1. DIFFUSION/RANDOM WALKS [(a,b) 2 lects. (c) 1 lect. (d) 2 lects. (e) 3 lects.]
 (a) Master equation description of hopping processes
 (b) Central limit theorem
 (c) Anomalous random walk processes
 (d) Langevin and Fokker-Planck equations
 (e) First-passage phenomena: transience/recurrence, exit probabilities, exit times

2. COLLISIONS, TRANSPORT PROCESSES, HYDRODYNAMICS [(a) 1 lect. (b) 1 lect.]
 (a) Elementary kinetic theory
 (b) Navier-Stokes equation and some consequences

3. KINETICS OF AGGREGATION [3 lects.]
 (a) Overview of solution methods
 (b) Illustrative examples: constant and product kernel solutions
 (c) Influence of steady input

4. ADSORPTION PHENOMENA [3 lects.]
 (a) Random sequential adsorption in one dimension
 (b) Application to physical fragmentation
 (c) Reversible adsorption
 (d) Application to polymer translocation

5. SPIN DYNAMICS [3 lects.]
 (a) The central dogma and basic phenomenology
 (b) Detailed balance condition
 (c) Ising-Glauber model
 (d) Conserved order-parameter dynamics

6. COARSENING [2 lects.]
 (a) Basic models: non-conserved and conserved order parameter
 (b) Evolution in idealized geometries: domain walls and droplets
 (c) Lifshitz-Slyozov-Wagner coarsening
 (d) Extremal processes

7. POPULATION DYNAMICS [2 lects.]
 (a) Fundamental models: logistic, competition, prey-predator dynamics, epidemics
 (b) Discrete reactions: branching processes, annihilation
 (c) Small-fluctuation expansion

8. REACTION KINETICS [2 lects.]
 (a) Role of spatial dimension
 (b) Basic examples: trapping, coalescence, aggregation, propagating waves

9. COMPLEX NETWORKS [3 lects.]
 (a) Erdős-Rényi random graph
 (b) Random recursive trees
 (c) Preferential attachment models