2,
A3 =2, Ay = %, ete.

What is the meaning of these numbers? For example, consider A4 = ?, the average number of occupied
sites on a 4-site chain. This value arises as follows: with probablhty L the first dimer lands on the middle
two sites and no further adsorption is possible; with probability 2 5 the first dimer occupies one of the
chain endpoints and the neighboring site. There are then still two more vacant adjacent sites that can
accommodate one more dimer. Thus the average number of occupied sites is % X2+ % x4 = %. In contrast,
in the equilibrium microcanonical ensemble, each jammed configuration occurs with the same probability,

so that the average number of occupied sites equals 3.
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As L — oo, we can obtain the series coefficients in the generating function by examining the behavior of
A(z) as x — 1 from below. Now if A; — Lp as L — oo, with p a constant, then in this limit A(x) would
have the form

oo o p d [ele]
A(x):;pL;vL _Ed_ZxL
= —" (22 —2?%). (6.17)

Comparing Egs. (6.16) and (6.17) as x — 1, we find p = 1 — e=2 = 0.864 664 .. ., thus recovering the Flory
result (6.1).

Phase space and broken ergodicity

A Dbasic tenet of the microcanonical ensemble in equilibrium statistical physics is that of equal a priori
probability — each microstate is realized with the same probability. This feature is termed ergodicity and
it allows us to make the equivalence between the formal ensemble average of statistical mechanics and the
time average in a real equilibrium system. Systems with jammed configurations do not fit into this picture
as they do not uniformly sample the state space of all configurations. This phenomenon is known as broken
ergodicity. Irreversible adsorption is an ideal setting to understand broken ergodicity because all states can
be readily computed.

Let’s start by counting the total number of jammed states in a finite system for irreversible dimer
adsorption. Let Fy, be the total number of jammed configurations on a finite chain of L sites. These jammed
configurations can be divided into two categories: (i) those with the first site of the chain occupied and (ii)
those with the first site empty. Configurations in these two categories obviously look like:

3

eex---x and oeex---X
N—— ~——
L—-2 L-3

respectively. Thus the first category consists of F_o configurations and the second category consists of
Fr,_5 configurations. Thus Fy, is determined by the recurrence

Fp=Fy o+ Fp_3 for L>2.

We write this Fibonacci-like recurrence in terms of the generating function and use the boundary condi-
tions Fy = F1 = F> =1 to give

14+z+ a2

_ L _
F(a:)—ZFLx e p——
L=0

Formally, Fy, is the L'" term in the generating function. For asymptotic behavior, it is sufficient to merely
assume that Fp CL and substitute this assumption into the recursion relation for Fj to give F =
ACl + A+C£ + A_¢E. Here ¢ and ¢4 are the roots of the polynomial 2> — z — 1 = 0 that explicitly are:

C=a+b=132472..., (4 =aet™/3 4 pet2m/3
1/3
. 1 [27+43v69 2 1/3
with a=—- | —— , b= | ——
3 2 27 + 3v/69

Since |(4| < 1, the asymptotic behavior of the number of jammed configurations is given by
Fr, ~ Act, (6.18)

where A = (¢ +¢2+¢3)/(3 +2¢) = 0.956614. .. is obtained by matching the exact solution with the first
few terms in the recursion relation. Thus the number of jammed configurations grows exponentially with
the system size and there is an extensive packing entropy, S =1In Fr ~ LIn(.
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Next, we determine the number of configurations with a specified coverage. Let Fiv 1 be the number of
jammed configurations that contain N dimers in a system of size L. The number of dimers must be in the
range |(L 4+ 1)/3] < N < |L/2] for the configuration to actually be jammed, with |x| the integer part of
2. In a jammed configuration, a dimer must be followed either by another dimer or by a single vacant site.
Thus a jammed configuration may be symbolically written as - -- DDODDOD- - -. That is, between each pair
of dimers there may be either one vacancy or nothing. Each such string corresponds to a distinct jammed
state. Since a vacancy can appear between any pair of dimers and also between a dimer and the end of the
chain, there are N + 1 possible locations for the L — 2N vacant sites. Therefore total number of distinct
arrangements with N dimers is given by the binomial coefficient

N +1
Frn= (L _ 2N>’ (6.19)

and the total number of configurations with any number of dimers in the allowed range is Fr, = >\ F n-

In the thermodynamic limit, we fix the coverage p = 2N/L and then evaluate In F, , by keeping only
the two leading terms in the Stirling formula Inz! ~ zlnz — 2. In this approximation, the total number of
fixed-density configurations also grows exponentially with the system size, Ff, , ~ el f(P) | with

f(p)—glng—(l—p)ln(l—p)—<%—1> In (%-1). (6.20)

Because F,, grows exponentially with L, f(p) is asymptotically dominated by its most probable value.
Setting f/ = 0 leads to 4p(1 — p)? = (3p — 2)3, whose solution gives the asymptotic equilibrium density
Peq = 0.823991 . ... Expanding f about peq, the density dependence of the number of jammed configurations
approaches the Gaussian

F
Fron~ 27TLA2 e—(p—peq)2/2A2)7 (6.21)

with variance A = (Lf"(peq))~"/? a2 0.261378L~'/2, and prefactor fixed to give the correct total number of
configurations.
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Figure 6.6: The equilibrium distribution (left) and jamming distribution (right) for a system of size L = 10%.

The equilibrium probability distribution and the distribution of jammed states have the same functional
form, except that their peak locations are different: pjam 7# peq! If every jammed configuration had the same
likelihood to occur, the jamming coverage should equal poq ~ 0.822991 instead of pjam ~ 0.864665. Why are
the jamming and the equilibrium distributions different? Equilibrium systems uniformly sample their phase
space so that all microscopic configurations with the same energy are equiprobable. In contrast, for non-
equilibrium systems, as manifested by irreversible adsorption, the dynamics dictates how the phase space is
explored, and there is no reason that all microscopic configurations are sampled uniformly. Non-equilibrium
systems need not minimize a free energy, nor explore all microscopic configurations equiprobably.
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6.3 Correlations and Fluctuations

The relation p = 1 — Ej is a simple example of expressing a fundamental physical quantity (the coverage) in
terms of the empty interval probabilities E,,,. As we now show, the empty interval probabilities contain much
more information about the substrate occupancy, such as spatial correlation functions between occupied sites
and fluctuations in surface coverage. Let’s denote the probability of an arbitrary configuration by P[---].
Thus, for example, E; = P[oo], where again the states of the sites external to the string are not specified.
With this notation, p = P[e] = 1 — E; is the consequence of the conservation statement P[o] + Ple] = 1.
Other conservation statements, such as

Ploo] + Plos] = Ple] or Ploo] + Plos] + Plec] + Ples] = 1

express the probability of any configuration of occupied sites in terms of probabilities of empty configura-
tions. For simple configurations, these probabilities can be expressed only in terms of the empty interval
probabilities F,,. For example, using the conservation statement

Plo---0e]+Plo---00] =Plo---0]

m m m—+1

)

then the probability for a configuration with at least m empty sites followed by a filled site is

’P[o.. .o.] — Em — Em+l7 (622)

m

while the probability to find a void of length exactly equal to m is
Vin ="Pleg o6 = Epp —2Ep11 + Epqo. (6.23)

m

A fundamental characterization of correlations between occupied sites is the pair correlation function C;
C; = (nonj) — (no)(n;). (6.24)
Here n; is the density at site j and the term (ng n;) may be graphically represented as

(non;) =Plex---xe],
j—1
where x denotes a site whose state is unspecified. As we now show, to determine correlation functions such
as C}, we need configurations that include disconnected empty configurations. We thus denote
O+++0 X +++X o...ojl7
S~ N — Y~
' k

Eijr="P] :
i j—1
as the probability for the configuration that consists of two empty clusters of at least i and at least k sites
that surround j — 1 sites of unspecified states. Then Ej 1 = E;;k, where the latter quantity is the empty
interval probability. For dimer adsorption, notice also that F; o) = Plo---0x o---0] = F;;11y, since a
single site that is sandwiched between clusters of empty sites must also be empty.

The probabilities E; ;  satisfy a hierarchy of master equations similar to (6.2):

dEi,j,k -
dt

— (G —1DEijr—Eit1,k — Eix1,j-1,k
—(k=1Eijr— Eijr+1 — Eij—1,k+1, (6.25)

for i,k > 1 and j > 2. The consecutive terms in the first line account for adsorption of a dimer within the
empty i-string, overlapping the left end of this empty string, and overlapping the right end of this string; the
terms in the second line are counterparts for the empty k-string. To solve this master equation, we generalize
the ansatz (6.4) to:

Eijr(t) = e =200 1) for ik >1, (6.26)
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where ¥;(t) = E1 5,1, to simplify the above master equations to:

dv,;
d—tj = 27U, +U,_4], (6.27)

for j > 2, while for j = 1, ¥; = F5. Equations (6.27) are recursive and solvable by introducing the generating
function W(x,t) = 7%, 27 W;(t) to recast (6.27) into
0V (z,t)
ot

The initial condition is ¥;(t = 0) = 1, or ¥(z,0) = 22(1 — x)~!. Solving (6.28) subject to this initial
condition and expanding the solution in a Taylor series in z we obtain (for j > 2):

= 27" [(1 4+ 2)¥(x,t) +2° Ex(t)] . (6.28)

o 2 (ln El)j (ln El)k
;= (E)? - E ST Z e
k>j+1

We now exploit these results to compute the pair correlation C; in Eq. (6.24). Using the conservation
statements

Ploex---xeo]+Plex:--xo]+Plox:--xe]+Plox-xo]=1,
Plox - x o] +Plox -+ xo|="Plo] = Ey,

we have (ngn;) = 1+ ¥; — 2E;. Since (n) = 1 — Ej, we finally obtain C; = ¥, — (E1)?. Explicitly, the
correlation functions are:

In Ey)7 (In Ey)F )
= By — (E1)? i=—-F (71 —_— 1. 2
Ci=E—(E1)?, T +k>zj:-+1 o j> (6.29)

In the jammed state Fj(oc) = e~2, so that the limiting value of the pair correlation is

2 (=271

C; - —e “—-— as j— oo
J!
This super-exponential decay is much faster than typical exponential decay of correlations in many equilib-
rium systems with short-range interactions, such as a system of hard disks.

6.4 Adsorption in Higher Dimensions

Most applications of irreversible adsorption involve two-dimensional substrates. It is natural to begin with
the irreversible adsorption of elementary objects such as disks, squares, rectangles, and sticks as a prelude
to real systems, such as proteins and latex particles. To get a feeling for numbers, the jamming coverages
for random sequential adsorption of various elementary objects in two dimensions are listed in Table 6.2.
These coverages strongly depend on the shape of the object. An exact analysis of adsorption is generally
not possible in higher dimensions, and one has to resort to approximations and numerical simulations. The
one-dimensional theory still serves as a useful guide, however, because the evolution of the coverage has
the same qualitative features in arbitrary dimensions. Thus, for example, the relaxation is exponential on
discrete substrates and algebraic on continuous ones. Moreover, fluctuations in the number of adsorbed
particles are extensive, i.e., proportional to the volume. Finally, different jammed configurations are realized
with different likelihoods, i.e., the dynamics is non ergodic.

Discrete substrates

Adsorption is exactly soluble for one special high-dimensional substrate — the Bethe lattice, in which each
site is connected to exactly z other sites in tree structure (Fig. 6.7). For dimer adsorption on the Bethe
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| object | substrate | pjam |
unoriented dimers | square lattice | 0.9068
2 X 2 squares square lattice | 0.74788
(aligned) squares | continuum 0.562009
disks continuum 0.5472

Table 6.2: Jamming coverages for various objects in two dimensions.

lattice, the fundamental quantities are not empty intervals of length > m, but rather connected clusters of
> m sites that we again write as F,,. Because these clusters have a tree structure, it is easy to count the
“boundary” configurations that enter into the master equations.

The probability E,, that all sites in such a cluster remain vacant during adsorption of dimers satisfies
the master equation [compare with Eq. (6.2)]

df—tm =—(m—-1E, —[(z—2)m+2]En11, (6.30)

for m > 1, with the initial conditions F,,(0) = 1. The first term on the right accounts for deposition events in
which the dimer lands somewhere within the cluster. The number of available locations for such “interior”
adsorption events is just the number of bonds in the cluster. Since any cluster has a tree topology, the
number of bonds is just m — 1. The second term accounts for adsorption events in which the dimer lands
with one site in the cluster and one site outside. The number of ways that such an event can occur equals
the number of cluster perimeter sites — sites that adjoin the cluster, but are not part of the cluster itself
(Fig. 6.7). For a cluster of 2 sites, the number of perimeter sites is 2(z — 1). When a site is added to the
cluster, 1 perimeter site is lost, but (z — 1) perimeter sites are gained. Continuing this counting for a cluster
of m sites, the number of perimeter sites is zm — 2(z — 1).

-

A

Figure 6.7: (Left) First three generations of a Bethe lattice with coordination number z = 4. (Right)
Counting perimeter sites (circles) starting with a connected cluster of m = 2 and 3 sites (dots).

To solve the master equation (6.30), we again apply the exponential ansatz E,, (t) = [¢(t)]™ ! ®(t) with
©(0) = ®(0) = 1 to match the initial condition (see the box on the next page). With this ansatz, the
hierarchy of rate equations reduces to the two coupled differential equations

d
L ——p— (-2 =209,

whose solutions are ¢ = e ![(z — 1) — (z = 2)e ]~ and ®(t) = [(z — 1) — (2 — 2)e~*|7*/(>=2). Consequently,
the empty cluster probabilities are

Em(t) = e M Dt [(z—1) = (z—2)e ] "HE (6.31)
The approach to the jamming coverage is exponential in time, with the jamming coverage equal to
Piam = 1 — (2 = 1)7*/(=2), (6.32)

In the limit z | 2, we recover the one-dimensional result, while for large z, the uncovered fraction is inversely

proportional to the coordination number, 1 — pjam ~ 271, Amusingly, the Bethe lattice provides a good



100 CHAPTER 6. ADSORPTION

approximation for pj.m for a regular lattice with the same coordination number. For example, when z = 4,
dimer adsorption on the Bethe lattice gives pjam = 8/9, while for the square lattice, pjam ~ 0.9068.

A second look at almost exponential solutions

Consider a master equation with the generic form

dEm

7 = )\(m + Ol)Em + M(m + B)E77L+17 (633)

that encompasses Eq. (6.30). Again, the almost exponential ansatz provides an easy route to the
solution. Let’s assume a solution of the form

E,, = ®(t)[p)]™. (6.34)
Substituting into Eq. (6.33) and then dividing by E,, gives

é .
5+m£zk(m+a)+u(m+ﬁ)w.

This result shows the utility of the ansatz (6.34), as the above equation divides naturally into terms
linear in m and terms independent of m.
From the terms linear in m, we have

g = A+ g, (6.35)

from which we obtain ¢(¢). The m-independent terms give

®
3 = Aot ube, (6.36)

which then gives ®(t), after which the original problem is solved.

The crucial point is that the factor ¢™ in the original ansatz separates the initial set of equations
(6.34) into two equations: one linear in m and one independent of m.

For discrete substrates in arbitrary spatial dimension, we can only give a heuristic argument that the
relaxation to the jamming coverage decays exponentially in time

pram — p(t) ~ e M. (6.37)

As a concrete example, consider the dimer adsorption on the square lattice. At long times, the available
spaces that can accommodate additional dimers are few and far between. These “target” regions are small
clusters of unoccupied sites: dimers, trimers (both linear and bent), 2 x 2 squares, etc. To determine the
rate at which these “lattice animals” get filled, we need the probabilities that these various configurations
are empty. Crucially, the probability to find a vacant cluster on the substrate rapidly decreased with its size
at long times. Thus only the smallest possible empty lattice animals persist and their asymptotic decay is
dominated by the adsorption of dimers inside the animal. Thus for dimer adsorption on the square lattice,
the probabilities of the simplest configurations (dimers, trimers, and 2 x 2 squares) evolve according to

d d d 00 00
EP[OO]N—P[OO], EP[OOO]N—2P[OOO], ap[oo} N—4P[oo}.
Here, we use the shorthand P[-] to denote the likelihood of a configuration, and the numerical prefactor
counts the number of ways that a dimer can adsorb within the cluster. The time dependence of these
configurations therefore evolve as

(e]e)

Ploo]~e7t,  Ploool~me 2, P {oo} ~ et (6.38)

Generally, the probability that a given lattice animal is empty decays exponentially in time, P(t) ~ exp(—At),
where A\ counts the number of ways that a dimer can adsorb within a particular lattice animal. In particular,
the coverage is determined by the rate equation dp/dt ~ —2P[oo], so that

Piam — p(t) ~ e " (6.39)
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A similar exponential relaxation arises for the adsorption of arbitrarily-shaped objects on discrete substrates
in any dimension.

Continuous substrates

Figure 6.8: A jammed state for random sequential adsorption of disks in two dimension.

On continuous substrates, gaps between adjacent adsorbed objects can be arbitrarily small, and this
feature leads to a slow algebraic relaxation of the density to the jamming density in which pjam — p(t) ~ 7.
For car parking in one dimension, we already demonstrated that o = 1. Let’s derive the corresponding decay
for the adsorption of disks in two dimensions (Fig. 6.8). As the substrate approaches jamming, there will
be only a small number of tiny and independent “target zones” within which the center of another disk can
adsorb. To characterize these target zones, notice that around each disk there is an “exclusion zone” whose
radius is twice that of the disk. An incident disk whose center lies within the exclusion zone of any already
adsorbed disk cannot adsorb. The target zones of the substrate are the complement of the exclusion zones
(Fig. 6.9). In a jammed configuration, no target zones remain even though the adsorbed particles do not
completely cover the substrate.

Let ¢(£,t) be the density of target zones of linear size £. Because the area of such a target zone is quadratic
in ¢, the density of targets of linear size £ obeys dc/dt o« —¢?c, leading to the exponential decay

c(l,t) ~ e O, (6.40)

Since each disk has the same area, the deviation of the substrate coverage from its jamming value is just
proportional to the area fraction of the target zones:

Pjam — P(t) ~ /0 c(l,t)dl ~ /0 et de ~ 712, (6.41)
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Figure 6.9: Two target areas (white), the exclusion zones (shaded), and the adsorbed disks (dark) near
jamming. In the long-time limit only arc-triangular target areas, such as the tiny one on the left, remain.

Because target zones can be arbitrarily small, a power-law decay arises after rescaling the integral. Thus
although the probability to find a target zone of a given size vanishes exponentially with time, the average
over the sizes of all target zones leads to a power-law tail. This heuristic approach can be straightforwardly
extended to arbitrary spatial dimension d. Now the area of a target zone of linear dimension ¢ scales as (.
Correspondingly, the density of target zones of linear dimension ¢ scales as c(,t) ~ e, The analog of
Eq. (6.41) then gives pjam — p(t) ~ ¢t~/ in d dimensions.

We can extend further this argument to determine the approach to jamming for elongated particles, for
example, ellipses with a large aspect ratio. Now the notion of a target zone is no longer precise because
minimum separation between two adsorbed ellipses depends on their relative orientations. However, as
target zones get filled, there is a tendency for a newly-adsorbed ellipse to be oriented with its neighbors.
This restriction plays an important role in the adsorption of non-symmetrical objects at long times. Let
0 be the range of allowed orientations for an ellipse that is incident on a target zone of linear dimension
£. The density of target zones of linear size ¢ will asymptotically evolve according to % x —0/¢%c. Since
the orientational range vanishes in the long-time limit, we make the simplest self-consistent assumption that
0 = a1£+ asf® +---. Then using 0 o< ¢ for small ¢, the concentration of target areas of linear dimension ¢ is

governed by dc/dt o —(3 c. As a result,

c(t,t) ~ et (6.42)
Substituting this form for ¢(¢,t) into Eq. (6.41), the relaxation to the jamming coverage is now given by
Pjam — p(t) ~ t77, with ¢ = 1/3. Thus the orientational constraint hinders the approach to the jammed
state.

For oriented squares, the target areas asymptotically are rectangular and the density n(z,y,t) of target

rectangles of size x x y decays according to % = —zyc. Consequently, ¢ ~ e7%¥%, from which

1 1 1 1 _ e—xt
Pjam — p(t) = / / n(z,y,t) dvdy ~ / ——dx
0o Jo 0 xt

+ _
1_ u
zt_l/ =
0 u

~t tnt. (6.43)

Similarly, the approach to jamming for the random sequential adsorption of aligned hypercubes in d dimen-
sions is given by

Piam — p(t) ~ (Int)= ¢t (6.44)

Needles

An particularly intriguing example is the deposition of zero-area, unoriented, identical needles of unit length
— the limit of ellipses with a diverging aspect ratio. Here the areal coverage of the substrate vanishes,
even though the number of adsorbed particles diverges with time. Early deposition attempts are mostly
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successful because the substrate is nearly empty. Thus the number of adsorbed needles starts growing
linearly with time and these initial needles have little orientational or positional order. However, when the
needle density becomes of the order of 1, previously adsorbed needles strongly constrain both the position and
the orientation of subsequent adsorption events. In the long time limit, domains form in which neighboring
needles are nearly aligned and positionally ordered (Fig. 6.10). The orientation of each domain is fixed by
the first few adsorption attempts, so that there is orientational order at small scales but not at large scales.
Once domains are well defined, most adsorption attempts fail and the number of adsorbed needles grows
sub-linearly with time.

Figure 6.10: Random sequential adsorption of needles in two dimensions.

The formation of nearly aligned domains considerably simplifies the analysis of the late stages of adsorp-
tion. For a new needle to adsorb between two nearby needles, it must be closely aligned with them, both
orientationally and positionally. The target area is approximately a unit-height trapezoid, with base widths
x1 and 2 &~ z1. A new needle may adsorb with its bottom end in the range 0 < y; < z1 and its top end in
the range 0 < y2 < z2 (Fig. 6.11). Such an adsorption event divides the trapezoid into two smaller trapezoids
with base widths y1,y2 and x1 — y1, T2 — yo; this defines a geometric fragmentation process similar to that
discussed in Sec. 5.4. We now apply the techniques of that presentation for the needle problem.

X2
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Figure 6.11: Random sequential adsorption of needles in one dimension as the fragmentation of trapezoids.

According to this representation of adsorption as trapezoid fragmentation, the density ¢(x1, z3) of trape-
zoids with widths {x1, 22} obeys the master equation

a oo oo
Ec(xl, x2) = —x122 ¢(21,22) + 2/ / c(y1,y2) dy1 dys. (6.45)
Xy o

The loss term is proportional to the total number of ways for the two ends of the needle to be placed along
the bases of the trapezoid. The gain term accounts for the 2 ways in which the break-up of a larger trapezoid
creates a trapezoid with base widths x1, zo.
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The Mellin transform M (s1,s2) = [ [ ZC§171$§2710($1, x2) dx1 dxo thus evolves according to

2

5152

%M(Sl,sz) = ( —1) M(s1+ 1,820+ 1). (6.46)
As in rectangular fragmentation, there is an infinite family of hidden conservation laws defined by sjs = 2.
Assuming that the Mellin transform has the algebraic time dependence M (s, s5) ~ t~®(51:52) then Eq. (6.46)
gives the recursion a(s; + 1,82 + 1) = a(s1,s2) + 1. Using this recursion and the condition a(s},s3) =0
along the parabola sis5 = 2, the exponent (s, s2) may be determined by the same reasoning as that given
in Sec. 5.4, and the result is

S1 + S92 — (51—52)2+8
D) .

One striking consequence of this formula is that the number density of needles n(t) = M (1, 1) varies sublin-
early in time:

a(s1, s2) = (6.47)

n(t) ~t"  with v=+v2-1. (6.48)

Another basic aspect of needle adsorption is their increasing degree of alignment. We quantify this alignment
by (n;-n;;1) = (cos ), with n; a unit vector parallel to ith needle and 6 the angle between the two adjacent
needles. This angle is related to the base length of the trapezoid defined by two needles via 6 = |z1 — 23] for
21,2 < 1. Thus the orientational correlation function (cos ) is related to the moments through 1—(cos ) ~
(@1 — 22)%) = 2((a%) — (2122)), with (¢2) = (23) = (¢2). Using (z2) = M(3,1)/M(1,1) ~ ¢~ (@G -alL1),
the orientational correlation function is then

1—{(cosf) ~t™*  with p=14++v2-V3=0.682162.... (6.49)

Thus neighboring needles asymptotically become perfectly aligned and the relaxation to this aligned state
decays algebraically with time.

While the connection between needle adsorption and rectangular fragmentation involves some leaps of
faith and hard-to-justify approximations, we gain in finding a natural way to account for the subtle multi-
scaling and non-rational exponents that describe needle adsorption.

6.5 Extensions

Thus far, we’ve focused on irreversible adsorption — once a particle adsorbs, it is immobile. Furthermore,
we tacitly assumed that the only interaction is geometrical exclusion in which the adsorption probability
depends only on whether there exists sufficient empty space to accommodate an incoming particle, and
not on the distance to previously-adsorbed particles. Both of these assumptions are idealizations of reality,
however, and we now study physically-motivated extensions of adsorption in which these assumptions are
relaxed.

Cooperative Monomer Adsorption

A simple example of a distance-dependent interaction is the irreversible adsorption of monomers in one
dimension in which adsorption is forbidden at sites next to already-occupied sites. Suppose that adsorption
at an empty site occurs with rate 1 if both neighbors are empty, with rate r if exactly one neighbor is
occupied, and rate 0 if both neighbors are occupied. The approach to jamming can again be treated in terms
of empty interval probabilities E,,(t). These probabilities now obey the master equations [compare with
Egs. (6.2)]

dE

d—tl = —2rEy — (1 —2r)Es m=1

dE,,

= (=24 20)Ey ~ 21 =) By m 22 (6.50)

The first equation accounts for the disappearance of an empty interval of length 1, an event that occurs with
probability P[o o o] 4+ 2rP[e o o]. Here P[o o o] accounts for the loss of an empty site that is surrounded by
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empty sites, while 2rP[e o o] accounts for the loss of an empty site in which one of its neighbors is already
occupied. We then use Ploo o] = E3 and Pe o o] = Ey — E3 [see Eq. (6.22)] to give the first equation.
The second equation accounts for the disappearance of an m-site empty interval. In such an interval,
the particle can adsorb at m — 2 sites in which both neighbors are empty (the factor (m — 2)E,,). With
probability 2rP[eo o - - - o] the monomer adsorbs next to an occupied site, and with probability 2P[o o - - - 0 o],
m m+1
the monomer adsorbs one site in from the edge and an empty interval of length m is eliminated. Using
Pleco---o] = E, — Epy1[Eq. (6.22)], we obtain the second of Egs. (6.50).
m

For m > 2, we again seek an exponential solution of the form E,,(t) = e~ (m=2+21td(t), similar to

Eq. (6.4). Substituting this ansatz into (6.50) gives

dd
= = —2(1—r)e '@,

whose solution, subject to the initial condition ®(0) = 1, is
() =exp[-2(1—r)(1—€e")].

Finally, by substituting E(t) = e~ 2"t ®(t) and E3(t) = e~ 1427t ®(¢) into the first of (6.50) and integrating
we obtain

t
Ei(t)y=1- / D(u) [27‘672’”" +(1—2r) 67(1+2r)"] du.
0
Hence the surface coverage evolves as
t
p(r;t) = / [2r+ (1 —2r)e "] e 2ru20=n) =) gy (6.51)
0

An amazing aspect of this solution is that the behavior for » = 0 is not the same as the behavior in the
limit  — 0! When r = 0, the above integral gives pf, . = p(0;t=00) = (1 — e~?)/2, which is one-half the
jamming coverage in dimer adsorption. This result has an intuitive explanation that is illustrated graphically
in Fig. 6.12. We define a dual lattice in which each site is halfway between the sites on the original lattice.
Then each adsorbed monomer in the cooperative monomer problem is mapped onto an adsorbed dimer in
the corresponding dimer system. Because of this one-to-one mapping between the two problems and also
because each dimer occupies only a single site in the original lattice, the jammed density is simply one-half
that of the dimer problem, namely, (1 —e™2)/2.

0o —O—0 OO0 00000000 O ——ocee
It I I I I

Figure 6.12: Top line: a jammed configuration for cooperative monomer adsorption when r = 0, where
monomer adsorption requires that both neighbors are unoccupied. Bottom line: corresponding dimer con-
figuration on the dual lattice.

On the other hand the final coverage for non-zero r, no matter how small is ij;m = p(r — 0;00) =
(1+e~2)/2! Why is there a discontinuity in the jamming coverage for r — 0?7 Physically, this discontinuity
arises because of the wide separation of time scales in the two types of adsorption events that occur for
infinitesimal r. In a time of the order of one, r = 0 adsorption events occur (adsorption at sites with both
neighbors empty) until no further such events are possible. The system then reaches the r = 0 jammed state
where empty sites can occur singly or in pairs. Then on a much longer time scale (of the order of r—1),
one site within each empty pair get filled, e.g., #0cce — eece or ecoce — e o ee. To determine pjzm,
consider first the jammed state for cooperative monomer adsorption. Let p; be the density of monomers
that are followed by a single vacancy and pa the density of monomers that are followed by two consecutive
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vacancies. By construction, p; + p2 = p_?am = (1 —e72)/2, and also 2p1 + 3p2 = 1. Solving for ps gives
p2 = e~ 2. After the final infill of one site in all consecutive vacancy pairs, the final jamming density is
Pl = (1= €=2)/2 4 py = (14 2)/2.

Mathematically, the source of the discontinuity is the first term in Eq. (6.51). In the limit » — 0, the
leading contribution of this term is

/OO or e~ 2ru—201=e7") gy,
0

When r — 0, the main contribution to the integral is the region where u is large. In this regime, the factor
e~ ™ in the exponent can be neglected and we are left with

oo
/ 2re U2 dy = 72,
0

Thus for r = 0, the jamming density is (1 —e~2)/2 + e 2 = (1 + e72)/2 as above.

Adsorbate Mobility

In irreversible adsorption, adsorbed molecules remain fixed where they first land on the substrate. In
reality, particles find more stable positions, diffuse, desorb, etc. These post-adsorption events are often
slow compared to the adsorption. We study the extreme limit where adsorption is infinitely faster than
any post-adsorption event; for this limit, we may set the rate of post-adsorption processes to 1 and the
adsorption rate to infinity. Thus whenever an adsorbate configuration permits another adsorption event, it
occurs instantaneously. This separation of time scales for the two processes simplifies the analysis of this
problem.

Figure 6.13: Example of mobile adsorbed dimers in one dimension. Each successive row shows the system
after a single hopping event. When two holes become adjacent, they are immediately occupied by a dimer.

Suppose that dimers adsorb onto a one-dimensional lattice at an infinite rate and then undergo a simple
random walk on this lattice if there is an empty space adjacent to the dimer to accommodate the dimer
(overlapping of dimers is forbidden). Since the deposition rate is infinite, the lattice immediately reaches
a quasi-jammed state in which all empty sites are isolated; we call such sites “holes”. Once this state is
reached, the dimers adjacent to holes can hop, as illustrated in Fig. 6.13. The hopping of a dimer to the left
results in the effective hopping of the hole by 2 steps to the right.

Because the holes have a non-zero density, two adjacent holes may arise. When such a configuration
occurs, it is instantaneously and irreversibly filled by a dimer. Consequently, the number of holes decreases
and eventually every site of the lattice is occupied. This evolution is equivalent to the holes undergoing the
diffusion-controlled binary annihilation,

H+H — 0,

whose dynamics is well-known (see chapter 9). Here the term diffusion-controlled signifies that diffusion
controls the overall reaction rate, since annihilation occurs instantaneously whenever it is possible. Thus we
infer that the density of holes decreases as

L—pt)~< t7tInt d=2; (6.52)
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In writing the result for spatial dimension d > 1, we make the assumption that the hole motion is asymp-
totically diffusive when the lattice is nearly completely occupied by randomly -oriented dimers.

We can similarly analyze lattice deposition of trimers. Now holes hop by three lattice sites whenever a
trimer hops by one site. When three holes are adjacent they undergo diffusion-controlled ternary annihilation,

H+H+H— ),

whose dynamics is also known:

t712vVInt  d=1,
1—p(t) ~ ’ 6.53
o ~{ s b (6:53)
Here we have glossed over the issues of the shape of the trimer (straight or bent) and their orientation.
It seems plausible that these details do not matter in the long-time limit when few holes remain. For the
adsorption of diffusing M-mers, the long-time relaxation is controlled by the M-body annihilation

H+---+H—0,
N—————
M

which leads to
1—p(t) ~t~ /M= M > 4. (6.54)

Reversible car parking

In real adsorption processes, an adsorbed molecule has a finite binding energy to the substrate. Thus an
adsorbed molecule will desorb at a rate that depends on the ratio of the binding energy to the temperature.
If a fixed density of molecules is maintained in a gas phase above the substrate, we then have reversible
adsorption-desorption: molecules adsorb with a rate k4 and desorb with a rate k_. While adsorption is
subject to the availability of space, desorption events occur independently for each adsorbed molecule. It is
fun to think of the monomers as cars that are trying to park along a one-dimensional curb; we ignore the
fact that a car needs a little extra room to actually steer into a parking space (Fig. 6.14). From everyday
experience, we all know it is hard to find a good parking spot. If the rate at which cars leave — the
desorption rate — is slow, the probability to find a parking spot large enough to accommodate your car
becomes very small. When the position of individual parking spots is unregulated, such as in “resident-only”
parking areas, cars will typically be very tightly packed, and the car density approaches the limit of perfect
packing as the desorption rate goes to zero. This feature is a surprising outcome of the competition between
adsorption and desorption. While the steady-state coverage is nearly complete for infinitesimal desorption,
the coverage is significantly less than complete for no desorption.

T

Figure 6.14: Adsorption-desorption of cars. Desorption attempts are always allowed, while the adsorption
attempt shown fails because of insufficient parking space.

Another motivation for studying reversible adsorption is its connection to granular compaction. Suppose
that identical glass beads are placed into a jar one at a time but randomly. The density of filled space
in this bead packing — approximately 0.58 — is known as the random packing density. If this bead-filled
jar is then vibrated vertically at a suitable intensity and frequency, the density will slowly increase and
eventually relax to the random close-packing density of approximately 0.68. In experiments, the time scale
over which this compaction occurs can be as long as months! Moreover, this random close packing-density
is still smaller than the maximal packing fraction of 7/1/18 ~ 0.7405 for a face-centered cubic lattice sphere
pack. This compaction is analogous to adsorption-desorption. After the jar is initially filled, there exist
many interstitial empty spaces that are not large enough to accommodate a bead. Because of the vibrations,
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occasional local re-arrangements occur that gradually eliminate these empty spaces. As the density increases,
re-arrangements become progressively more collective in nature and thus more rare. This slow compaction
seems to be captured mathematically in terms of adsorption-desorption.

As a preliminary for the car parking problem, consider the trivial example of adsorbing and desorbing
monomers that interact only with single sites on the substrate. The density of adsorbed particles p satisfies

the Langmuir equation

d
L= —k_p+ki(l-p), (6.55)

in which the total adsorption rate is proportional to the density of empty space and the total desorption
rate is proportional to the density of adsorbed monomers. The time dependence of the density is

p(t) = pc + (Po — poo) eit/Tu (6.56)

with the relaxation time 7 given by 7= =k, + k_ and the final coverage po = ki /(ky + k_) Notice that
as h =k, /k_ — oo, the asymptotic coverage is poo = 1 — h ™! is reached in a time 7 oc h1.

For reversible car parking, it is more convenient to work with the density of voids of length x at time ¢,
V(z,t), rather than the density of empty intervals E(x.t). As usual, the strategy is to write and then solve
the governing master equations which are:

2/€+/ V(y,t)dy — 2k_V (x,t) x <1
x+1
ov(x,t) 0 6.57
ot 2/€+/ V(y,t)dy — 2k_V(z,t) — kr(x—1)V(z, 1) (6.57)
xz+1
k_ z—1
Vi, OV (e—y—1,1)d > 1.
fo xtdm/ (y, )V (e—y—1,t)dy x

Each term has a simple explanation. For both x < 1 and = > 1, the first term on the right accounts for the
creation of a void of length x when a car parks in a void of length = + 1 or greater; the factor 2 accounts
for the two places that the car can park in an x 4+ 1-void to create an z-void. The second term accounts
for the loss of an z-void because of the desorption of a car at either end of the void. For x > 1, the third
term accounts for the loss of an z-void when a car parks inside it. The last term for > 1 is more subtle; it
accounts for the creation of an x-void when a car leaves a parking spot that has an empty space of length y at
one end of the car and a space x —y — 1 at the other end. Thus a void of length z is created by merging voids
of length y and = —y — 1, together with the unit-length vacated parking spot. The correct way to express this
composite event is through a 3-body correlation function. However, this description is not closed, as the void
density is coupled to a 3-body function. We would then have to write an evolution equation for the 3-body
correlation in terms of higher-body correlations, ad infinitum. To break this hierarchy at the simplest level,
we invoke the mean-field assumption that the 3-body correlation function for a car to be flanked by voids
of length y and « — y — 1 is the product of single-void densities. The factor [V (x,t)dz in the denominator
properly normalizes the probability that the neighbor of a y-void has length z —y — 1.

Since there is a one-to-one correspondence between voids and adsorbed particles, the density of voids of
any size equals the particle density; thus p = f V(x,t) dz. Also, the mean fraction space occupied by voids
and by cars equals 1; thus 1 = [ (z + 1) V(z,t) dz. Because each adsorption and desorption event changes
the overall density by the same amount, the rate equation for the total density is simply

dp _ o

XL mkpty / (x = 1) V(a, 1) da, (6.58)

which generalizes the Langmuir equation (6.55). The interpretation of this equation is straightforward: with

rate k_p, a parked car desorbs, while the second term accounts for the parking of a car in a space of length

x > 1; this same equation can also be obtained by integrating the master equations (6.57) over all lengths.
Most of the interesting behavior about car parking can be easily gleaned by solving the master equations

(6.57) in the steady state. Then the equation for x < 1 relates the void density to its spatial integral; this
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—Qax

fact suggests an exponential solution V(x) = Ae™*®. Substituting this ansatz into the the master equation

for z < 1 gives the condition
ke

k_
Next, applying the normalization condition [(z + 1)V (z)dx = 1 gives A = a?/(a + 1). Thus the parked
car density is simply

h= = e, (6.59)

«
= | V(z)dz = 6.60
p= Vs =, (6.60)
and eliminating « in favor of p, the probability distribution for parking spaces of length x is
2
Viz) = F— er2/(=p), (6.61)

From Egs. (6.59) and (6.60), the limiting behaviors of the steady-state density as a function of the scaled

adsorption rate are:
h h — 0;
h) ~ ’ 6.62
pth) {1—[1nh]—1 h = oo. (6.62)

For slow adsorption, excluded-volume effects are negligible and the equilibrium density simply equals the
adsorption rate, p ~ h. However, when the adsorption rate is large, excluded-volume effects are dominant.
For example, to attain a steady-state density of p = 0.99, an astronomical ratio of adsorption to desorption
rates, h ~ €'%0, is needed! In contrast, for reversible monomer adsorption, a value of h = 100 gives a density
of 0.99. As mentioned at the beginning of this section, a particularly intriguing feature is that the limiting
behavior p(h — o00) — 1 is distinct from the jamming density pjam = p(h = 00) = 0.747597 . ... The crucial
point is that any infinitesimal desorption (h — oo but still finite) eventually allows all wasted space to get
filled. However, if h = oo at the outset, there is no mechanism to utilize too-small parking spaces.

Let’s now study how the steady-state parking density is reached in the limit A — oo. For this purpose,
the quasi-static approximation is extremely useful. In later chapters, we will see that this quasi-static
approximation provides an easy route to solving a wide variety of slowly-varying phenomena. The basis of
this approximation is the observation that car parking rarely succeeds as h — oco. Consequently, there is
sufficient time for the voids to reach a nearly equilibrium state. Thus we use the steady-state exponential
void density given by (6.61) in the rate equation (6.58). With this assumption, the density evolves as

% =—k_p+ki(1—p)e /0P, (6.63)
The linear desorption term has the same form as in the monomer adsorption-desorption problem. However,
the adsorption term is modified by the probability that an adsorption event is successful. This effective
sticking probability S(p) = e=#/(17P) is extremely small when p — 1, a feature that reflects the difficulty of
finding a parking space when the density of parked cars is close to one.

We can obtain the effective sticking probability by the following heuristic argument. Consider a one-
dimensional nearly-full parking lot with density p = 1/(1 + (x)). Here () < 1 represents the small average
bumper-to-bumper distance between neighboring parked cars. Thus a driver who tries to park his car by
happening upon a sufficiently large parking spot is almost always out of luck. Instead a driver has to enlist

the help of N = (z)~! = T”p owners of consecutive parked cars to move each of their cars forward a

little; the first by (z), the second by 2(z), the third by 3(z), etc., until a space of length one is generated.
The probability of this cooperative rearrangement of picking cars sequentially and moving them forward
by a prescribed amount decays exponentially in the number of cars. Thus the effective sticking probability
S ~e N~ er/(=p)

Finally, we determine the relaxation toward the steady state for h — oo. In this limiting case, the
process is equivalent to a large population of cars are cruising the streets in a predatory manner, looking for
parking spots. As soon as a parking spot becomes available it is immediately taken by a nearby cruising car.
Technically, this situation is the desorption-controlled limit, as desorption limits of the overall reaction. Since
any desorption event is immediately followed by at least one adsorption event, the effect of the loss term in
Eq. (6.63) is effectively canceled out. Thus we obtain the time dependence of the density by neglecting the
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loss term in (6.63). Because the gain term in this equation has been constructed from the steady-state void
density, it remains positive for any p < 1 and therefore builds in a relaxation to the completely-occupied
state. To solve the resulting rate equation dp/d(kst) = (1 — p) exp[—p/(1 — p)], we write g = 1/(1 — p) and
approximate the equation by dg/d(kyt) < e™9 to yield the asymptotic behavior g ~ In(k4t). This gives an
extremely slow logarithmic decay law

p(t) ~1—(Ink t)~ % (6.64)

Lateral Adsorption

Our final example is adsorption with lateral relaxation, a process that can be recast as the computer science
problem of a hash table construction. To illustrate the basis of the model, consider a gymnasium goer who
daily uses a locker room in which all locker use is transient. Which locker should the user choose so that
he won’t forget his locker after his workout? The hash table approach is to start with a fixed number, say
locker #123. If empty, take it. If occupied, move to #124 and take it, if it is free. If not, move to #125,
etc., until a vacancy is encountered. As long as the locker room is not too full, this approach provides a
quick algorithm to find and remember a vacant locker reliably.
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Figure 6.15: A monomer that is incident on an occupied site moves to the right and adsorbs when it first
encounters a vacancy.

This search process can be viewed as the following adsorption problem. If an incoming particle is incident
on an occupied part of the substrate, the particle moves laterally one site at a time along the substrate and
absorbs when a vacancy is first encountered (Fig. 6.15). For convenience, we set the deposition rate equal
to 1, while the subsequent search for a vacancy occurs at infinite rate. By construction, each deposition
attempt is successful, so that the coverage p(t) = ¢ and the system is completely filled at ¢ = 1. We now
determine the distribution of voids as a function of time by studying the evolution of the empty interval
probabilities E,, (t).

The exact master equation for FE,, involves

satisfy the approximate master equation

dE,,

where (m) is the average size of occupied islands. The first term in this equation accounts for the direct
deposition of a monomer into an empty m-site sequence. The second term accounts for adsorption in an
m-interval in which the left boundary site occupied. Here the empty interval gets filled when a monomer
is transported along a string of occupied sites until the empty interval is encountered. We have made the
mean-field approximation that there is no correlation between the sizes of the island of occupied sites and
the adjacent empty interval. With this assumption, the joint probability for an empty interval of length m
and the size of the adjacent island may be written as a product of one-body quantities.

The master equation (6.65) still looks formidable because it does not appear to be closed—the mean
value (m) is not expressed in terms of the E,,. However, there is a simple relation between (m) and F,,. By
definition, the average island size is given by

_>omly,
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The sum in the numerator is just the density occupied sites, which simply equals t. The sum in the
denominator is total island density I. Now the island density is the same as P(ce), and the latter quantity
is simple F, — Es.

To solve the resulting master equation, we again attempt the exponential ansatz E,, = e ™ ®(t).
Substituting this into (6.65), and using the above connection between (m) and F; — E2 and ¢, we reduce the
infinite set of differential equations (6.65) into ® = —te*. It is striking that the empty interval method leads
to a fortuitous set of cancellations that makes the problem amenable to solution. Integrating the equation
for ®, we obtain ® = (1 — t) !, leading to the empty interval probabilities

Ep(t) = (1 —t)e m=t,

From this expression, the density of islands I = F; — E5 and the density of voids Pleo---0e] = F,,, —
2FE,+1 + E,, 42 are given by:

It)y=(1-t)(1—e)
Vin(t) = (1 — ) (1 — e )2 e~ (M=t

A remarkable property of this problem is that in addition to obtaining the empty interval and empty
void probabilities, we can also determine their filled analogs F;,, and I,,,, namely the filled interval and the
island probabilities, respectively. These are defined by

Fo=Ple---e, I, = Ploe---

m m

Let’s compute the island densities. These densities evolve according to the master equations

dl, tVy =
E_ (3+ 72 )Il +ng2(n 2)Vn

m—2
dl,, tVi |41 Vi

n=1

(using the sum rules > nV,, =1 —t and > V,, =V, the last term simplifies to 1 —t — 2V + V7). All terms
in above equations are self-explanatory; the linear in densities terms are obviously exact while the nonlinear
terms tacitly assume the lack of correlations between sizes of adjacent islands and voids. This subtle feature
is also required in writing the second term on the right-hand side of Eq. (6.65).

Equations (6.66) are recursive and can be solved accordingly. For instance, we get I} = (1 —t)t e~ 2! and
I, = %(1 —t)t2e~% leading to the conjectural behavior I,, = a, (1 —t)t™e~ MVt This ansatz indeed solves
the problem if for m > 2 the amplitudes satisfy

m—2
Mam = (M + Dam—1+ Y (n+1)anam n_1. (6.67)

n=1

It is convenient to set ag = 1; then (6.67) holds for m = 1 since it gives a; = agp = 1. With the help of the
generating a(x) = ZmZO amx™, we recast the recurrence (6.67) into the differential equation

da 9 da
= +a:a£. (6.68)

Note that the scale transformation x — Az, a — A~'a leaves Eq. (6.68) unchanged thereby suggesting to
use the scale invariant variable y(z) = wa(z). The resulting equation (1 — y)y’ = 2~y is separable, and it
is immediately solved to yield x = ye™¥. We sure can expand x in y but we must do the opposite and find
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Yy = anpa™*t. This is accomplished as follows:

am = f xm+2
_ L ]{
271 m+2
1 f e(m+1)y
m+1

+

This completes the derivation of the density of islands:

_ (m+ 1)m—1 m ,—(m+1)t
Im(t)—T(l—t)t e .
The density of the empty strings is then found by integrating Eq. (6.69) twice subject to the given boundary
values F; and F5. We get

Fpo=(m—1)F—( —1F1+Z —1—k)I,

with the first two values given by

Fi=1-E =t
Fo=1-2E+E,=1-21—t)+ (1 —t)e?

6.6 Notes

The first equation (6.1) in this chapter was actually the first exact result in the field; it was derived in a
pioneering work by Paul Flory (1939) in the context of the cyclization reaction on the polymer chain (his
approach is essentially described in section 48). The jamming coverage for the car parking model was found
by Alfred Rényi (1958) 49. In 60s, several people (particularly Cohen, Keller, Reiss, Widom) recognized the
advantages of the evolution approach. Earlier exact results are reviewed and systematized in 50. More recent
reviews 51; 52; 7; 53 are written by researches who were (and some still are) very active in the field in 80s and
90s. These reviews contain many useful things not covered in this chapter (e.g. multilayer adsorption — we
discussed only monolayer case) and huge bibliography. Experimental techniques are reviewed by Ramsden
54.

The subject of sections 6.1-6.1 is classical although some of the results are quite recent and could not
been found in reviews (e.g., models in which particles landing on the top of islands quickly diffuse to vacant
sites 55). In sections 6.4 and 6.5 we gave a glimpse of adsorption problems for which there is currently no
framework that allows to do analytical computations yet we already understand some interesting features,
e.g. asymptotics. For adsorption on higher-dimensional substrates, the reader can like original papers that
are short and lucid; see e.g. Refs. 56; 39 for discussion of (6.44). The deposition of needles is due to
Tarjus and Viot 58. The connection with diffusion-controlled annihilation was recognized by Privman and
co-workers (see 59), the parking lot model 60 is actively investigated due to success in explaining several
features of granular materials.

Problems

Section 6.1
1. Compute the total density of voids and the density of islands.
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. Suppose that dimers adsorb onto a one-dimensional partly filled lattice. Consider the initial state

where each lattice is independently occupied with probability pg. Compute the jamming coverage.

. Solve the car parking model if initially there is a density A of randomly distributed sizeless defects.

Section 6.2

. Suppose that dimers adsorb onto a one-dimensional lattice of length L. Starting with expression (6.16)

for the generating function of the coverage, compute the average jamming coverage.

Section 6.3

. Compute the magnitude of fluctuations in the number of adsorbed dimers in a region of L sites.

. Compute the structure factor S(q) = e"4™C,,.

. Define the probabilities for filled strings of length m, F,,, and for islands of length m, I,,:

F,,=Ple---o] I, =Ploe---e0].

m m

Show that the island probability is the discrete second derivative of the filled string probability,

Iy = Fy — 2F i1 + Foso, (6.69)

. For m < 3, use conservation statements to find the following relation between F, and the empty

interval probabilities F,;,:

F1:1—E1,
Fy=1—2E + Es,
F3=1-3E, 4+ 2E,.

Notice that the general form of the last identity is
F3=1- 377[0] + 2'P[oo] + P[O X o] — 'P[o o o],

but, for adsorption of dimers, P[o x o] = P[o 0 o] so that the 3-body terms in this identity cancel.

For 3 < m < 7, express Fy, in terms of F; and the probability for two disconnected empty intervals
E; k. For F5, for example,

F5 = 1 — 5E1 + 4E2 — 2E4 + E5 + 2(1 — eit)\llg + \114.
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